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Abstract. All-Optical Label Switching (AOLS) is a new technology
that performs packet forwarding without any Optical-Electrical-Optical
(OEO) conversions. In this paper, we study the problem of routing a set
of requests in AOLS networks using GMPLS technology, with the aim
of minimizing the number of labels required to ensure the forwarding.
We first formalize the problem by associating to each routing strategy
a logical hypergraph whose hyperarcs are dipaths of the physical graph,
called tunnels in GMPLS terminology. Such a hypergraph is called a hy-
pergraph layout, to which we assign a cost function given by its physical
length plus the total number of hops traveled by the traffic. Minimizing
the cost of the design of an AOLS network can then be expressed as
finding a minimum cost hypergraph layout.
We prove hardness results for the problem, namely for general directed
networks we prove that it is NP-hard to find a C log n-approximation,
where C is a a positive constant and n is the number of nodes of the
network. For symmetric directed networks, we prove that the problem
is APX-hard. These hardness results hold even is the traffic instance
is a partial broadcast. On the other hand, we provide an O(log n)-
approximation algorithm to the problem for a general symmetric net-
work. Finally, we focus on the case where the physical network is a
path, providing a polynomial-time dynamic programming algorithm for
a bounded number of sources, thus extending the algorithm given in [1]
for a single source.

1 Introduction

All-Optical Label Switching (AOLS) [9] is an approach to route packets trans-
parently and all-optically, thus allowing a speed-up of the forwarding. This very
promising technology for the future Internet applications also brings new con-
straints and new problems. Indeed, since the forwarding functions are imple-
mented directly at the optical domain, a specific correlator (device) is needed
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for each optical label processed in the node. Therefore, it is of major impor-
tance to reduce the number of employed correlators in every node, implying a
reduction in the number of labels (as referred in the rest of the paper) that are
going to be used by the traffic. Due to its flexibility as a control plane and to the
fact that it handles traffic forwarding, the Generic MultiProtocol Label Switch-
ing (GMPLS) is the most promising protocol to be applied in AOLS-driven
networks.

In GMPLS, traffic is forwarded through logical connections called Label
Switched Paths (LSPs). When GMPLS is used with packet-based network, pack-
ets are associated to LSPs by means of a label, or tag, placed on top of the header
of the packet. In this way, routers - called Label Switched Routers (LSRs) - can
distinguish and forward packets.

The GMPLS standards allow packets to carry a set of labels in their header,
conforming a stack of labels. Even though a packet may contain more than one
label, LSRs must only read the first (or top) label in the stack in order to take
forwarding decisions. This helps to reduce both the number of labels that need to
be maintained on the core LSRs and the complexity of managing data forwarding
across the backbone.

Stacking labels and label processing, in general, are standardized by the
following set of operations that an LSR can perform over a given stack of labels:

• SWAP: replace the label at the top by a new one,
• PUSH: replace the label at the top by a new one and then push one or more

onto the stack, and
• POP: remove the label at top in the label stack.

The labels stored in the forwarding table are significant only locally at the
node and swapped all along the LSP (see Fig. 1).

Solutions deployed by GMPLS for reducing the number of labels are label
merging [4, 11, 13] (not discussed here) and label stacking [12, 15]. With label
stacking, when two or more LSPs follow the same set of links, they can be
routed together “inside” a higher-level LSP, henceforth a tunnel. In order to
setup a tunnel, multiple labels are placed in the packet’s header.

Fig. 1 represents the general operations needed to configure a tunnel with the
use of label stacking. At the entrance of the tunnel, λ PUSH are performed in
order to route the λ units of traffic through the tunnel. Then, only one operation
(either a SWAP or a POP at the end of the tunnel) is performed in all the nodes
along the tunnel, regardless of λ. In this figure, a stack of size 2 is used to route
the λ LSPs in one tunnel from node A to node E. The top label l is swapped and
replaced at each hop: by l1 at node B, by l2 at node C, and is finally popped at
node D. The λ units of traffic, at the exit of the tunnel at node E can end or
follow different paths according to their bottom label ki, for all i ∈ {1, 2, ..., w}
in the stack.

A consequence of the way in which the GMPLS operations can be configured
at LSRs is the following: traffic can enter in any node of a tunnel but can exit
in only one point, the last node of the tunnel. In other words, when some traffic
is carried by a tunnel, it follows the tunnel until its end.
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Fig. 1. GMPLS operations performed at the entrance and at the exit of a tunnel.

Since the number of labels used for GMPLS forwarding affects the cost of
the AOLS architecture, in this paper we mainly focus on the minimization of the
number of labels used. In our previous example, the total cost c(T ) of this tunnel
T from node A to node E in terms of number of labels is c(T ) = λ + `(T ) − 1,
where λ is the number of units of traffic forwarded through this tunnel and `(T )
is its length in terms of number of hops (which is 4 on this example). We will
formally define the cost function of the problem in Section 2.

Previous work and our contribution. The label minimization problem in GM-
PLS networks has been widely studied in the literature during the last few
years [4, 11–15]. All these articles focus mainly on proposing and analyzing
heuristics to the problem, but there is a lack of theoretical results, like com-
putational complexity or bounds on the approximation ratio of the proposed
algorithms. For instance, in [14] the authors propose heuristics for routing a set
of demands in AOLS networks when routers have limited number of available op-
tical correlators. Very recently [1], the problem has been studied for the directed
path from a more theoretical point of view. Namely, in [1] the authors present a
polynomial-time optimal algorithm for the case when all traffic is issued from a
single source and an O(log n)-approximation algorithm with arbitrary number
of sources, where n is the number of nodes of the network.

In this article we provide the first theoretical framework for the label mini-
mization problem in general GMPLS networks. We translate the problem into
finding a set of dipaths in a directed hypergraph. With this new formulation, it
turns out that the problem is very similar to classical Virtual Path Layout (VPL)
problems originating from ATM networks. We provide hardness results and ap-
proximation algorithms for the problem in general graphs. The approximation
algorithms strongly rely on the already known algorithms for VPL problems.
Finally, we focus on the path topology, extending the dynamic programming ap-
proach presented in [1] to any bounded number of sources. If there are k sources,
the main result is an optimal algorithm with running time nO(k). That is, the
problem is polynomial in the path for any fixed number of sources.



Organization of the paper. In Section 2 we formally state the problem in terms
of hypergraph layout and fix the notation to be used throughout the article. In
Section 3 we prove that for general directed networks it is NP-hard to find a
C log n-approximation, where C is a a positive constant and n is the number of
nodes of the network. For symmetric directed networks, we prove that the prob-
lem is APX-hard, and therefore it does not accept a PTAS unless P=NP. In
Section 4 we provide an approximation algorithm to the problem for symmetric
directed graphs with an approximation ratio O(log n), where n is the number
of nodes of the network. In Section 5 we focus on the directed path topology
and present a dynamic programming approach solving the problem in polyno-
mial time when the number of sources is fixed. Finally, Section 6 is devoted to
conclusions and further research.

2 GMPLS Logical Network Design as a Hypergraph
Layout Problem

The logical network design problem that we address can be roughly described as
follows: we are given a digraph (directed graph) G together with a set of traffic
demands (or requests) between couples of vertices in G, and we must find a set of
tunnels of minimum cost allowing to route all traffic requests. Note that usually
communication networks are symmetric digraphs (i.e. when operators set a link
on one direction, they also set the opposite link). So it is interesting to study the
symmetric case, which turns out to be computationally easier than the general
directed case. Let us now precise each one of the above terms.

A tunnel is simply a directed path (or dipath) in G, and due to the technolog-
ical constraints discussed in Section 1, traffic can enter anywhere in the tunnel
but must leave only at the end of the tunnel. To define the problem formally we
need the following notation:

• G = (V,E) is the underlying digraph (which can be symmetric or not).
• |V | = n, and vertices are numbered 1, . . . , n.
• rij is the request from i ∈ V to j ∈ V , with multiplicity mij . R is the set of

all requests.
• P (G) is the set of all simple dipaths in G.
• t stands for a tunnel, and T is the set of tunnels, that is t ∈ T ⊆ P (G).
• ` is a length function on the arcs, that is ` : E → R+.
• for a tunnel t, `(t) =

∑
e∈t `(e) is its length and w(t) is the amount of traffic

it carries.

Note that a priori w(t) depends on the routing policy. The cost of a tunnel t is
then w(t) + (`(t)− 1), and the cost of a set of tunnels T is∑

t∈T
(w(t) + `(t)− 1) . (1)

Each tunnel can be seen as a directed hyperarc on the vertex set of G. This
observation naturally leads to the definition of a hypergraph layout.



Definition 1 (Hypergraph layout) Given a graph G and a set T ⊆ P (G),
H(T ) is the directed hypergraph with V (H(T )) = V (G), and where for each
tunnel t ∈ T ⊆ P (G) there is a directed hyperarc in H(T ) connecting any vertex
of t to the end of t. H(T ) is called a hypergraph layout.

Note that a hypergraph H(T ) defines a virtual topology on G. A hypergraph
layout H(T ) is said to be feasible if for each request rij ∈ R there exists a
dipath in H(T ) from i to j. The problem can then be simply expressed as
finding a feasible hypergraph layout of minimum cost. Let us now rewrite the
cost function of Equation (1).

Given a hypergraph layout H(T ), let L(rij) be the number of hyperarcs that
request rij uses, and let dH(i, j) be the distance from vertex i to vertex j inH(T ).
Then the term

∑
t∈T w(t) of Equation (1) can be rewritten as

∑
rij∈R L(rij)·mij

and, since L(rij) ≥ dH(i, j), we conclude that in an optimal solution the routing
necessarily uses shortest dipaths in the hypergraph layout. It follows that the
cost function of Equation (1) can be rewritten w.l.o.g. as∑

t∈T
(`(t)− 1) +

∑
rij∈R

dH(i, j)mij . (2)

The cost of a solution is of bicriteria nature. The first part is the cost of the
hypergraph structure; we call it the total length of the layout. The second part
is the total distance that the traffic travels in the hypergraph; we call it the total
hop count. Both cost function parts are very much conflicting. On the one hand,
to minimize the hop count, it is enough to take a shortest tunnel connecting any
source to any destination. On the other hand, to minimize the total length of
the layout, it is enough to use a minimum arc-weighted connected hypergraph
H such that for each request rij ∈ R, vertices i and j lie on the same connected
component of H. Summarizing, the problem can be stated as follows.

Minimum Cost Hypergraph Layout: Given a digraph G with a
length function and a set R of traffic requests, find a feasible hyper-
graph layout of minimum cost, where the cost of a hypergraph layout is
defined as in Equation (2).

If G is a symmetric digraph, the problem is denoted Minimum Cost Symmet-
ric Hypergraph Layout. It makes sense also to consider the decision version
in which we are also given two positive integers CL, CH and the objective is to
decide whether there exists a layout with total length less than CL and total
hop count less than CH .

We note that the cost function of Equation (2) can be naturally generalized
to

α ·
∑
t∈T

c(t) + β ·
∑
rij∈R

dH(i, j)mij , (3)

where α and β are positive constants and c(t) is a general cost function c :
P (G)→ R+. The cost function of Equation (2) corresponds to c(t) = `(t)− 1.



Relation with VPL problems. This layout design problem defined above is quite
similar to well studied VPL problems in ATM networks, in which one imposes a
constraint on the logical structure and then wishes to minimize either the max-
imum distance [2] or the average distance [6] traveled by the traffic. Concerning
hardness and approximation, we shall see in the sequel of the article that the
problem we study inherits most of the characteristics of the classical VPL prob-
lems studied since the 80s. It is not surprising that, even if new technologies
like GMPLS are proposed to cope with the increasing bandwidth of commu-
nication networks, the computational complexity of the problems associated to
these technologies remains essentially the same.

Nevertheless, there are two crucial differences between the GMPLS problem
that we study and the classical VPL version of ATM networks. Indeed, we have
seen that the GMPLS logical network design problem can be translated into
finding a set of dipaths in a directed hypergraph, whereas the existing models
for VPL problems deal with digraphs without multiple arcs. This feature will
be exploited in the dynamic programming approach for the path presented in
Section 5. The second difference is that the cost function we consider takes into
account the sum of the length and the hop count costs, whereas usually in VPL
problems the aim is to minimize the maximum value of either the length or the
hop count in the network. Finally, it is important to note that, if there is a single
source in the the GMPLS version (or, more generally, if the traffic instance is
such that in an optimal solution each hyperarc has exactly 2 vertices), then the
problem is basically equivalent to a classical VPL problem.

3 Hardness Results

In this section we give hardness results for the Minimum Cost Hypergraph
Layout problem. We distinguish two cases according to whether the underlying
network is symmetric or not. We focus on those cases in Sections 3.1 and 3.2.

3.1 General case

Theorem 1 The Minimum Cost Hypergraph Layout problem cannot be
approximated within a factor C log n for some constant C > 0, even if the in-
stance is a partial broadcast, unless P = NP.

Proof: The reduction is from Minimum Set Cover4. Raz and Safra [10] proved
that Minimum Set Cover is not approximable within a factor C log n, for
some constant C > 0, unless P = NP. To a Set Cover instance with sets
S1, S2, . . . , Sk, with Si ⊆ {a1, a2, . . . , an}, we associate the following graph:

• We start with a distinguished node s.

4 Given a finite set S and a collection C of subsets of S, the aim is to find a subcollection
C′ of C of minimum cardinality that covers all the elements of S.
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Fig. 2. Reduction in the proof of Theorem 1.

• For each set Si we introduce a node vi and a directed path of length L + 1
(L is a constant to be specified later) from s to vi through L new vertices
p1
i , p

2
i , . . . , p

L
i .

• For each element aj we introduce a vertex uj and, for each vertex vi we add
the arcs (vi, uj) if aj ∈ Si.

• The requests are from s to uj , for i = 1, . . . , n.

This construction is illustrated in Fig. 2. Let OPT be the optimal cost to the
Minimum Cost Hypergraph Layout instance, and let OPTSC be the optimal
cost to the Minimum Set Cover instance.

Note that any cover defined by I ⊆ {1, 2, . . . k} induces a solution of Di-
rected Hypergraph Layout obtained as follows: we use a tunnel of cost L
connecting node s to each node vi, i ∈ I corresponding to a set taken in the cover.
Then we connect each node vi, i ∈ I to the vertices uj , j ∈ Si. Finally, if a node
uj has more than one incoming tunnel (which means that aj is covered more
than once), we remove extra ones. A solution induced by an optimal cover has
length cost L ·OPTSC , and the hop count cost is 2n, so OPT ≤ L ·OPTSC +2n.

Conversely, given a layout, the dipaths from s to vi used by some tunnel
must induce a cover, so OPT ≥ L ·OPTSC + n. Putting all together,

L ·OPTSC + n ≤ OPT ≤ L ·OPTSC + 2n.

By choosing L to be large enough, the gap for the Minimum Cost Hyper-
graph Layout problem can be made as large as in Minimum Set Cover.
Since, unless P = NP, approximating Minimum Set Cover within a factor
C log n for some constant C > 0 is NP-hard [10], our result follows. �

3.2 Symmetric case

When the input graph G is symmetric, we can consider G as an undirected where
the edge {i, j} corresponds to the two arcs (i, j) and (j, i).

Theorem 2 The Minimum Cost Symmetric Hypergraph Layout problem
is APX-hard even if the instance is a partial broadcast. Therefore, it does not
accept a PTAS unless P=NP.



Proof: The reduction is from Minimum Steiner Tree5, which is know to be
APX-hard [3], hence it does not accept a PTAS unless P = NP.

Given an instance (G = (V,E), S ⊆ V ) of Minimum Steiner Tree problem
on n vertices, we build an instance of Minimum Cost Symmetric Hyper-

graph Layout problem by subdividing Ω
(
n2 ·

∑
rij∈Rmij

)
times each edge

of G and considering as request set a partial broadcast from any vertex in S to
all the others vertices in S. Note that subdividing edges is equivalent to setting
α >> β in the cost function of Equation (3). In other words, the total hop count
is negligible compared to the total length of the layout. It is then clear that any
optimal solution to the Minimum Cost Symmetric Hypergraph Layout
corresponds to a minimum cost Steiner tree in G spanning all the elements in
S. Let OPT be the optimal cost to the Minimum Cost Symmetric Hyper-
graph Layout instance, and let OPTST be the optimal cost to the Minimum
Steiner Tree instance. Let M be the number of times we have subdivided the
edges of G. Summarizing,

OPT = M ·OPTST + o(M ·OPTST ).

The existence of a PTAS for Minimum Cost Symmetric Hypergraph Lay-
out would yield a PTAS for Minimum Steiner Tree, which is impossible
unless P = NP. �

4 Approximation Algorithms

In this section we provide approximation algorithms for Minimum Cost Hy-
pergraph Layout problem. Unless said otherwise, we focus on the symmetric
version, for which the description of the algorithms is easier, although the main
ideas could be adapted to the general version with slight modifications. For the
sake of presentation, we describe our algorithms when the network is a path, a
tree, and a general graph in Sections 4.1, 4.2, and 4.3, respectively. The approx-
imation algorithm for the directed path network appeared also in [1], we include
it here for the sake of completeness.

4.1 Case of the path

First assume that the instance is a weighted all-to-all (i.e., there is a traffic
request between each couple of nodes), and that n is a power of two (otherwise,
just add dummy vertices). Then one simply uses the following binary layout: we
connect node 1 to node n/2, node n/2 to node n, and we use recursively the
binary layout for n/2 on the subdipaths [1, n/2] and [n/2, n]. It is clear that any
traffic request can be routed in this layout with at most log n hops, and that the
5 Given an edge-weighted graph G = (V, E) and a subset S ⊆ V , find a connected

subgraph with minimum edge-weight containing all the vertices in S. We can assume,
by subdividing edges, that all edge-weights equal 1.



total length of this layout is bounded above by log n · `([1, n]), where `([1, n])
denotes the length of the tunnel going from node 1 to node n. Therefore the cost
of this layout is log n ·

∑
rij∈Rmij + log n · `([1, n]). Since any layout costs at

least
∑
d∈Dmij + `([1, n]), this provides a log n-approximation in the all-to-all

case.
Now, for a general traffic pattern, it is not always the case that `([1, n]) is a

lower bound on the total length of the layout. We define the span of an instance
as the minimum set of arcs such that any request can be routed using only those
arcs. Note that the span is indeed a set of intervals such that any traffic request
is routed within one of these intervals. Let `0 denote the length of the span.
Then any layout costs at least

∑
rij∈Rmij + `0, and using the binary layout on

each interval of the span we can define a layout with total length log n · `0 and
total hop count log n ·

∑
rij∈Rmij . Summarizing,

Proposition 1. When the network is a path, there exists a polynomial-time
approximation algorithm for Minimum Cost Hypergraph Layout problem
with an approximation ratio O(log n).

4.2 Case of the tree

In [2] the authors studied the design of virtual layouts in ATM networks. Their
model deals with point-to-point connections in the virtual graph, whereas in
Minimum Cost Hypergraph Layout problem, a tunnel can carry more than
one request. Nevertheless, we can use the results of [2] to obtain good approxi-
mation algorithms. Namely, we are interested in the following result which estab-
lishes the trade-off between the maximum load c and the diameter of a virtual
layout allowing to route an all-to-all traffic in a general tree.

Theorem 1 (Bermond et al. [2]). In a general tree on n nodes with all-to-all
traffic, for each value of c ∈ {1, . . . , n} there exists a virtual layout allowing to
route all traffic with diameter at most 10c ·n

1
2c−1 and load at most c. In addition,

such a layout can be constructed in polynomial time.

In particular, if we set c = logn+1
2 , Theorem 1 implies that we can find in

polynomial time a layout with load O(log n) and diameter at most (5 log n+ 5) ·
n

1
log n = 10 log n+ 10 = O(log n).

Suppose first that the instance of Minimum Cost Hypergraph Layout
problem is a weighted all-to-all traffic. It is clear that each arc must be used by
some tunnel, hence n− 1 is a lower bound on the total length of any layout. On
the other hand, the hop count is at least

∑
rij∈Rmij . In the layout described

above, each arc is used at most logn+1
2 times, and therefore the total length of

this layout is O(n log n). Since the diameter is also O(log n), the total hop count
is O(log n ·

∑
rij∈Rmij), yielding an O(log n)-approximation.

If the instance is not all-to-all, we repeat the argument of the span discussed
in Section 4.1, obtaining again an O(log n)-approximation. Summarizing,



Proposition 2. When the network is a tree, there exists a polynomial-time ap-
proximation algorithm for Minimum Cost Hypergraph Layout problem with
an approximation ratio O(log n).

4.3 General network

In the Minimum Generalized Steiner Network problem, we are given a
graph G = (V,E), a weight function w : E → N, a capacity function c : E → N,
and a requirement function r : V × V → N. The objective is to find a Steiner
network over G that satisfies all the requirements and obeys all the capacities,
i.e., a function f : E → N such that, for each edge e, f(e) ≤ c(e) and, for
any pair of nodes i and j, the number of edge disjoint paths between i and
j is at least r(i, j), where for each edge e, f(e) copies of e are available. We
want to minimize the cost of the network, i.e.,

∑
e∈E w(e)f(e). The problem is

approximable within O(log rmax), where rmax is the maximum requirement [7],
and within a constant factor 2 when all the requirements are equal [8]. The
directed version of the problem is approximable within O(n2/3 log1/3 n) [5].

Given an instance of Minimum Cost Hypergraph Layout in a general
network, consider the associated Minimum Generalized Steiner Network
problem where all the requirements are equal to 1 and where the edge capacities
are set to +∞. Let H be an optimal solution to this Minimum Generalized
Steiner Network instance (note that H may be disconnected). The following
easy observation will be useful: since H is the smallest subgraph of G such that
any couple source-destination lies on the same connected component, in any
solution to the Minimum Cost Hypergraph Layout problem, the number of
arcs that are used by at least one tunnel is at least |E(H)|. Using the algorithm
of [8], we can find in polynomial time a Steiner network H ′ with |E(H ′)| ≤
2|E(H)|. Since the edge capacities are set to ∞, we can assume that such a
Steiner network is a forest. The layout is then obtained by applying the algorithm
described in Section 4.2 to each connected component of H ′.

It is clear that the hop count of this layout is at most O(log n) times the
lower bound

∑
rij∈Rmij . On the other hand, the total length of this layout is

O(log n · |E(H ′)|) = O(log n · |E(H)|). Since the total length of any layout is
lower-bounded by |E(H)|, the O(log n)-approximation follows. Summarizing,

Theorem 2. In a general network, there exists a polynomial-time approxima-
tion algorithm for Minimum Cost Hypergraph Layout problem with an
approximation ratio O(log n).

5 The Hypergraph Layout Problem on the Path

In this section we focus on the case when the underlying digraph is a directed
path (nodes are numbered from left to right 1, . . . , n). Our approach consists in
a dynamic programming algorithm that computes partial solutions induced on



subdipaths of the original path. We denote by [i, j] the subpath from node i to
node j.

Loosely speaking, we use the following dynamic program: we consider a cut
vertex i and we look at a local solution induced on the subpath [1, i]. That is,
the tunnels and traffic located on [1, i]. The cost of a local solution is defined
as the sum of the local tunnels cost plus the hop counts sum taken on the local
traffic.

We introduce then node i+1 and the potential tunnels finishing at it. In order
to update the local solution cost, it is necessary to have enough information to
compute the hop counts once this tunnel is introduced in the solution. So for
each source s ∈ S and vertex x, we introduce h(s, x) defined as the hop count
from s to x. Each vertex is then characterized by a hop count vector h(x) whose
dimension is the number of sources. A partial solution is then fully encoded
by its local cost and the hop counts of all its nodes. It follows from the above
discussion that we can encode a partial solution by giving, for each of its hop
count vectors, the rightmost node associated to that vector. If we denote by h a
bound on the hop count (at most n) and by c a bound (at most n) on the tunnel
cost, we have (ck)h

k

= ckh
k

such possible table entries, where k is the number
of sources.

By making an error of ε on the two costs (length and hops), we can encode
the logarithm in base 1 + ε of those quantities, which leads to tables of size
Θ
(

(log n)k(logn)k
)

. Note that this running time is already subexponential, so
the problem is unlikely to be NP-hard to approximate within a constant factor
when the number of sources is bounded (because it is widely assumed that
algorithms solving 3-SAT require 2Θ(n) time). We shall see now how to improve
this first näıve dynamic program.

We proceed now to give all the details for one and two sources, that suffice
to get the intuition for an arbitrary number k of sources.

5.1 Case of a single source and the non crossing property

We summarize the algorithm that appeared first in [1] (Gerstel et al. used a
similar approach in [6]). In the case of a single source, it is not difficult to see
that the tunnel structure is non crossing, i.e. two tunnels can only intersect
in an optimal solution if one is strictly inside the other [1]. Since the path is
directed, we assume w.l.o.g. that the source is located in the leftmost node of
the path. This leads to the following approach: we consider the rightmost tunnel
originating from the source and assume it ends at node i. Clearly, any tunnel
starting in [1, i− 1] and ending in [i, n] can be replaced with a tunnel starting
at i, since this new tunnel may only decrease the hop count and the length6.

This approach allows us to compute the optimal for a path with n vertices
inductively. We denote by C[i, j] the minimum cost for the requests destined to

6 this fact holds for any increasing cost function c(t) in Equation (3).



the subdipath [i, j], in which the source is replaced by node i. Then for 2 ≤ i ≤ n,

C[1, i] = min
k<i

C[1, k − 1] +

 ∑
e∈E([1,k])

`(e)− 1

+
i∑

j=k

m1j + C[k, i]

 . (4)

Note that C[1, n] is the optimal cost of the original problem, and it can be
computed in time O(n3) [1]. In the particular case of the uniform broadcast
(that is, mij = 1 for i = 1 and 2 ≤ j ≤ n, and mij = 0 otherwise) and with a
unitary length function on the edges, a closed formula was given in [1].

5.2 Case of two sources

We use a dynamic program similar to the one used for the single source case,
but slightly more complicated. Let s0 be the leftmost source and let s1 be the
other. In order to solve the problem, we introduce an auxiliary problem with
pseudo-sources. A pseudo-source s is denoted by a triple (h0, h1, l), where l is
the distance from s to the subdipath that lies on the right of the rightmost
pseudo-source, and where hi indicates that from s one can reach si in hi hops,
i = 0, 1. In the induction of the dynamic program the following auxiliary problem
will appear:

• The traffic is restricted to an interval [u, v], where either u or v is an end of
the original dipath.

• There are one or two pseudo-sources located to the left of [u, v].
• If there are two pseudo-sources, they are labeled (j, j, l0) and (j + 1, j, l1),

and we denote the corresponding problem P ((j, j), (j + 1, j), l0, l1, [u, v]).
• If there is a single pseudo-source, it is labeled (j, k), and we denote the

problem P ((j, k), [u, v]).

In both cases we denote by OPT the cost of an optimal solution. Note that
P ((0, 0), [u, v]) is indeed a single source problem in which a unique source replaces
both s0 and s1. Moreover, P ((j, k), [u, v]) is equivalent to a single source problem,
sinceOPT (P ((j, k), [u, v])) = OPT

(
P (0, 0, [u, v])) +

∑
x∈[u,v](j ·ms0x + k ·ms1x)

)
.

We now relate the two sources problem to the auxiliary problem. Consider the
rightmost tunnel having si as head and denote by Ei its end node, i = 0, 1. We
compute an optimal solution conditioned to the values Ei, i = 0, 1. There are
three cases to consider, as it is depicted in Fig. 3.

(a) E0 is left to s1. Then on the subpath [E0, n] we pick an optimal solution
with a slightly modified instance: we leave traffic requests toward s1 unchanged
and we replace the source s0 by a pseudo-source at E0 with hop count 1. On the
subpath [s0, E0 − 1] we use an optimal solution (note that in this subproblem
there is only one source).

(b) E0 is on the right of both s1 and E1. Then E0 is at distance 1 from both
sources and therefore any tunnel entering [E0 + 1, n] can be assumed to start at
E0. So the optimal solution is then obtained by using OPT ([s0, E0]).
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Fig. 3. Dynamic programming with two sources: cases (a), (b), and (c), respectively.

Note that in both cases (a) and (b) the induction is valid because E0 is the
best node to start a tunnel going to its right. Indeed, starting at E0 is cheaper,
and no node closer to the sources can be reached (from the definition of E0).

(c) E1 on the right of E0. Note that E0 is a (1, 1) pseudo-source, while E1 is
a (2, 1) pseudo-source. Consider a tunnel ending in [E1 +1, n]. The situation gets
more complicated than in the single source case, since E1 (a (2, 1) node) is not
the “best” possible node anymore. The only nodes that can beat E1 are (1, 1)
nodes, and E0 is the rightmost one. Hence we can assume that such a tunnel is
starting either at E0 or at E1. Indeed, we have two “best nodes”. So to perform
the induction we have to solve two subproblems:

(c.1) the first subproblem on [s0, E1 − 1], but under a condition on the location
of the rightmost tunnel from s1, i.e. OPT ([s0, E1 − 1] | (s1, E1)).

(c.2) the second subproblem in which we have two pseudo-sources E0 of type (1, 1)
and E1 of type (2, 1). So we pay OPT (P ((1, 1), (2, 1), l(E0, E1), l(E1, E1 +
1), [E1 + 1, n])).

To complete our algorithm we need to show how to compute the dynamic pro-
gram tables inductively, i.e. to compute OPT (P ((j, j), (j + 1, j), l0, l1, [u, v])).

The two pseudo-sources tables. The induction is again on the two right-
most nodes E0, E1, with essentially the same cases as above, except case (a),
which cannot occur since both pseudo-sources are now located outside the path.

(i) E0 is on the right of E1. Then E0 is at distance j+1 from both sources and
therefore any tunnel entering [E0 + 1, n] can be assumed to start at E0. So the
optimal solution is obtained by using OPT ([s0, E0]) for the second subproblem
and OPT (P ((j, j), (j + 1, j), l0, l1, [s0, E0 − 1])).

(ii) E0 is on the left of E1. The situation is similar to case (c). We can
split the problem into two subproblems, the first one being a two pseudo-sources
problem reduced to [u,E1 − 1] with a condition on the rightmost tunnel from
s0, and the second being a single source problem on [E1 + 1, n].



Correctness & complexity. To complete the proof, we must explain how
the above induction allows to compute all the tables inductively. Here are some
explanations:

• First the induction is performed on the length of the path and when the
tables for [u, v] are computed, all the tables for strict subdipath of [u, v] are
known.

• Second, when filling the new tables, we compute the cost in a consistent
way: we sum the cost of the first and second subproblems (found in already
computed tables) with the cost of the tunnels that are removed, plus the
hop count for traffic toward the removed node (either E0 or E1).

• As usual we keep only the best cost found when examining all the subcases
1,2,3.

• Finally, one may worry about the conditioning on the rightmost tunnel that
appears in case (c). But fortunately this never leads to a condition on an
unbounded number of tunnels, since in the induction those rightmost tunnels
either disappear or stay.

To evaluate the complexity we use a pessimistic bound on the table size,
OPT (P ((j, j), (j + 1, j), l0, l1, [u, v])). The values of l0, l1 are polynomial since
they are in bijection with the pseudo-sources locations, j ∈ [1, n]. Since [u, v] is
either an end or a head segment we can store it in space 2n. Therefore we get
size Θ(n4) for the tables, and if we add the conditioning on the rightmost tunnel
from the rightmost source we get Θ(n5).

Finally, to improve the complexity we can use classic scaling technics to get
space logn

ε

5
and approximation factor 1 + ε.

6 Conclusions and Further Research

In this paper we modeled a question raised by label minimization in GMPLS net-
works as a hypergraph layout problem. In the single commodity case we showed
the problem to be closely related to well studied VPL problems. However, the
optimization criteria (average hop count and average load) that appear in our
problem are ones of the less studied. We observed that approximation results
follow immediately from extension of the results known for fixed depth hierar-
chical facility location (equivalently, bounded depth metric Steiner trees) to the
average depth case. We also gave a general log n-approximation that is universal
(that is, it does not depend on the traffic), as well as hardness results.

In the multi-sources case, we presented a dynamic program on the path that
is polynomial when the number of sources is fixed. So finding a polynomial
algorithm in the general case on the path remains open; likely extensions of the
dynamic program to the case of trees and bounded treewidth networks remain to
be done. Last, we believe that more general approximation results can be given
for low dimension Euclidean metric graphs using the classical Arora paradigm.
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