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FAR FIELD MODELLING OF ELECTROMAGNETIC
TIME-REVERSAL AND APPLICATION TO SELECTIVE FOCUSING

ON SMALL SCATTERERS.

X. ANTOINE∗† , B. PINÇON∗† , K. RAMDANI†∗, AND B. THIERRY∗†

Abstract. A time harmonic far field model for closed electromagnetic time reversal mirrors is
proposed. Then, a limit model corresponding to small perfectly conducting scatterers is derived. This
asymptotic model is used to prove the selective focusing properties of the time reversal operator. In
particular, a mathematical justification of the DORT method (Decomposition of the Time Reversal
Operator method) is given for axially symmetric scatterers.
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1. Introduction. In the last decade, acoustic time reversal has definitely demon-
strated its efficiency in target characterization by wave focusing in complex media (see
the review papers [13, 15]). In particular, it has been shown that selective focusing
can be achieved using the eigenvectors (resp. eigenfunctions) of the so-called time
reversal matrix (resp. operator). Known as the DORT method (french acronym for
Diagonalization of the Time Reversal Operator, cf. [14, 32, 26, 31, 16, 25, 18]), this
technique involves three steps. First, an incident wave is emitted in the medium
containing the scatterers by the time reversal mirror (TRM). The scattered field is
then measured by the mirror and time-reversed (or phase-conjugated in the time
harmonic case). Finally, the obtained signal is then reemitted in the medium. By def-
inition, the time reversal operator T is the operator describing two successive cycles
Emission/Reception/Time-Reversal. If the propagation medium is non dissipative,
the operator T is hermitian, since T = F∗F, where F denotes the far field operator.
The DORT method can thus be seen as a singular value decomposition of F. More-
over, in a particular range of frequencies (for which the scatterers can be considered
as point-like scatterers), T has as many significant eigenvalues as there are scatterers
in the medium, and the corresponding eigenfunctions generate incident waves that
selectively focus on the scatterers. From the mathematical point of view, a detailed
analysis of this problem has been proposed for the acoustic scattering problem by
small scatterers in the free space in [19] and in a two-dimensional straight waveguide
in [29]. Let us emphasize that time reversal has also been intensively studied in the
context of random media (cf. [17] and the references therein).

Recently, electromagnetic focusing using time reversal has been demonstrated ex-
perimentally [23] and used for imaging applications [24]. One of the first works dealing
with mathematical and numerical aspects of electromagnetic time reversal is the paper
[34]. The authors analyze therein the DORT method in the case of a homogeneous
medium containing perfectly conducting or dielectric objects of particular shapes (cir-
cular rods and spheres). Their method is based on a low frequency approximation
of a multipole expansion of the scattered field (i.e. a Fourier-Bessel series involving
Hankel functions for circular rods and vector spherical functions for spheres). In [8],
the authors proposed an iterative process based on time reversal to determine optimal
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electromagnetic measurements (i.e. to determine the incident waves maximizing the
scattered field). More recently, the DORT method has been used for targets local-
ization, especially in the context of imaging [6, 7, 1]. The analysis followed in these
works is based on the singular value decomposition of the multistatic response matrix,
which corresponds to the case where the mirror is described by a discrete array of
transducers (emitters and receivers). In this paper, we propose a time harmonic far
field model of electromagnetic time reversal in the case of a continuous distribution
of transducers. Only closed mirrors (i.e. completely surrounding the scatterers) are
considered in this work and the limited aperture case is not studied. Except this
difference, the present work can be seen as the extension of the results obtained for
acoustic time reversal in the free space [19] and in straight waveguides [29]. We pay
a very careful attention to the derivation of the limit scattering model for small per-
fectly conducting scatterers. The functional framework used hereafter for the far field
and the time reversal operators is the one commonly used in inverse electromagnetic
scattering theory (cf. [11, 5, 20]).

We start the paper with a short description in Section 2 of the mathematical
model of time reversal. In particular, we define the incident field emitted by the
TRM (electromagnetic Herglotz waves), the measured fields (the far field pattern)
and the time reversal operator. In Section 3, we restrict our analysis to the case of
small scatterers (of typical size δ). We show that the small scatterers asymptotics
can be deduced from the classical low frequency scattering asymptotics (the Rayleigh
approximation) involving the polarization tensors of the scatterers. More precisely,
our analysis corresponds to the case where kδ and δ/d tend simultaneously to 0,
where k denotes the wavenumber and d the minimum separation distance between
the scatterers. Finally, we study in Section 4 the spectral focusing properties of the
eigenfunctions of the limit far field operator obtained in Section 3. We show that
each small scatterer gives rise to at most 6 distinct eigenvalues (recovering the results
obtained in [7, 1] for the case of a discrete TRM). Furthermore, if the polarizability
tensors of the scatterers are diagonal (e.g. for axially symmetric scatterers) and under
the additional assumption that kd→∞, we prove that each associated eigenfunction
generates an incident wave that selectively focuses on the corresponding scatterer.

2. A far field model for electromagnetic time-reversal. In order to obtain
an expression of the time reversal operator, we begin this paper by recalling the
far field model of electromagnetic scattering. Consider the scattering problem of
an incident electromagnetic plane wave by a perfectly conducting bounded obstacle
contained in an homogeneous medium. Without loss of generality, we assume that the
electric permittivity ε and the magnetic permeability µ are both equal to 1. Let O be
a bounded open subset of R3 with smooth boundary Γ, and outward unit normal ν
and let Ω = R3 \O be the propagation domain. Let L2

t (S
2) be the space of tangential

vector fields of the unit sphere S2:

L2
t (S

2) =
{
f ∈

(
L2(S2)

)3 | ∀α ∈ S2, f(α) ·α = 0
}

and consider the incident plane wave (Eα,fI ,Hα,f
I ) of direction α ∈ S2 and electric

polarization f ∈ L2
t (S

2):{
Eα,fI (x) = f(α) eikα·x,

Hα,f
I (x) = (α× f(α)) eikα·x,

(2.1)
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Throughout the paper, the time dependence is assumed to be of the form e−iωt and
will always be implicit. Introducing the wave number k = ω

√
εµ = ω, the scattered

field (Eα,f ,Hα,f ) solves the following exterior boundary value problem:

curlEα,f = ikHα,f (Ω)

curlHα,f = −ikEα,f (Ω)

Eα,f × ν = −Eα,fI × ν (Γ)

Hα,f · ν = −Hα,f
I · ν (Γ)

Eα,f ,Hα,f are outgoing.

(2.2)

Classically, the outgoing behavior of the scattered field is imposed by one of the two
Silver-Müller radiation conditions:

lim
|x|→∞

(
Eα,f (x)× x+ |x|Hα,f (x)

)
= 0

lim
|x|→∞

(
Hα,f (x)× x− |x|Eα,f (x)

)
= 0

uniformly in every direction x/|x| ∈ S2, where | . | is the euclidian norm in R3.
We are now in position to introduce the far field pattern of the electromagnetic

field (Eα,f ,Hα,f ). Its main properties are collected in the next proposition (see [11]
for the proofs).

Proposition 2.1. The scattered field (Eα,f ,Hα,f ) has the asymptotic behavior
in the direction β ∈ S2 as |x| → ∞:

Eα,f (β|x|) =
eik|x|

ik|x|
A(α,β;f(α)) +O

(
1

|x|2

)
,

Hα,f (β|x|) =
eik|x|

ik|x|
(β ×A(α,β;f(α))) +O

(
1

|x|2

)
.

The scattering amplitude A(α,β;f(α)) is given for all α,β ∈ S2 and all f ∈ L2
t (S

2)
by the formula

A(α,β;f(α)) = − k
2

4π
β ×

∫
Γ

[
ν(y)×Hα,f

T (y)
]
× β e−ikβ·y dy (2.3)

where Hα,f
T = Hα,f

I +Hα,f is the total magnetic field. Moreover, A(·, ·; ·) satisfies
the following reciprocity relation

g(β) ·A(α,β;f(α)) = f(α) ·A(−β,−α; g(β)) (2.4)

for all α,β ∈ S2 and all f , g ∈ L2
t (S

2).
Assume now that the TRM emits a Herglotz wave, i.e. a superposition of plane

waves of the form (2.1). More precisely, denote by (EfI ,H
f
I ) the incident Herglotz

wave of polarization f ∈ L2
t (S

2), defined by
EfI (x) =

∫
S2

Eα,fI (x) dα =

∫
S2

f(α)eikα·x dα

Hf
I (x) =

∫
S2

Hα,f
I (x) dα =

∫
S2

(α× f)(α)eikα·x dα
(2.5)

By linearity, Proposition 2.1 yields the following result.
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Corollary 2.2. When illuminated by the Herglotz wave (EfI ,H
f
I ), the scat-

tering obstacle generates the diffracted field (Ef ,Hf ) which admits in the direction
β ∈ S2 the far field asymptotics

Ef (β|x|) =
ei|x|

ik|x|
Ff(β) +O

(
1

|x|2

)
,

Hf (β|x|) =
ei|x|

ik|x|
β × Ff(β) +O

(
1

|x|2

)
.

where Ff(β) is given by

Ff(β) =

∫
S2

A(α,β;f(α)) dα. (2.6)

Using the expression (2.3) of the scattering amplitude, one can show that the far
field operator F : f 7−→ Ff defined by (2.6) is continuous from L2

t (S
2) onto itself.

Moreover, using the reciprocity relation (2.4), one can show the following result (see
[9] for the proof).

Proposition 2.3. The far field operator F : L2
t (S

2) −→ L2
t (S

2) defined by (2.6)
is a compact and normal operator. As in the acoustic case, its adjoint is the operator
F∗ : L2

t (S
2)→ L2

t (S
2) defined by

∀f ∈ L2
t (S

2), F∗f = RFRf (2.7)

where R is the symmetry operator defined by Rf(α) = f(−α) for all α ∈ S2 and
f ∈ L2

t (S
2).

We are now able to define the time reversal operator T. During the time-reversal
process, the TRM first emits an incident electromagnetic Herglotz wave (EfI ,H

f
I )

of polarization f . Then the scattering obstacle generates a scattered field (Ef ,Hf ).
The TRM measures and conjugates the corresponding electric far field Ff . The result-
ing field is then used as a polarization g of a new incident Herglotz wave. Therefore,
we have

g = RFf , (2.8)

where the presence of the symmetry operator is due to the fact that the far field
measured in a direction β is reemitted in the opposite direction −β. The time reversal
operator T is then obtained by iterating this cycle twice:

Tf = RFg = RFRFf . (2.9)

Thanks to Proposition 2.3, we have shown the following result.
Proposition 2.4. The time reversal operator T is the compact, selfadjoint and

positive operator given by

T : L2
t (S

2) −→ L2
t (S

2)
f 7−→ Tf = FF∗f = F∗Ff .

The nonzero eigenvalues of T are exactly the positive numbers

|λ1|2 ≥ |λ2|2 ≥ · · · > 0,

where the sequence (λp)p≥1 denotes the nonzero complex eigenvalues of the normal
compact far field operator F. Moreover, the corresponding eigenfunctions (fp)p≥1 of
F are exactly the eigenfunctions of T.
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3. Scattering by perfectly conducting small scatterers. In this Section,
we show that the asymptotics of the electromagnetic scattering problem by small
scatterers is closely connected to the classical low frequency scattering (the Rayleigh
approximation, cf. [21, 12]). In particular, this asymptotics involves the electro-
magnetic polarizability tensors of the scatterers [30, 2, 3]. The fact that the two
limit models are similar is straightforward when the scattering obstacle has only one
connected component. As it is shown in Subsection 3.1, this follows from a scaling
argument. The proof is less obvious when the obstacle is multiply connected (one
cannot anymore use a unique change of variables to work in a reference domain of
fixed size). We study this question using an integral equation approach in Subsection
3.2.

3.1. The case of one scatterer. Let us assume that the perfectly conducting
scatterer is of small size δ and that it is obtained from a reference obstacle after a
dilation. More precisely, let us set:

Oδ = {x = s+ δξ ; ξ ∈ O} .

Its boundary is denoted by Γδ and its exterior by Ωδ := R3 \ Oδ. Given an incident

plane wave (Eα,f
I ,Hα,f

I ), let (Eδ,Hδ) be the solution of the scattering problem by
the perfectly conducting obstacle (for the sake of clarity, we drop here the reference
to the angle of incidence and to the polarization in the scattered field):

curlEδ = ikHδ (Ωδ)

curlHδ = −ikEδ (Ωδ)

divEδ = 0 (Ωδ)

divHδ = 0 (Ωδ)

Eδ × ν = −Eα,f
I × ν (Γδ)

Hδ · ν = −Hα,f
I · ν (Γδ)

Eδ, Hδ outgoing.

(3.1)

Introducing the scaled fields{
eδ(ξ) = Eδ(s+ δξ),

hδ(ξ) = Hδ(s+ δξ),
ξ ∈ Ω := R3 \ O

we obtain that 

curl eδ = i (kδ)hδ (Ω)

curlhδ = −i (kδ) eδ (Ω)

div eδ = 0 (Ω)

divhδ = 0 (Ω)

eδ × ν = −eα,fI × ν (Γ)

hδ · ν = −hα,fI · ν (Γ)

eδ, hδ outgoing,

(3.2)

where Γ = ∂Ω and{
eα,fI (ξ) = Eα,f

I (s+ δξ) = Eα,f
I (s) +O(kδ),

hα,fI (ξ) = Hα,f
I (s+ δξ) = Hα,f

I (s) +O(kδ).

When δ → 0, problem (3.2) appears as a low frequency electromagnetic scattering
problem (kδ → 0) associated with an incident wave that behaves like the constant
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field (Eα,f
I (s),Hα,f

I (s)) asymptotically. The electromagnetic scattering problem for
small frequencies has been studied for a long time (cf. [35, 36, 22, 28]) and the
asymptotic behavior of its solution is by now well known (see the reference book [12]
for a detailed presentation and [4] for convergence results of higher order terms). In
particular, the first order approximation (e0,h0) of (eδ,hδ) (the so-called Rayleigh
approximation) is given by the next result, which follows from [12, Chap. 5]).

Theorem 3.1. Let Φ = (Φ1,Φ2,Φ3) and Ψ = (Ψ1,Ψ2,Ψ3) be the vector poten-
tials defined by 

∆Φ = 0, (Ω)
Φ = x+ c, (Γ)

Φ = O

(
1

|x|2

)
|x| → ∞

(3.3)

and 
∆Ψ = 0, (Ω)
∂Ψ

∂ν
= ν, (Γ)

Ψ = O

(
1

|x|2

)
|x| → ∞

(3.4)

where the constant vector c ∈ R3 is chosen such that

∫
Γ

∂Φ

∂ν
= 0.

Then, as δ −→ 0, we have{
eδ −→ e0 := −∇Φf(α)

hδ −→ h0 := −∇Ψ (α× f(α))

locally in Hcurl(Ω).

Using the above result, one can easily obtain the asymptotics of the far field
associated to Eδ.

Corollary 3.2. Let (Eδ,Hδ) be the solution of the scattering problem (3.1).
Let P and M be respectively the electric polarizability and magnetic polarizability
tensors defined by (I denotes the identity)

P = |O| I −
∫

Γ

x

(
∂Φ

∂ν

)T
dγx M = |O| I −

∫
Γ

νΨT dγx

where the vector potentials Φ and Ψ are respectively defined by (3.3) and (3.4).
Then, the far field Aδ(α,β;f(α)) of Eδ, defined by

Eδ(β|x|) = Aδ(α,β;f(α))
eik|x|

ik|x|
+O

(
1

|x|2

)
,

admits as δ → 0 the following asymptotics :

Aδ(α,β;f(α)) =
(ikδ)3

4π
β×
[
β×(Pf(α))−M(α×f(α))

]
eik (α−β)·s+O(δ4). (3.5)
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Proof. Following [12], we have

Aδ(α,β;f(α)) =
k2

4π
β ×

{
β ×

∫
Γδ

[
νx ×

(
Hδ(x) +Hα,f

I (x)
)]

e−ikβ·x dγx

}
(3.6)

The change of variables ξ = (x− s)/δ in the above integral shows that

Aδ(α,β;f(α)) =

(
(kδ)2

4π
β ×

{
β ×

∫
Γ

[
νξ ×

(
hδ(ξ) + hα,fI (ξ)

)]
dγξ

})
e−ikβ·s

+O(δ3). (3.7)

Comparing (3.6) with the term between parenthesis in the above expression, we see
that this term is nothing but the electric far field associated to the solution (eδ,hδ) of
the low frequency scattering problem (3.2). Consequently, this term can be expressed
using the polarizability tensors (cf. equation (5.158) in [12]):

(kδ)2

4π
β ×

{
β ×

∫
Γ

[
νξ ×

(
hδ(ξ) + hα,fI (ξ)

)]
dγξ

}
=

(ikδ)3

4π
β ×

[
β × (Pf(α))−M(α× f(α))

]
eikα·s +O

(
δ4
)
,

where we have used the fact that the incident electromagnetic field (eI ,hI) con-

verges to the constants
(
Eα,f
I (s),Hα,f

I (s)
)

= (f(α),α× f(α)) eikα·s as δ tends to

0. Plugging the last relation in (3.7) yields (3.5).

3.2. Multiply connected scatterer. We consider now the case where the scat-
terer has M connected components:

Oδ =

M⋃
p=1

Oδp

where each component Oδp is obtained from a reference domain Op by a dilation and
a translation:

Oδp = {x = sp + δξ ; ξ ∈ Op} .

Finally we denote once again by Ωδ = R3\Oδ the exterior domain and by Γδ =

M⋃
p=1

Γδp

its boundary.
In order to study the asymptotics δ → 0, we seek an integral representation of

the solution (Eδ,Hδ) of (3.1) in the form
Eδ(y) = δ curl curl

∫
Γδ
Gk(x,y)Jδ(x) dγx,

Hδ(y) = −δ (ik) curl

∫
Γδ
Gk(x,y)Jδ(x) dγx,

y ∈ Ωδ, (3.8)

where Jδ is the (unknown) electric surface current and

Gk(x,y) =
eik|x−y|

4π|x− y|
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denotes the Green function of −∆− k2 in R3.
Using the identity curl curl = ∇div −∆ and the fact that for x 6= y, we have

∆Gk(x,y) = −k2Gk(x,y), one can show that the electric field can also be written
in the form (cf. [10, p. 64])

Eδ(y) = δ

(
k2

∫
Γδ
Gk(x,y)Jδ(x) dγx +∇

∫
Γδ
Gk(x,y) divΓδ J

δ(x) dγx

)
, (3.9)

where divΓδ denotes the surface divergence operator on Γδ.
The unknown current Jδ = (Jδ1, . . . ,J

δ
M ) is uniquely determined by writing the

perfectly conducting boundary condition on each scatterer:

(Eδ × ν)|Γδp = −(Eα,f
I × ν)|Γδp ∀ p = 1, . . . ,M. (3.10)

It is well known (see for instance [27, Theorem 5.5.1]) that the trace of a potential of
the form (3.9) is given by

(Eδ × ν)|Γδp =

M∑
q=1

δ
(
k2Sk,δpq + T k,δpq

)
Jδq,

where the integral operators Sk,δpq : THs(Γq) → THs+1(Γp) and T k,δpq : THs(Γq) →
THs−1(Γp), (THs(Γq) denotes the Sobolev space of tangent vector fields [27]) are
defined for y ∈ Γp by

(
Sk,δpq J

δ
q

)
(y) =

∫
Γδq

Gk(x,y)
(
Jδq(x)× νy

)
dγx

(
T k,δpq J

δ
q

)
(y) =

(
∇y
∫

Γδq

Gk(x,y) divΓδq
Jδq(x) dγx

)
|Γδp

× νy.

For q 6= p, the kernels of the above integral operators are infinitely differentiable. The
operator Sδpp is the classical single layer potential, and has a singular but integrable

kernel. The operator T δpp can also be written using a formula involving only integrable
kernels (see [27, p. 242]):(

T k,δpp J
δ
p

)
(y) =

∫
Γδp

[
(∇yGk(x,y)× (νy − νx)) divΓδp

Jδp(x)

−Gk(x,y) curlΓδpdivΓδp
Jδp(x)

]
dγx.

In the above relation, divΓδp
and curlΓδp denote respectively the surface divergence

operator and tangential rotational operator on Γδp. Then, the integral equation (3.10)
reads

M∑
q=1

δ
(
k2Sk,δpq + T k,δpq

)
Jδq = −(Einc × ν)|Γδp ∀ p = 1, . . . ,M. (3.11)

In order to work in a functional framework independent of δ, we introduce the new
variables  ξ =

x− sq
δ

∈ Oq,

η =
y − sp
δ

∈ Op,
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and the scaled fields 
jδq(ξ) = Jδq(x),

Gk,δpq (ξ,η) = Gk(x,y).

With the above notation, we have(
Sk,δpq J

δ
q

)
(y) := δ2

(
Sk,δpq j

δ
q

)
(η) = δ2

∫
Γq

Gk,δpq (ξ,η)
(
jδq(ξ)× νη

)
dγξ

and

(
T k,δpq J

δ
p

)
(y) =



(
∇η
∫

Γq

Gk,δpq (ξ,η) divΓqj
δ
q(ξ) dγξ

)
|Γp

× νη for q 6= p,

∫
Γq

[ (
∇ηGk,δpp (ξ,η)× (νη − νξ)

)
divΓq j

δ
p(ξ)

−Gk,δpp (ξ,η) curlΓpdivΓp j
δ
p(ξ)

]
dγξ, for q = p

:=
(
T k,δpq jδq

)
(η).

Consequently, equation (3.11) can be written

Bk,δpp j
δ
p +

∑
q 6=p

Bk,δpq j
δ
q = −(eα,fI × ν)|Γp ∀ p = 1, . . . ,M, (3.12)

with

Bk,δpq = (kδ)2 δ Sk,δpq + δ T k,δpq (3.13)

and

eα,fI (η) = Eα,f
I (y).

Let us consider first the diagonal terms in (3.12), by investigating the behavior of the
kernels involved in the expression of Bk,δpp as δ → 0. Since

Gk,δpp (ξ,η) =
1

δ
Gkδ(ξ,η),

∇ηGk,δpp (ξ,η) =
1

δ
∇ηGkδ(ξ,η),

we see that

Bk,δpp = (kδ)2 S̃kδpp + T̃ kδpp := B̃kδpp
where 

(
S̃kδpp jp

)
(y) =

∫
Γq

Gkδ(ξ,η)
(
jp(ξ)× νη

)
dγξ,

(
T̃ kδpp jq

)
(y) =

∫
Γq

[
(∇ηGkδ(ξ,η)(ξ,η)× (νη − νξ)) divΓp jp(ξ)

−Gkδ(ξ,η)(ξ,η) curlΓpdivΓp jp(ξ)
]

dγξ
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The crucial point here is that B̃kδpp is exactly the operator involved in the integral
equation formulation of the simple scattering problem associated with the reference
scatterer Op at low frequency kδ → 0. Moreover, since the zero frequency limit exists,

B̃kδpp = Bk,δpp admits a limit B0
pp.

Let us consider now the off diagonal terms Bk,δpq , q 6= p. Denote by

d = min
1≤p<q≤N

|sp − sq| (3.14)

the minimal distance between the centers of the obstacles. Using the relation

|sp − sq + δ(ξ − η)| = |sp − sq|
(

1 +O

(
δ

d

))
,

one can easily check that
Gk,δpq (ξ,η) = Gk(sq, sp)

[
1 +O(kδ) +O

(
δ

d

)]
∇η Gk,δpq (ξ,η) = Gk(sq, sp)

[
O(kδ) +O

(
δ

d

)]
,

∀q 6= p.

Inserting the above asymptotics in (3.13) shows that

Bk,δpq = O

(
δ

d

)[
O(kδ) +O

(
δ

d

)]
for q 6= p.

Summing up, the behavior of the solution (Eδ,Hδ) of (3.1) for small scatterers
(namely for kδ → 0 and δ/d → 0) is given by the low frequency limit of the simple
scattering problem. Therefore, the multiple scattering effects can be neglected when
kδ → 0 and δ/d→ 0, and the electric far field can be obtained simply by superposition
of the far fields given in Corollary 3.2. We have thus proved the following result.

Theorem 3.3. Assume that the scatterer has M connected components

Oδ =

M⋃
p=1

Oδp,

where each component Oδp is obtained from a reference scatterer Op (centered at the
origin) of smooth boundary Γp by a dilation of ratio δ centered at a given point sp ∈ R3:

Oδp = {x = sp + δξ ; ξ ∈ Op} .

For all p = 1, . . . ,M , let Φp and Ψp be the vector potentials defined by
∆Φp = 0, (R3 \ Op)
Φp = x+ cp, (Γp)

Φp = O

(
1

|x|2

)
|x| → ∞

(3.15)

and 
∆Ψp = 0, (R3 \ Op)
∂Ψp

∂ν
= ν, (Γp)

Ψp = O

(
1

|x|2

)
|x| → ∞

(3.16)
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where the constant vector cp ∈ R3 is chosen such that

∫
Γp

∂Φp

∂ν
= 0.

Let Pp and Mp be respectively the electric polarizability and magnetic polarizability
tensors of the reference scatterer Op (I denotes the identity):

Pp = |Op| I −
∫

Γp

x

(
∂Φp

∂ν

)T
dγx,

Mp = |Op| I −
∫

Γp

νΨT
p dγx.

(3.17)

Finally, let (Eδ,Hδ) be the solution of the scattering problem (3.1) and Aδ(α,β;f(α))
the far field of Eδ:

Eδ(β|x|) = Aδ(α,β;f(α))
eik|x|

ik|x|
+O

(
1

|x|2

)
.

Then, as δ → 0, we have

4π

(ikδ)3
Aδ(α,β;f(α)) −→ A0(α,β;f(α)) (3.18)

where

A0(α,β;f(α)) =

M∑
p=1

β ×
[
β × (Ppf(α))−Mp(α× f(α))

]
eik (α−β)·sp . (3.19)

The convergence (3.18) holds uniformly for all α, β ∈ S2 and for all wavenumber k
and minimal distance d (defined by (3.14)) satisfying kδ → 0 and δ/d→ 0.

4. Selective focusing using time-reversal. From now on, we assume that
kδ → 0 and δ/d → 0. According to Theorem 3.3, the eigenfunctions of the far field
operator Fδ can be approximated by those of the operator F0 : L2

t (S
2) → L2

t (S
2)

defined by

(F0f)(β) =

∫
S2

A0(α,β;f(α)) dα ∀ f ∈ L2
t (S

2). (4.1)

Substituting the expression (3.19) of A0(α,β;f(α)) in (4.1), we obtain that

(F0f)(β) =

M∑
p=1

β ×
[
β ×

(
PpE

f
I (sp)

)
−MpH

f
I (sp)

]
e−ikβ·sp , (4.2)

where (EfI ,H
f
I ) denote the electromagnetic Herglotz wave associated to f defined by

(2.5). Finally, let us notice that

(F0f)(β) = −
M∑
p=1

[
∆(β)PpE

f
I (sp) + β × (MpH

f
I (sp))

]
e−ikβ·sp , (4.3)

where we have set for every α =

sin θ cosφ
sin θ sinφ

cos θ

 ∈ S2:

∆(α) = I−ααT . (4.4)
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Remark 4.1. Note that formula (4.2) shows that, the electric far field radiated by
the scatterers as their size tends to 0 corresponds to the superposition of M (uncoupled)
electric and magnetic dipoles located at the points sp and associated with the electric

and magnetic moments pp = PpE
f
I (sp) and mp = MpH

f
I (sp).

Remark 4.2. Formula (4.3) shows that F0 has at most 6M nonzero eigenvalues,

since its range satisfies Ran F0 ⊂
⊕

1≤p≤M

{(
∆(β) RanPp

)
⊕
(
β × RanMp

)}
.

The aim of this section is twofold: first, to compute approximate eigenfunctions of
F0, and then to prove that these eigenfunctions selectively focus on the scatterers. As
we will see, this can be achieved provided the two following assumptions are satisfied:

1. The polarizability tensors Pp and Mp are diagonal (in the same basis). This
is in particular true for axially symmetric scatterers (cf. [12, p. 167]).

2. The scatterers are distant enough (well separated scatterers). More precisely,
we assume that kd→∞, where d = min

1≤p<q≤N
|sp−sq| is the minimal distance

between the obstacles.

From now on, we will assume that these two conditions are satisfied.
Theorem 4.3. For p ∈ {1, . . . ,M}, let (ep,1, ep,2, ep,3) be an orthonormal basis

of R3 such that the polarizability tensors Pp,Mp of the reference scatterer Op are
diagonal:

Pp =

λp,1 0 0
0 λp,2 0
0 0 λp,3

 Mp =

λ′p,1 0 0
0 λ′p,2 0
0 0 λ′p,3

 (4.5)

Given ` ∈ {1, 2, 3}, define the following elements of L2
t (S

2) (recall that ∆(α) is defined
by (4.4)):

fp,`(α) = α× (α× ep,`) e−ikα·sp = −∆(α)ep,` e−ikα·sp ,

gp,`(α) = (α× ep,`) e−ikα·sp ,
α ∈ S2. (4.6)

Then, the family of functions {fp,`, gp,` ; 1 ≤ ` ≤ 3 , 1 ≤ p ≤ M} is linearly
independent in L2

t (S
2). Moreover, the functions fp,` and gp,` constitute approximate

eigenfunctions of the limit far field operator F0 defined by (3.19)-(4.1) as kd→∞:
F0fp,` = −8π

3
λp,` fp,` +O

(
(kd)−N

)
,

F0gp,` = −8π

3
λ′p,` gp,` +O

(
(kd)−N

)
,

for all N ∈ N. (4.7)

Proof. To see that the functions fp,` and gp,`, for ` = 1, 2, 3 and p = 1, . . . ,M ,
are linearly independent, it suffices to note that these functions are exactly the far
field patterns of electric and magnetic dipoles located at the points sp and associated
with electric or magnetic dipole moment ep,`. Consequently, by uniqueness of the far
field pattern (which follows from Rellich’s lemma, cf. [11]), the condition

M∑
p=1

3∑
`=1

(zp,` fp,` + z′p,` gp,`) = 0 zp,`, z
′
p,` ∈ C,
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implies that zp,` = z′p,` = 0 for all p = 1, . . . ,M and ` = 1, 2, 3.

Fix now q ∈ {1, . . . ,M} and ` ∈ {1, 2, 3} and let us compute F0f q,`. We have
E
fq,`
I (sp) = −

(∫
S2

∆(α) eikα·(sp−sq) dα

)
eq,` := Dpq eq,`

H
fq,`
I (sp) =

∫
S2

α× [α× (α× eq,`)] eikα·(sp−sq) dα := D′pq eq,`

A straightforward computation shows that

Dqq = −
∫
S2

∆(α) dα = −8π

3
I

while by symmetry

D′qq =

∫
S2

α×
[
α× (α× eq,`)

]
dα = 0.

On the other hand, let us note that the elements of the 3× 3 matrices Dpq and D′pq

for p 6= q are oscillatory integrals of the form

∫
S2

ψ(α) eikα·(sp−sq) dα, where ψ is a

smooth function. It follows then from the stationary phase theorem (see for instance
[33, Chap. VIII]) that

Dpq = D′pq = O
(
(kd)−N

)
∀ p 6= q, ∀N ∈ N.

Consequently, formula (4.3) simplifies into

(F0f q,`)(β) = −8π

3
∆(β)Pqeq,` e−ikβ·sq +O

(
(kd)−N

)
,

= −8π

3
λq,` ∆(β)eq,` e−ikβ·sq +O

(
(kd)−N

)
,

which proves the first relation of (4.7). The second relation of (4.7) follows using the
same arguments, since{

E
gq,`
I (sp) = −Hfq,`

I (sp) = −D′pq eq,`
H
gq,`
I (sp) = E

fq,`
I (sp) = Dpq eq,`

and the proof is thus complete.
Remark 4.4. In the special case of scattering by small triaxial ellipsoids (see [12,

Chap. 8]), with semi-axes ap,1 > ap,2 > ap,3, the electric and magnetic polarizability
tensors admit in the basis constituted by the axis of each ellipsoid the diagonal form
(4.5), with 

λp,` =
4π

3Ip,`

λ′p,` =
4π

3

ap,1ap,2ap,3
1− ap,1ap,2ap,3Ip,`

` = 1, 2, 3,

with

Ip,` =
2π

3

∫ ∞
0

dx

(x+ a2
p,`)
√
x2 + a2

p,1

√
x2 + a2

p,2

√
x2 + a2

p,3

.
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In the special case of spheres of radii ap, we have Pp = 2Mp = 4πa3
p I.

The next result provides the expected selective focusing properties of the eigen-
functions of the far field operator F0 (and thus of time reversal operator T0 =
(F0)∗F0).

Theorem 4.5. For p ∈ {1, . . . ,M}, the approximate eigenfunctions (fp,`, gp,`)1≤`≤3

defined by (4.6) generate electromagnetic Herglotz waves that focus selectively on the
scatterer p.

Proof. Plugging the expression (4.6) of fp,` and gp,` in (2.5), we obtain that
E
fp,`
I (x) = H

gp,`
I (x) =

∫
S2

(α× (α× ep,`)) eikα·(x−sp) dα,

H
fp,`
I (x) = −Egp,`I (x) = −

∫
S2

(α× ep,`) eikα·(x−sp) dα.

The conclusion follows once again from the stationary phase theorem, since for x 6= sp
the above integrals behave like O

(
(k|x− sp|)−N

)
for all N ∈ N, and are independent

of k for x = sp.
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