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A Mathematial Analysis ofProphet Dynami Address AlloationCédri Lauradoux , Marine MinierThème COM � Systèmes ommuniantsProjet SWINGRapport de reherhe n° 7085 � Otober 2009 � 15 pages
Abstrat: Prophet is a dynami address alloation protool desribed at INFOCOM 2003.This protool is based upon a family of pseudo-random generators. The goal of Prophet is toestablish an addresses sheme free of on�it. The addressing apabilities of Prophet dependon the underlying properties of the pseudo-random generators. The di�erent pseudo-randomgenerators proposed in Prophet are analyzed and the limits of the sheme are exhibited.Most notably, the periods of the generators limit the addressing apabilities of a node andthe fat that Prophet is ollision-free. In this researh report, we show that the underlyingassumptions made in Prophet an not be met by pseudo-random generators.Key-words: Dynami addresses alloation, pseudo-random generator



A Mathematial Analysis ofProphet Dynami Address AlloationRésumé : Prophet est un protoole d'alloation dynamique d'addresse présenté à INFO-COM 2003. Prophet permet de générer des adresses libres de ollision sans nééssité deommuniations additionnelles que elle liées à l'alloation propre des adresses. Ce proto-ole s'appuie sur deux hypothèses importantes: l'existene de générateurs pseudo-aléatoiresde grande période et la faible probabilité d'obtenir deux fois la même valeur dans deux sé-quenes pseudo-aléatoires. Les apaités d'adressage de Prophet dépendent des propriétéssous-jaentes des générateurs employés. Pour implémenter leur protoole, les auteurs deProphet ont proposés l'emploi de générateurs pseudo-aléatoires de type linéaire ongruen-tiel. Les shémas proposés par les auteurs sont analysés. Il en résulte que Prophet n'estpas apable de véri�er l'hypothèse sur la période des séquenes générées di�érentes. Ceiimplique que Prophet n'est pas apable de supporter toutes les on�gurations possibles d'unréseau dynamique sans sari�er l'uniité des adresses générées. Notre onlusion est queles hypothèses utilisées dans Prophet ne sont pas ompatibles ave l'emploi des générateurspseudo-aléatoires.Mots-lés : Alloation dynamique d'adresses, générateurs pseudo-aléatoires



A Mathematial Analysis of Prophet Dynami Address Alloation 31 IntrodutionDynami address alloation is a fundamental problem in mobile ad-ho networks (MANETs).Address alloation preeeds any further operations in networking. This task is partiularlydi�ult when there is no aess to a entralized infrastruture, like in MANETs. Thehallenge onsists in providing unique addresses to the network nodes using parallel andindependent proesses. Several propositions have been made to solve this problem. A om-plete survey on this problem an be found in [BCM09℄. Four lasses of algorithms have beenidenti�ed so far: on�it-detetion alloation [PRD00℄, on�it-free alloation [MDMD01℄,best-e�ort algorithms [NP02℄ and to onlude the Prophet algorithm [ZNM03℄. Prophet is apartiularly intriguing algorithm beause it appears as a signi�ant breakthrough in mobilenetworking. It provides an addresses alloation sheme free of on�it with a low omplexity,a low ommuniation overhead and a low lateny.The Prophet protool is investigated in depth in this paper. Prophet is based on as-sumptions related to random number generation and the authors made an intensive used oflinear ongruential generators (LCGs). Then, we show that the underlying idea of Prophetis similar to the problem of parallel pseudo-random generators [Dur89℄. This problem omesfrom the parallel omputing and it is more spei�ally related to distributed Monte Carlosimulation [Nie92℄. Indeed, one of the fundamental assumption of Prophet onsists in us-ing sequenes of large period as in parallel omputing. Moreover, the authors of Prophethave indeed used two well-known strategies to transform an LCG into a parallel random-number generator. Unfortunately, there exists two fundamental di�erenes between the goalof Prophet and the problem disussed in parallel omputing. First, the parameters used inthe LCGs for Prophet are hosen dynamially and randomly while they are hosen statiallyin parallel omputing. This fundamental di�erene allows to have some ontrol on the prop-erties of the random numbers produed in parallel omputing. In the ase of Prophet, this islearly not the ase. Seond, Prophet assumes that the parallel sequenes are ollision free.This strong assumption not found in parallel omputing an not be unfortunately satis�edusing parallel pseudo-random generators. Therefore, we show that Prophet an not ahieveits main goal: unique addresses alloation (see Figure 1).35 6 88 12 11 11 6 34 7Figure 1: An example of addresses assigned with Prophet for N = 12.
RR n° 7085



4 Lauradoux & MinierA de�nition of dynami address alloation is given in Setion 2. The priniples andthe assumptions used in the design of Prophet are desribed in Setion 3. Then, we �ndpartiularly useful to analyzed the �toy example� used by the authors to present Prophet(Setion 4). The key de�nitions of pseudo-random generators are remainded in this setion.The pratial pseudo-random generators proposed for Prophet and the possibility to ahieveollision-free dynami address alloation are disussed in Setion 5. Finally, we onlude thepaper.
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A Mathematial Analysis of Prophet Dynami Address Alloation 52 De�nitionsThe goal of this setion is to establish learly the goal of a dynami address alloation algo-rithm. The de�nition of suh an algorithm and of an address graph are given. The addressgraph desribes the address alloation sheme. A dynami address alloation algorithmmust be able to provide addresses for any possible address graph. Those de�nitions are veryimportant to understand the limitations of Prophet.De�nition 1 An address graph is an ayli oriented graphs of arbitrary indegree andoutdegree.The edges of the address graph represents the addresses dependeny. If there is an edgefrom A to B, it means that A has assigned an address to B. There is at least a networkonnetion between two nodes onneted by an edge at the time of the address alloation.But two disonneted nodes of the address graph an have a network onnetion. Theassignment sheme for the addresses may be related to another network mehanism.The indegree di of a node orresponds to the number of addresses assigned to this parti-ular node. A given node an have an arbitrary number of addresses. The outdegree do is thenumber of times that a given node has assigned addresses. For simpliity and without lossof generality, only address graphs for whih the indegree of any node is di ≤ 1 are onsideredin the following.De�nition 2 A dynami addresses alloation algorithm onsists in giving a uniquelabel to the N nodes of any possible address graphs.The representation of the address assignment as an ayli oriented graph is very usefulto apture the omplexity of dynami addresses alloation and the limitations of the urrentapproahes to solve the problem. In a network, several nodes an start to assign addressesto other nodes. These partiular nodes are alled root and they have an indegree di = 0.The two extreme setups for a dynami network are:
• An address graph with a node A(0,N − 1) (Figure 2 (a)). N − 1 nodes request anaddress to a single root. This ase orresponds to the lassial address alloation witha entralized infrastruture.
• An address graph in whih all the nodes have an indegree and outdegree equal to 0(Figure 2 (d)). Eah node hooses for itself a given address, i.e. eah node is a root.Between those two extreme setups, any on�guration is possible. For instane in wirelesssensors networks (WSNs), a single root an assign the addresses of all the nodes whih aredistant from one hop (see Figure 2 (a) and ()). In an ad-ho networks, it is possible to have

k roots in order to redue the delay to obtain an address. In this partiular ase, the overallgraph an be viewed as a single network or as k networks (sub-graph) with one networkassoiated to eah root. If the graph is onsidered as a single network, it implies that allthe sub-networks are merged. Therefore, our de�nition is enough to over operations likemerging. In their paper [ZNM03℄, the authors provide materials for address graphs with asingle root.RR n° 7085



6 Lauradoux & Minier
(a) (b)
() (d)

A(0,2)
B(1,0) C(1,0)

A(0,1) C(0,0)
B(1,0)A(0,0) B(0,0) C(0,0)A(0,1) B(1,1)C(1,0)Figure 2: Di�erent setups for an ayli oriented graphs of indegree di ≤ 1 with N = 3,A(i,j) with di = i and do = j.3 Prophet: priniple and hypothesis3.1 Arhiteture of the shemeIn Prophet, eah node reeived a blak box (see Figure 3) allowing him to generate newaddresses upon request. This blak box is initialized with the node address a and a seed x0.The seed is used to initialize an internal state xt whih is updated by the funtion g. Thisfuntion g an be a ounter (inrementation) as any other funtion. The internal state xtand the address a are used to produe new addresses using the address derivation funtion

f . It should be noted that the authors in their paper [ZNM03℄ do not mention expliitlythe existene of an update funtion. However, it simpli�es greatly our analysis.Using this representation, one may �nd the problem onsidered by Zhou et al. very sim-ilar to the problem of parallel random generators [Dur89, Hal89℄. Distributed omputationslike simulations make an intensive use of random numbers. Eah threads of the simulationmay need to have its own stream of random numbers suh that all the streams of randomnumbers are unorrelated. However, this problem is essentially stati (everything is knownin advane: number of omputers, topology).A �rst limitation of Prophet is the lak of initialization algorithm. Prophet an notbe used when eah node hooses for itself an address (all the nodes have an indegree andoutdegree equal to 0). Prophet anwers the issue of address derivation and it is not suitable
INRIA



A Mathematial Analysis of Prophet Dynami Address Alloation 7
a0,1 a0,i+1

g g
x0x0

a0,0

x1 xi

f(x0, a0,0) f(x1, a0,0)

a0,2

f(xi, a0,0)

Figure 3: A view of Prophet.when several roots assign addresses. It an not be used for merging networks ontrary tothe authors laim. In the following, a single node with di = 0 is assumed.3.2 Update funtion and address derivation funtionThe main assumptions on the update funtion and on the address derivation funtion aregiven here as in the original paper:Assumption 1 The interval between two ourrenes of the same number in a sequene isextremely long.Assumption 2 The probability of more than one ourrene of the same number in a limitednumber of di�erent sequenes initiated by di�erent seeds during some intervals is extremelylow.The Assumption 1 orresponds with the requirement of pseudo-random generators: theperiod T of a sequene S must be as large as possible. The readers may �nd helpful infor-mations on pseudo-random numbers in lassial textbooks [Nie92, Knu97℄.The Assumption 2 is a property that must be satis�ed by omparing several sequenes.It means that the repetition of a given value in several sequenes must be really improbable.The remaining parts of the paper onern the design of f and g suh that Assumption 1and 2 are veri�ed. First, the toy example given in Setion III.B of the original paper [ZNM03℄is disseted. Then, we deal with the pratial design of f and g proposed by the authors.
RR n° 7085



8 Lauradoux & Minier4 Prophet: the toy exampleTo illustrate the basi idea of their paper, Zhou et al. [ZNM03℄ propose to use the folowingfuntions:
f(a, xt) = a × xt × 11 mod 7

xt+1 = g(xt)

= f(a, xt)

(1)with a a given address. When a new address is provided, a new seed is omputed. In thisexample, the new seed is the address itself. Here, the update funtion g and the addressderivation funtion are the same. For the address graph depited in Figure 4 (a), Prophetalloation with Equation 1 provides the addresses shown in Figure 4 (b). The addresses aregenerated by two pseudo-random generators (Figure 4 ()).(3) (4)(1)(5) f(3, x) = 33x mod 7

f(1, x) = 11x mod 7(b) ()(a) Figure 4: Example of alloation with an initial address a = 3.It must be notied that the multipliation by eleven is a simple permutation of theaddress a. f an be written:
f(γ, xt) = γ × xt mod 7

γ = a × 11 mod 7In this later form f(γ, xt), those funtions are learly identi�ed as the multipliation linearongruential generators (MLCGs). This is a speial ase of the linear ongruential generatorsde�ned by Lehmer [Leh51℄.4.1 Linear Congruential GeneratorsA linear ongruential generator of multiplier b, modulus m and inrement c is de�ned by:
xt+1 = b × xt + c mod m. (2)This family of generators has been well studied and numerous works exist on LCGs [PM88℄.Most notably, they have statistial weaknesses whih made them unseure for ryptographiappliations [Knu85, Ste87℄. Some basi properties of MLCGs are now remained. INRIA



A Mathematial Analysis of Prophet Dynami Address Alloation 9For the MLCGs (c = 0), it is well known that the period T , i.e. the smallest integersuh that xt+T = xt, is the smallest integer k suh that:
bk ≡ 1 mod m.If a and m are oprime, we state that using the Euler-Fermat theorem:

bφ(m) ≡ 1 mod m (3)where φ(m) is the Euler's totient funtion, the number of positive integers less than or equalto m that are oprime to m. Therefore, the period T an not exeed φ(m) whih is maximalif m is a prime, i.e. φ(m) = m − 1. An integer b verifying Equation 3 is alled a primitiveroot modulo m. There is φ(m − 1) primitive roots modulo m.4.2 AnalysisIn this example, eah node is assigned at the same time with an address, a seed and apartiular instane of a MLCG with modulus m. This tehnique is known as the �di�erentmultipliers� strategy in parallel omputing [Dur89℄. The period T represents the numberof addresses that an be alloated by a node. If the period T is not large enough, theAssumption 1 an not be met.This strategy failed in the ontext of Prophet beause the multipliers are hosen randomlyover [1, m− 1]. The probability to have T = m − 1 is equal to:
P [T = m − 1] =

φ(m − 1)

m − 1
.In the given example (m = 7), this probability is only 1

3 and more generally for m − 1 > 6:
√

m − 1

m − 1
≤ P [T = m − 1] ≤ 1 −

√
m − 1

m − 1
.Assuming that we have suessfully alloated i − 1 addresses, i.e the addresses are uniqueand the period assoiated to an address is always maximal, the probability for the i-thalloation to sueed is:

P [Ti = m − 1] =
φ(m − 1) − i

m − 1with Ti the period assoiated to the i-th address. This result strongly limits the addressingapability of the sheme. The more addresses are alloated with suh a sheme, the higheris the probability that we get a degenerated funtion f . Prophet an provide on�it-freeaddresses for all topologies if a node has an address that implies a low period pseudo-randomgeneratorA seond problem arises with �xed points. If the Equation 1 is used with m = 7, it iseasily seen that the initial value 2 always produes 2 as an address. This problem an besolved if a node whih reeived an address searhes and prevents the use of a �xed point.RR n° 7085



10 Lauradoux & MinierA third problem arises when the Assumption 2 is onsidered. Let onsider the addressgraph desribed in Figure 5 (a). In this ase, the pseudo-random generators used to assignthe addresses (Figure 5 ()) have full period (see Figures 6 and 7). However, we still have aollision on the address assigned (Figure 5 (b)). (3) f(3, x) = 33x mod 7

(b) ()f(6, x) = 66x mod 7

(5)(a) (1) (4) (6) (4)Figure 5: Example of alloation with a ollision.In fat, the Assumption 2 an be written:
∄i < σ, with ∀x, y ∈ [1, m − 1], ∀x′, z ∈ [1, m− 1], x 6= x′ and z 6= yi mod m suh that:

x × yi ≡ x′ × z mod mwhere σ is a �xed threshold. The authors do not see any other way to verify this propertythan exhaustive searh (O(m4)). This property is generally not veri�ed by parallel pseudo-random generators.To onlude this analysis, the use of MLCGs for the implementation of Prophet is notreommended beause the periods of the di�erent generators are di�ult to ontrol (As-sumption 1) and beause no expetation on the probability of ollisions between the di�erentstreams an be found (Assumption 2).

Figure 6: Behaviour of the generator for
a = 3. Figure 7: Behaviour of the generator for

a = 6. INRIA



A Mathematial Analysis of Prophet Dynami Address Alloation 11
5 Analysis of the pratial sheme5.1 Desription and AnalysisThe authors proposed an other sheme to implement Prophet. In their pratial onstru-tion, the update funtion g and the address derivation funtion f are di�erent:

fa(xt) = [a + h(xt) mod m] + 1

h(xt) =
n∏

i=1

p
xi

t

i

xt+1 = gj(xt)

= (x1
t , x

2
t , · · · , x

j
t , · · · , xn

t ).

(4)The funtion h is the produt of the n �rst prime numbers pi put to the power xi
t. Theinternal state xt is a vetor of n integers x1

t , x
2
t , · · ·xn

t . This vetor an be viewed as a virtualoordinate system in the address graph. The update funtion gj onsists in inreasing byone the oordinate x
j
t . The value j is �xed for a given node. The modulus m is the bound onthe number of addresses whih an be alloated. When an address is requested, the internalstate is �rst updated and then, the funtion fi is applied. One a new address b = fa(xt)is produed by a node a the urrent state of the node is sent as a seed for the new nodeand the new value jb = ja + 1. The root node has for address a and its internal state is

∀i ∈ [1, n], xi
0 = 0. An example for n = 4 and with x0 = (0 ‖ 0 ‖ 0 ‖ 0) is given in Figure 8.

[a, (1, 0, 0, 0)], j = 1

[a, (2, 0, 0, 0)], j = 1

[a + 5, (2, 0, 0, 0)], j = 2

[a, (0, 0, 0, 0)], j = 1

[a + 3, (1, 0, 0, 0)], j = 2

[a + 3, (1, 1, 0, 0)], j = 2

[a + 7, (1, 1, 0, 0)], j = 3Figure 8: Example of alloation with an initial address a.
RR n° 7085



12 Lauradoux & Minier
j Funtion xt+j Period T1 fa(xt+j) = (a + 2j mod m) + 1 (j ‖ 0 ‖ 0 ‖ 0 ‖ 0) 162 fa(xt+j) = (a + 2 × 3j mod m) + 1 (1 ‖ j ‖ 0 ‖ 0 ‖ 0) 513 fa(xt+j) = (a + 6 × 5j mod m) + 1 (1 ‖ 1 ‖ j ‖ 0 ‖ 0) 76Table 1: Period of several funtions for m = 151.Despite its apparent omplexity, this period of the sequene generated is relatively easyto obtain. The key derivation funtion fa an be written for j = 1:

fa(xt+k) = [a + 2k mod m] + 1.The period T is given by T = k− i where i is �xed integer and k is the smallest integer suhthat:
2k ≡ 2i mod m and k > i. (5)This result an be easily extend to other values of j and di�erent internal states xt. Forinstane we have omputed the period of several funtions for m = 151.The previous table learly show that we obtain as in Setion 4 a family of generatorswith a period di�ult to ontrol. The Assumption 1 an not be met by this generator.As shown previously, the period T of the generator is exatly the same than in theprevious. In fat, in this last ase, we are looking for powers of prime numbers that havea maximal period, i.e. that are primitive root mod m. In the same way, the number ofprimitive root mod m is φ(m − 1) and strongly depends on the deomposition of m − 1.In the Prophet pratial sheme, with m a prime number, the four numbers 2,3,5,7 musthave a maximal order. Due to the probabilities omputed in Setion 4, this is hard to reah.With the prime number m = 1031, φ(m) is equal to 408, the order of 2,3 and 5 is 515 and theorder of 7 is 206. So, �nding an m value for whih the 4 �rst prime integers have a maximalorder has a really low probability. And the general probability to obtain a primitive root isexatly the same than the one given in Setion 4.5.2 Parameters hoies and examplesThe implementation of this sheme require to de�ne three parameters, (1) the modulus m,(2) the �rst address a, and (3) n the number of prime numbers used and the internal state.In the original paper [ZNM03℄, there is no disussion about this three parameters and nopratial parameters are provided. Later in [Zho08℄, Zhou provide details on the hoie of

m and n.Choie for m. The modulus m must be hosen arefully regarding the size of the network
N and the previous remarks on the period. The original paper, it is onsidered that themodulus m should be the address range +1.. In [Zho08℄, it is onsidered that m must be thehighest prime number less or equal that the address range. However, it is straightforward

INRIA



A Mathematial Analysis of Prophet Dynami Address Alloation 133
5 6 8 12 7 10 3 2 13 9 135 6 8(a)

(b)8 12 11 11 6 34 7
5 6 83

118 12 4 7()116 6Figure 9: Address assignment obtained with Prophet for N = 12.that this solution is ill-fated when the address range math the network size N : it is notpossible to assign N unique addresses from omputations in the range [0, m− 1] if m < N .Clearly, a better hoie would have been to onsider that m is the smallest prime numbergreater or equal N .Choie for a. This parameter an a�et the probability of ollisions sine the value aan appear later in another pseudo-random sequene. We assume that this value is hosenrandomly in [0, m − 1].
RR n° 7085



14 Lauradoux & MinierChoie for n and internal state. The number of prime numbers n used in the internalstate depends on the maximal possible depth for an address graph. For an address graph ofsize N , the maximal depth is N − 1: n ≥ N − 1. In [Zho08℄, the value n = 209 is used for
N = 50. It should be notied that the initialization of the internal state of the root node(address a) has no impat on the respetive period of the generator (see Equation 5).To onlude, the Figure 9 shows several addresses assignment performed by Prophet for
N = 12, n = 11, m = 13 and di�erent topologies.6 ConlusionWe have seen the limits of the proposition of Prophet. Prophet is based on automatonwhih must be haraterized by their inner behaviour (Assumption 1) and by their outerbehaviour (Assumption 2). While the ore idea of Prophet are sound, the appliation ofpseudo-random generators leads to a sheme with many ollisions. The sheme may worksfor some address graphs but many ollisions an be expeted for some setups. The keyquestion of Prophet is how to design these funtions in order to allow ollision free addressalloation.Referenes[BCM09℄ C. Bernardos, M. Calderon, and H. Moustafa. Survey of IP addressautoon�guration mehanisms for MANETs. Tehnial report, IETF, 2009.http://tools.ietf.org/html/draft-bernardos-manet-autoonf-survey-04.[Dur89℄ Mark J. Durst. Using linear ongruential generators for parallel random numbergeneration. In 21st onferene on Winter simulation � WSC '89, pages 462�466.ACM, 1989.[Hal89℄ John H. Halton. Pseudo-random trees: multiple independent sequene gen-erators for parallel and branhing omputations. Journal Computational ofPhysis, 84(1):1�56, 1989.[Knu85℄ Donald E. Knuth. Deiphering a linear ongruential enryption. IEEE Trans-ations on Information Theory, 31(1):49�52, 1985.[Knu97℄ Donald E. Knuth. The art of omputer programming, volume 2 (3rd ed.):seminumerial algorithms. Addison-Wesley, In., 1997.[Leh51℄ Derrik H. Lehmer. Mathematial methods in large-sale omputing units. InSeond Symposium on Large-Sale Digital Calulating Mahinery, pages 141�146. Harvard University Press, 1951.
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A Mathematial Analysis of Prophet Dynami Address Alloation 15[MDMD01℄ Arhan Misra, Subir Das, Anthony MAuley, and Sajal K. Das. Autoon�gura-tion, registration, and mobility management for pervasive omputing. PersonalCommuniations, IEEE, 8(4), 2001.[Nie92℄ Harald Niederreiter. Random number generation and quasi-Monte Carlo meth-ods. Soiety for Industrial and Applied Mathematis, 1992.[NP02℄ Sanket Nesargi and Ravi Prakash. Manetonf: on�guration of hosts in a mobilead ho network. In INFOCOM 2002, volume 2, pages 1059�1068, 2002.[PM88℄ Stephen K. Park and Keith W. Miller. Random number generators: good onesare hard to �nd. Communiation of the ACM, 31(10):1192�1201, 1988.[PRD00℄ Charles E. Perkins, Elizabeth M. Royer, and Samir R. Das. IP Address Auto-on�guration for Ad Ho Networks. Tehnial report, IETF, 2000.[Ste87℄ Jaques Stern. Seret linear ongruential generators are not ryptographiallyseure. In Symposium on Foundations of Computer Siene - FOCS 1987, pages421�426. IEEE, 1987.[Zho08℄ Hongbo Zhou. Seure Prophet Address Alloation for Mobile Ad Ho Networks.In IFIP International Conferene on Network and Parallel Computing - NPC2008, pages 60�67, 2008.[ZNM03℄ Hongbo Zhou, Lionel M. Ni, and Matt W. Mutka. Prophet address alloationfor large sale manets. In IEEE INFOCOM 2003, 2003.
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