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ABSTRACT
A distributed XML document is an XML document that
spans several machines or Web repositories. We assume that
a distribution design of the document tree is given, provid-
ing an XML tree some of whose leaves are “docking points”,
to which XML subtrees can be attached. These subtrees
may be provided and controlled by peers at remote loca-
tions, or may correspond to the result of function calls, e.g.,
Web services. If a global type τ , e.g. a DTD, is specified
for a distributed document T , it would be most desirable to
be able to break this type into a collection of local types,
called a local typing, such that the document satisfies τ if
and only if each peer (or function) satisfies its local type. In
this paper we lay out the fundamentals of a theory of local
typing and provide formal definitions of three main variants
of locality: local typing, maximal local typing, and perfect
typing, the latter being the most desirable. We study the
following relevant decision problems: (i) given a typing for a
design, determine whether it is local, maximal local, or per-
fect; (ii) given a design, establish whether a (maximal) local,
or perfect typing does exist. For some of these problems we
provide tight complexity bounds (polynomial space), while
for the others we show exponential upper bounds. A main
contribution is a polynomial-space algorithm for computing
a perfect typing in this context, if it exists.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed databases; H.2.1
[Logical Design]: Data models; Schema and subschema

General Terms
Design, Languages, Theory
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1. INTRODUCTION
With the Web, information tends to be more and more

distributed. In particular, the distribution of XML data is
essential in many areas such as e-commerce (shared prod-
uct catalog), collaborating editing (e.g., based on WebDAV
[12]), or network directories [15]. (See also the W3C XML
Fragment Interchange Working group [10].) It becomes of-
ten cumbersome to verify the validity, e.g., the type, of such
a hierarchical structure spanning several machines. In this
paper, we consider typing issues raised by the distribution of
XML documents. We introduce nice properties that the dis-
tribution should obey to facilitate type verification based on
locality conditions. We propose an automata-based study of
the problem. Our theoretical investigation provides a start-
ing point for the distributed validation of tree documents
(verification) and for selecting a distribution for Web data
(design). In general, it provides new insights in the typing
of XML documents.

Figure 1: Distributed XML Document T0

A distributed document is given by an XML “root” docu-
ment T , that is stored locally at some site, some of which
leaves refer to external resources, say f1, . . . , fn, that each
provides additional XML data to be attached to T . The ex-
tension ext(T ) of T is the document obtained by replacing
each node labeled fi with the actual XML tree (or forest)
provided by resource fi. Intuitively, ext(T ) is the effective
entire document one is interested in, where, however, differ-
ent parts of this document are stored at different locations,
maintained by different peers, and/or provided by programs
or Web service calls. Figure 1 shows a (drastically simpli-
fied) possible distributed XML document for the National
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Consumer Price Index (NCPI) 1 maintained by the Euro-
stat 2. The NCPI is a document containing consumer price
data for each EC country. We assume that the national data
are maintained in local XML repositories by each country’s
national statistics bureau (INSEE for France, Statistik Aus-
tria, Istat for Italy, UK Statistics Authority, and so on).
Each national data set is under the strict control of its re-
spective statistics bureau. The root document T0 is main-
tained by Eurostat in Luxembourg and has a function fi for
each different country. In addition, T0 contains average data
for the entire EU zone. Figure 2 shows a possible extension
ext(T0) of T0, where the actual data values are omitted.

Figure 2: An extension ext(T0) of document T0

Typically, a global designer specifies a target type τ , to-
gether with a root document T . Such a type τ could be
given, for example, in form of a DTD, an XML Schema,
a regular tree language, or a tree automaton. The specifi-
cation of τ means that the extension ext(T ) is required to
satisfy τ , formally, ext(T ) |= τ . While this is done just in
a similar way and spirit as when one specifies a type for a
normal XML document, we now have a problem: How do we
enforce the validity w.r.t. this global type? and what should
be the role of each peer in this enforcement of the type?. In
particular, can the global type τ be broken down into local
types τ1, . . . , τn, one for each function fi occurring in T , so
that, to obtain a valid document ext(T ), it suffices to make
sure that each resource fi provides local data satisfying τi.

A main issue here is to guarantee the consistency of the
information. It can be the case that the validity of an update
at resource fi depends on the data in another resource. We
would like to avoid such situation if possible. More precisely,
we would like to provide each fi with a typing τi that guar-
antees that (i) if each fi verifies its type, then the global
type is verified (soundness), and (ii) we do not introduce
more restrictions than this global type (completeness). We
call such a typing local typing. We study (maximal) local
typings. We are also interested in perfect typings, namely
when the typing is a unique maximum for all sound typings.

From a formal viewpoint, we use Active XML terminol-
ogy and notation for describing distributed documents [1].
For types, we consider abstract versions of DTDs and XML
Schemas [18]. We lay out the fundamentals of a theory of
local typing and provide formal definitions of three main
variants of locality: local typing, maximal local typing, and
perfect typing, the latter being the most desirable. We study
the following relevant verification problems: given a typing
for a design, determine whether it is local, maximal local,
or perfect (we call these problems dtd-loc, dtd-ml and
dtd-perf, respectively). We also study the correspond-
ing design problems: given a particular design, establish
1See http://epp.eurostat.ec.europa.eu
2See http://ec.europa.eu/eurostat

whether a local, maximal local, or perfect typing does ex-
ist (call these problems ∃dtd-loc, ∃dtd-ml, ∃dtd-perf,
respectively) and, of course, find them.

The analysis carried out in this paper provides tight com-
plexity bounds for some of these problems. In particular,
problems dtd-loc, dtd-ml, dtd-perf and ∃dtd-perf are
PSPACE-complete. For the other problems (proved to be
PSPACE-hard), we show exponential upper bounds, but a
precise characterization of their computational complexity is
still an open problem. To study this problem, we show that
the problem for trees can be reduced to a problem on words.
The problems on words are solved using automata tech-
niques. In particular, a main contribution is a polynomial-
space construction of a perfect typing, if it exists. Section 6
also considers more powerful typings, namely nondetermin-
istic bottom-up tree automata (typically the largest class
that is considered). In this setting, the direct reduction to
words cannot be used. However, we show how the problem
can be solved using tree automata techniques.

Before mentioning some related works and concluding this
section, we further illustrate these concepts by detailing our
Eurostat example. We first assume that Eurostat specifies
the global type τ0 for the distributed NCPI document, where
τ0 is given by the DTD shown in Figure 3. Briefly, DTD τ0

requires that ext(T0) consists of a subtree containing aver-
age data for Goods (such as food, energy, education, and
so on). Each Good item is evaluated in different years by
means of an index. Moreover, ext(T0) may contain a forest
of nationalIndex, namely indexes associated to goods in pre-
cise countries. To comply with different national databases,
two different formats are allowed: (country, Good, index) or
(country, Good, value, year). It is easy to see that the pair
〈τ0, T0〉 allows a local typing (see Figure 4) that is even per-
fect (so, can be found out by the algorithm shown in Section
5), as we will clarify in the next section.

<!ELEMENT eurostat (averages, nationalIndex*)>
<!ELEMENT averages (Good, index+)+>
<!ELEMENT nationalIndex (country, Good,

(index | value, year))>
<!ELEMENT index (value, year)>

<!ELEMENT Good (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT year (#PCDATA)>

Figure 3: DTD τ0

!f_aus: <!ELEMENT root (nationalIndex*)>
<!ELEMENT nationalIndex (country, Good,

(index | value, year))>
<!ELEMENT index (value, year)>

!f_fra: <!ELEMENT root (nationalIndex*)>
...

!f_ita: <!ELEMENT root (nationalIndex*)>
...

Figure 4: Perfect Typing for 〈τ0, T0〉

Suppose now that a designer defined instead the DTD τ1

shown in Figure 5 as global type (the elements defined as
in τ0 are omitted.) The pair 〈τ1, T0〉 would be a bad design
since τ1 imposes to all countries to adopt the same format
for their indexes (natIndA or natIndB). But this represents
a constraint that cannot be controlled locally. Indeed, this
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new design does not admit any local typing. The nice lo-
cality properties of designs are obvious in such simplistic
examples. However, when dealing with a large number of
peers with very different desires and complex documents,
the problem rapidly starts defeating human expertise. The
techniques developed in this paper are meant to support
experts in designing such distributed document schemas.

<!ELEMENT eurostat (averages, (natIndA* | natIndB*))>
<!ELEMENT averages (Good, index+)+>
<!ELEMENT natIndA (country, Good, index)>
<!ELEMENT natIndB (country, Good, value, year)>

Figure 5: DTD τ1

Distributed data design has already been quite studied in
particular for relational databases; see [7, 17]. Some pre-
vious works have considered the design of Web applications
[6]. They lead to the design of Web sites. The design there is
guided by an underlying process. It leads to a more dynamic
notion of typing, where part of the content evolves in time,
e.g., creating a cart for a customer. For obvious reasons, dis-
tributed XML has raised a lot of attention recently. Most
works focused on query optimization, e.g., [3]. The few that
consider design typically assume no ordering or only limited
one [5]. This last work would usefully complement the tech-
niques presented here. Also, works on relational database
and LDAP 3 design focus on unordered collections. Even the
W3C goes in this direction with a working group on XML
Fragment Interchange [10]. The goal is to be able to process
(e.g., edit) document fragments independently. Quoting the
W3C Candidate Recommendation: “It may be desirable to
view or edit one or more [fragments] while having no inter-
est, need, or ability to view or edit the entire document.”
This is clearly related to the problem we study here.

The paper is organized as follows. Section 2 formally in-
troduces our notions of (distributed) XML document, type,
and defines the decisional problems studied. It also provides
an overview of the results. Section 3 presents basic results.
Sections 4 and 5 present the main results. Section 6 dis-
cusses extension to more complex types. Section 7 concludes
and mentions possible areas for further research. Finally, in
Section 8 we make a number of acknowledgments.

2. THE TYPING PROBLEMS
Distributed Documents (or Distributed Trees), like AXML

documents [1, 2], are XML documents that may contain em-
bedded function calls. The result of a function call !f is still
an XML document. When !f is invoked, its result is used to
enrich the original document. This process is termed mate-
rialization. In a distributed architecture (for instance a P2P
architecture), a node x of a distributed tree T containing
a function !f is called a docking point of T . The docking
point x connects the peers that invoke the function !f and
the peers that provide the corresponding XML document.

An interesting task is to associate a type τi (a DTD) to
each call !fi in such a way that the XML document returned
as answer is valid w.r.t. this type and any materialization
process always produces a valid document w.t.r. a given

3Lightweight Directory Access Protocol (LDAP) is a set of
open protocols used to access centrally stored information
over a network.

global type τ that is also specified by a DTD. A global type
and a distributed document represent the design of a given
distributed architecture. A collection of types associated to
the function calls in such a design is called a typing. Given a
distributed design, we want to know whether either a precise
typing has some properties or a typing with some properties
does exist. (More formal definitions follow.)

XML. In this paper, we use a widespread abstraction of
XML documents and DTDs (or XML Schemas) focusing
on document structure [18]. An XML document is a finite
ordered, unranked tree (hereafter just a tree) t with nodes
labeled over an alphabet Σ. Given a node x of t, we de-
note by lab(x) its label, by labcdrn(x) ∈ Σ∗ the string con-
taining the labels of the children of x in left-to-right order,
and by labpar(x) the label of the parent of x. Clearly, if
labcdrn(x) = ε, then x is a leaf node, while if labpar(x) = ε,
then x is the root of t. The size of t, denoted by ‖t‖, is the
number of its nodes.

Types. A DTD is formalized as a triple τ = 〈Σ, π, s〉 where
Σ is an alphabet (the element names), π is a function that
maps each symbol in Σ to a nondeterministic finite state
automaton (NFA for short) still over Σ, and s ∈ Σ is the
start symbol. The language [τ ] of τ is a set of trees such that
for each tree t ∈ [τ ], lab(root(t)) = s and for every node x,
with lab(x) = a, labcdrn(x) ∈ [π(a)]. The NFA associated
to an element name is also called its content model. In this
paper, we often specify π as a function that maps Σ-symbols
to Σ-regexes since any regular expression of size n can be
transformed into an equivalent ε-free NFA with O(n log2 n)
transitions in time O(n log2 n) [11, 14]. An example of DTD
is τ1 = 〈{s1, c}, π1, s1〉 with π1(s1) = c∗ and π1(c) = ε. In
the remaining of the paper, we omit to specify regexs such
as π1(c) = ε; i.e., if no regex is given for a label, nodes with
this label are assumed to be (solely) leaves. We consider only
reduced DTDs where there is no unreachable symbol and the
language related to each nonterminal symbol is nonempty.

The expressive power of DTDs can be extended by spe-
cializing element names, as, e.g., in XML Schema [23] and
Relax NG [8]. Then, an extended DTD (EDTD) is a quin-
tuple τ = 〈Σ, ∆, π, s, µ〉 where 〈∆, π, s〉 is a DTD on the
specialized element names ∆, and µ is a mapping from ∆ to
Σ. In this case, for a labeled tree t, t ∈ [τ ] if there exists a
tree t′ in [〈∆, π, s〉] such that t = µ(t′) (where µ is extended
to trees). Tree t′ can be seen as a witness for t. In par-
ticular, an XML Schema can be seen as a EDTD with an
extra constraint (the Element Declarations Consistent). It
essentially prohibits that, in any content model, an element
has two different specializations.

Distributed documents. As previously mentioned, we use
Active XML terminology and notation for describing dis-
tributed documents. Let ΣL and ΣF be two alphabets, re-
spectively, of labels (such as a, b, etc.) and function symbols
(such as !f , !g, etc.). A distributed document or distributed
tree T is a tree over ΣL ∪ ΣF where any function-node is a
leaf node and where root(T ) ∈ ΣL. A forest is a sequence of
distributed trees. The extension (or semantics) of a function
!f is a forest and denoted by ext(!f). The extension ext(T ) of
a tree T is obtained by replacing each !f by ext(!f). A type τ
for a distributed tree T is a DTD (or an XML Schema). Tree
T satisfies type τ if ext(T ) does. Since we do not want to
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cope with nonregularity we assume that the same function
does not occur twice in a tree. For instance, in the tree
T = a(!f !f) the children of a in any ext(T ) are of the form
ww for some word w. But since this is not a regular lan-
guage, the type of T cannot be defined by a DTD. Clearly,
the same type can be associated to different functions.

Distributed document typing. In this section, we first de-
fine the concept of typing for a distributed tree. We then
introduce the notion of design and interesting properties of
typings for designs.

Let T (!fn) be a distributed tree. We want to type its func-
tion calls. The answer of some !fi may be a forest, which is
not an XML document any more. So, for the type τi associ-
ated to !fi, we actually use a DTD having a root with a label
si that does not appear in any other part of τi. The answer
of !fi is the forest of children of the si-root of a document
of this type. Now, let (!fn) be a finite sequence4 of distinct
function calls. A typing for a distributed tree T (!fn) is a
positional mapping from the functions in (!fn) to a sequence
(τn) of types (DTDs). Informally, we denote by T (τn) the
new type defined from T by replacing each fi with τi. This
raises consistency issues. See further for a formal definition.

Example 1. Consider the distributed tree T = a(b !f1 d !f2).
The pair τ1 = 〈{s1, c}, π1, s1〉 and τ2 = 〈{s2, e}, π2, s2〉 of
DTDs, with π1(s1) = c∗ and π2(s2) = e∗, is a typing for
T . The activation of both f1 and f2 may return trees s1(cc)
and s2(e), respectively. These trees can be plugged into T
producing the extension a(bccde). Finally, T (τ1, τ2) is the
DTD 〈{a, b, c, d, e}, π, a〉 where π(a) = bc∗de∗. 2

Formally, a typing for T is a sequence (τn) such that
T (τn) = 〈ΣL, π, s〉 obtained as follows is a well-defined DTD:

1. ΣL is the union of the element names in T (!fn) and all
the labels in each type τi;

2. s = lab(r), where r is the root of T ;

3. for each node x of T with label a ∈ ΣL and such
that labcdrn(x) = w1 . . . wk, π(a) is the regex r1 . . . rk,
where rj = wj if wj ∈ ΣL, while rj = πi(si) if wj is
the function fi associated to the type τi = 〈ΣLi, πi, si〉.
(For NFAs, π(a) is defined in a similar way.)

4. for each τi = 〈ΣLi, πi, si〉 and for each a ∈ ΣLi \ {si},
π(a) = πi(a).

In this case, we say that (τn) is consistent for T (!fn).
Note that (τn) may be inconsistent for T (!fn) because the

same element name is assigned two different content models
either by τi and τj , i 6= j, by T and some τi, or by two occur-
rences of that label in T . Observe also that T plays here the
role of a type. Indeed, one could consider design problems
where we start from a distributed type. Our results can be
extended to such a setting.

All these definitions about trees can be adapted to strings
in a straightforward way. (We will see the importance of
problems on strings in Section 3.) A distributed string

w(!fn) = w0!f1w1 . . .!fnwn

4We denote a finite sequence of objects (x1, . . . , xn) over
an index set I = {1, . . . , n} by (xn) and we often omit the
specification of the index set I.

is a string on alphabet ΣL ∪ ΣF where: n ≥ 1; wi ∈ Σ∗L for
each i ∈ {0, . . . , n}; !fi ∈ ΣF for each i ∈ {1, . . . , n}; and
!fi 6=!fj for each i 6= j. A type is overloaded by an NFA.
A typing for w(!fn) is still a positional mapping from the
functions in (!fn) to a sequence (τn) of NFAs. With w(τn)
we denote a new type (NFA) defined from w by replacing
each fi with τi.

Let τ and τ ′ be two types (DTDs or NFAs). We say that:

• τ < τ ′ (smaller) iff [τ ] ⊂ [τ ′]

• τ ≤ τ ′ (smaller or equivalent) iff [τ ] ⊆ [τ ′]

• τ ≡ τ ′ (equivalent) iff [τ ] = [τ ′]

• τ q τ ′ (independent) iff [τ ] ∩ [τ ′] = ∅
• τ � τ ′ (incomparable) iff [τ ] * [τ ′] and [τ ] + [τ ′] and

[τ ] ∩ [τ ′] 6= ∅
• τ � τ ′ (different) iff either τ � τ ′ or τ q τ ′

Proposition 1. Two DTDs τ1 and τ2 are equivalent if
(i) they have the same root; (ii) they use the same element
names; and (iii) for each element name, its content models
in the two, are equivalent.

Given two typings (τn) and (τ ′n), we say that:

• (τn) < (τ ′n) iff (τn) ≤ (τ ′n) and τi < τ ′i for some i

• (τn) ≤ (τ ′n) iff τi ≤ τ ′i for each i

• (τn) ≡ (τ ′n) iff τi ≡ τ ′i for each i

• (τn) � (τ ′n) iff τi � τ ′i for some i

• (τn) q (τ ′n) iff τi q τ ′i for each i

• (τn) � (τ ′n) iff τi � τ ′i for some i

We call design a pair 〈τ, T (!fn)〉, i.e., a design consists in a
distributed document and a (target) type for that document.
The problems we consider concern typing such designs.

Definition 1. For a design 〈τ, T (!fn)〉, a typing (τn) is:

• sound if T (τn) ≤ τ ;

• maximal if it is sound and if there exists no other sound
typing (τ ′n) for T (!fn) and τ such that (τn) < (τ ′n);

• complete if τ ≤ T (τn);

• local if T (τn) ≡ τ , namely if it is sound and complete;

• perfect if it is local, and if for each other sound typing
(τ ′n), we have (τ ′n) ≤ (τn). 2

Clearly, local typings present the advantage of allowing a
local verification of document consistency (soundness and
completeness by definition). Also, no consistent document is
ruled out (completeness). Maximal locality guarantees that
in some sense, no unnecessary constraints are imposed to
the participants. Finally perfect typings are somewhat the
ultimate one can expect in terms of not imposing constraints
to the participants. Many designs will not accept a perfect
typing. However, there are maximal sound typings which
are not local. This is not surprising as there are designs
that have at least a sound typing but do not allow any local
at all, and clearly, if there is a sound typing, then there
must also exist a maximal sound one. We will see examples
that separate these different classes further. But before, we
formally state the problems studied in this paper.
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Definition 2. dtd-loc, dtd-ml, dtd-perf are the fol-
lowing decision problems. Given a DTD design 〈τ, T (!fn)〉
and a typing (τn), is (τn) a local, or maximal local, or perfect
typing for 〈τ, T (!fn)〉, respectively?

Definition 3. ∃dtd-loc, ∃dtd-ml, ∃dtd-perf are the fol-
lowing decision problems. Given a DTD design 〈τ, T (!fn)〉,
does there exist a local, or maximal local, or perfect typing
for this design, respectively?

We similarly define the corresponding word problems, that
is (∃)nfa-loc, (∃)nfa-ml, (∃)nfa-perf. Table 1 gives an
overview of the complexity results for the typings problems
previously defined. We will see in Section 3 that each prob-
lem on trees is logspace-reducible to a set of problems on
strings. Thus, it suffices to prove the results in Table 1
for words. All the problems are PSPACE-hard, and in
particular, we prove that nfa-loc, nfa-ml, nfa-perf and
∃nfa-perf are PSPACE-complete, whereas we show an
upper bound for the problems ∃nfa-loc and ∃nfa-ml in
2-EXPSPACE.

We pay more attention to maximal locality rather than
maximality alone as in the latter case the existential problem
is trivial (NL-complete) while the checking problem has the
same complexity in both cases (PSPACE-complete).

Table 1: Complexity Results

dtd-/nfa- ∃dtd-/∃nfa-

PSPACE-complete 2-EXPSPACE -loc

PSPACE-complete 2-EXPSPACE -ml

PSPACE-complete PSPACE-complete -perf

3. BASIC RESULTS
In this section, we first present examples that separate

the different design properties of typings. We then show the
reduction to word problems.

Example 2. Let τ = 〈{s, a, b, c}, π, s〉 be a type where
π(s) = a∗bc∗ and T = s(!f1!f2) be a distributed tree. Then,
(a∗bc∗, c∗) and (a∗, a∗bc∗) are two maximal local typings,
so there is no perfect typing for this design. Observe that
(a?, a∗bc∗) is a local typing that is not maximal because it
imposes unnecessary constraints to the local sites. If de-
sired, one could leave them more freedom, e.g., type the
first function with a∗. 2

Example 3. Let τ = 〈{s, a, b, c}, π, s〉 be a type where
π(s) = a∗bc∗ and T = s(!f1b!f2) be a distributed tree. The
typing (a∗, c∗) is perfect. This has to be an excellent typing
since there is no alternative maximal local typing. 2

Example 4. Let τ = 〈{s, a, b}, π, s〉 be a type where π(s) =
(ab)∗ and T = s(!f1!f2) be a distributed tree. The typ-
ing ((ab)∗, (ab)∗) is a unique maximal local but it is not
perfect. Consider, in fact, typing (a, b). It is sound but
(a, b) ≤ ((ab)∗, (ab)∗) does not hold. Clearly, a perfect typ-
ing cannot exist. 2

Example 5. Let τ = 〈{s, a, b}, π, s〉 be a type where π(s) =
(ab)+ and T = s(!f1!f2) be a distributed tree. There are three
maximal local typings: ((ab)∗, (ab)+), ((ab)∗a, b(ab)∗), and
((ab)+, (ab)∗) depending on whether either ε, a, or none of
them are in ext(!f1), respectively. 2

To complete our separation among the classes character-
izing different typings we point out that every perfect typing
is necessarily unique maximal local. The converse is not true
as proved by Example 4. We now show how to reduce a typ-
ing problem on trees to a set of typing problems on strings.
(The first proof is omitted for space limitation.)

Theorem 2. There exists a local DTD-typing for the de-
sign 〈τ, T (!fn)〉 with some DTD τ = 〈ΣL, π, s〉, if and only
if for each node x in T , such that lab(x) ∈ ΣL, there is a
local typing for the design 〈π(lab(x)), labcdrn(x)〉.
The previous theorem considers typing with DTDs. With
minor modifications, one could extend this result (and Corol-
lary 3) to XML schemas. Returning to DTDs, we have:

Corollary 3. Problems dtd-loc, dtd-ml, dtd-perf,
∃dtd-loc, ∃dtd-ml, ∃dtd-perf are logspace Turing re-
ducible to nfa-loc, nfa-ml, nfa-perf, ∃nfa-loc, ∃nfa-
ml, ∃nfa-perf, respectively.

Proof. (Sketch.) Let τ = 〈ΣL, π, s〉 be a type and T (!fn)
be a distributed tree. Consider, for instance, the dtd-loc
problem. Scan the tree in document order, which is well
known to be feasible in logarithmic space [?]. For each node
x in T such that lab(x) ∈ ΣL and labcdrn(x) contains at
least a function, solve the problem nfa-loc for the pair
〈π(lab(x)), labcdrn(x)〉.
Remark. More tractable results may be obtained by con-
sidering restricted classes of regular expressions [9, 16].

4. THE TYPING PROBLEMS FOR WORDS
We study in this section the typing problems for words.

(Recall that the problem for trees has been reduced to prob-
lems for words.) We present a number of complexity results.
We leave for the next section, two issues, namely nfa-perf
and ∃nfa-perf, for which we will need a rather complicated
automata construction. We start by recalling a definition
and a result that we will use further.

Definition 4. nfa-equiv problem. Given two NFAs, are
they equivalent?

Theorem 4. [21] nfa-equiv is PSPACE-complete.

The hardness of the nfa-equiv problem is used to show
some hardness results of our problems.

Theorem 5. Problems nfa-loc, nfa-ml, nfa-perf are
PSPACE-hard.

Proof. We define a logspace transformation ϕ, in such
a way that nfa-equiv ≤L

m nfa-loc. Afterwards, we show
that the statement also holds for the other two problems.
Let A, A1 be two arbitrary NFAs. The application of ϕ to
the pair A, A1 produces the design 〈τ, w〉 and the typing τ1,
where τ = A, w =!f1 and τ1 = A1. Since w(τ1) = A1, it
is clear that τ ≡ w(τ1) iff A ≡ A1. Finally, we just notice
that A ≡ A1 iff τ1 is both perfect and maximal local as w
consists of just a function.
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We now consider upperbounds. Section 5 will show that
nfa-perf is in PSPACE. We next show that nfa-loc is.

Theorem 6. nfa-loc is in PSPACE (so the problem is
PSPACE-complete).

Proof. Let w(!fn) be a distributed string, τ be an NFA,
and (τn) be a typing. Since the new automaton w(τn) has
size O(‖w‖ + |(τn)|), we can check in polynomial space if
w(τn) ≡ τ .

Now consider nfa-ml.

Theorem 7. nfa-ml is in PSPACE (so the problem is
PSPACE-complete).

Proof. Let w(!fn) be a distributed string, τ be an NFA,
and (τn) be a typing. First of all, we check if (τn) is local.
We proved that this problem is doable in PSPACE. Subse-
quently, we check if (τn) is not maximal. In particular, (τn)
is not maximal if there exists (at least) an i ∈ {1, . . . , n}
such that the NFA w(τ ′n) ∩ τ , say A, defines a nonempty
language, where (τ ′n) = τ1, . . . τ̄i, . . . τn. Since τi is nonde-
terministic, the NFA τ̄i accepting the complement of lan-
guage [τi] may even require O(2k) states, where k is the
number of states of τi [13], and consequently the size of A
would be exponential. For finite automata (deterministic or
not) the nonemptiness problem is basically the same as the
graph reachability problem and it is thus NL-complete [19].
We can avoid the materialization of A with an “on-the-fly”
construction of the cross product of w(τ ′n) and τ . Hence,
an NL algorithm on a non-materialized (single) exponential
automaton leads to PSPACE.

Let us turn to the hardness of the ∃-versions of the problems.

Theorem 8. Problems ∃nfa-loc, ∃nfa-ml, and ∃nfa-
perf are PSPACE-hard.

Proof. We define a logspace transformation ϕ, in such
a way that the following relations hold: (1) nfa-equiv ≤P

m

∃nfa-loc; (2) nfa-equiv ≤P
m ∃nfa-ml; (3) nfa-equiv ≤P

m

∃nfa-perf. Let A1 = 〈K1, Σ1, ∆1, s1, F1〉, A2 = 〈K2, Σ2,
∆2, s2, F2〉 be two arbitrary NFAs. The application of ϕ to
the pair (A1,A2) produces the design 〈A, w〉 where w is the
distributed string !f1 c !f2, c is a terminal symbol which does
not belong to (Σ1∪Σ2), while automatonA = 〈K, Σ, ∆, s, F 〉
is defined as follows: (i) K = K1 ∪ K2 ∪ {s, pc, qc}; (ii)
Σ = Σ1 ∪ Σ2 ∪ {a, b, c}; (iii) ∆ = ∆1 ∪ ∆2 ∪ {(s, a, pc),
(s, b, pc), (pc, c, qc), (qc, ε, s1), (qc, ε, s2)}; (iv) F = F1 ∪ F2.
Intuitively, if we consider A1 and A2 as regexes, then A
is (acA1 + bcA2). We claim that there is a local typing
(similarly, ML, or perfect) for 〈A, w〉 iff A1 ≡ A2. First of
all, we observe that transformation ϕ is extremely simple
and it is clearly in logspace. In fact, string w is a constant,
while the choice of a terminal symbol which does not appear
in A1 nor in A2 can be done in logspace, and also A can be
obtained by merging A1 and A2 with a constant number
of transitions. We prove the statement for (1) and we just
notice that whenever there is a local typing for 〈A, w〉, then
the typing ((a + b),A1) is perfect (thus, also maximal).

(⇒) If there is a local typing for 〈A, w〉 then A1 ≡ A2.
Since A = (acA1 + bcA2), then [acA1] and [bcA2] form a
partition of [A]. In this case, any local typing must have the
following form ((aX1 + bX2), Y ) where X1, X2, Y are NFAs.
Clearly, all the strings accepted by w are obtained by aX1cY

and bX2cY . Then cA1 ≡ X1cY and cA2 ≡ X2cY must hold.
But since any string in [A1] or [A2] does not start with c,
then necessarily [X1] = [X2] = ε. This way, A1 ≡ Y and
A2 ≡ Y and then A1 ≡ A2.

(⇐) If A1 ≡ A2, there is a local typing for 〈A, w〉. This
part of the proof is trivial because ((a + b),A1) always rep-
resents a local typing for 〈A, w〉.

We now have lower bounds for all these problems and
some upper bounds. We will derive missing upper bounds
using the construction of automata that we call “perfect” for
given design problems.

5. PERFECT AUTOMATON FOR WORDS
We next present the construction of the perfect automaton

for a design word problem. The perfect automaton has the
property that if a perfect typing exists for this problem, it is
“highlighted” by the automaton. This will provide a pspace
procedure for finding this perfect typing if it exists.

Given a DTD τ and the reduction between trees and
strings, we consider, the NFA A for each content model
in τ . We start from A to build the so called perfect au-
tomaton Ω which exhibits many interesting properties. Let
A = 〈K, Σ, ∆, s, F 〉 be an NFA. We can assume w.l.o.g.
that it has no ε-transition. The extended transition relation
∆∗ ⊆ K×Σ∗×K is the reflexive-transitive closure of ∆ and
it is defined as follows: (i) for each q ∈ K, (q, ε, q) ∈ ∆∗;
(ii) for each string a1...an ∈ Σ+, (q0, a1...an, qn) ∈ ∆∗ iff
there is a sequence of transitions of the form (q0, a1, q1), . . . ,
(qn−1, an, qn) in ∆. (Observe that the language [A] may be
defined as {w ∈ Σ∗ : (s, w, qf ) ∈ ∆∗, qf ∈ F}.)

Given two states qi, qf in K, a string w in Σ∗ is said to be
delimited in A by qi and qf if (qi, w, qf ) ∈ ∆∗. By exploiting
this notion, the sets of all the states delimiting w in A are
defined as follows:

Ini(A, w) = {qi ∈ K : ∃qf ∈ K s.t. (qi, w, qf ) ∈ ∆∗}

Fin(A, w) = {qf ∈ K : ∃qi ∈ K s.t. (qi, w, qf ) ∈ ∆∗}
In particular, if w = ε, these two sets are Ini(A, ε) =
Fin(A, ε) = K. Ini(A, w) is called the set of initial states
while Fin(A, w) is the set of final states for the word w.
Given two states qi, qf in K, the local automaton A(qi, qf )
= 〈K′ ⊆ K, Σ, ∆′, qi, {qf}〉 induced from A by qi, qf is
a portion of A containing all those transitions of A leading
from qi to qf . More precisely, for each pair of states q, q′ in
K and for each symbol a in Σ, (q, a, q′) ∈ ∆′ iff there are two
strings u, v in Σ∗ such that: (qi, u, q) ∈ ∆∗, (q, a, q′) ∈ ∆,
and (q′, v, qf ) ∈ ∆∗. Finally, given two strings w1, w2 in Σ+,
then A(w1, w2) is the set of all local automata induced by
w1 and w2. It is formally defined as

A(w1, w2) = {A(qi, qf ) : qi ∈ Fin(A, w1), qf ∈ Ini(A, w2)}.
In particular, if wi = ε for some i ∈ {1, . . . n}, the dis-
tributed string contains consecutive functions. In particular
for the previous definitions we have:

A(w1, ε) = {A(qi, qf ) : qi ∈ Fin(A, w1) and qf ∈ K}

A(ε, w2) = {A(qi, qf ) : qi ∈ K and qf ∈ Ini(A, w2)}

A(ε, ε) = {A(qi, qf ) : qi, qf ∈ K}.
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Similarly, given a string w in Σ∗, A(w) is the set of all local
automata induced by w. It is defined as A(w) = {A(qi, qf ) :
(qi, w, qf ) ∈ ∆∗} and in particular A(ε) = {A(q, q) : q ∈ K}
is a set of |K| automata, one for each state in K.

Let w(!fn) be a distributed string and A be an NFA. The
perfect automaton w.r.t. A and w consists of several local
automata suitably joined together by ε-transitions. It is
denoted by both Ω(A, w) and just Ω whenever it is clear from
the context who are A and w. Algorithm 1 describes how to
build the perfect automaton (assume that any pair of local
automata have disjoint sets of states labeled as in A), while
Figure 6 shows the perfect automaton obtained by a given
finite state machine and a distributed string. We say that A
is compatible with w if the set of all (legal) local automata
in Ω is not empty after correction steps, or equivalently, if
there exists at least a sound typing. Moreover,

• Seq(Ω) denotes the set of all the sequences W0, X1,
W1, . . . , Xn, Wn of connected automata in Ω such
that: W0 is an automaton in A(w0), while Wi and
Xi are, respectively, in A(wi) and A(wi−1, wi) for any
i ∈ {1, . . . , n};

• Typ(Ω) = {(Xi) : W0, X1, W1, . . . , Xn, Wn ∈ Seq(Ω)}
is the set containing all different typings (X1, . . . , Xn)
from any sequence in Seq(Ω);

• Aut(Ωi) = {Xi : (X1, . . . , Xn) ∈ Typ(Ω)} is the set of
all legal automata in A(wi−1, wi);

• Ωi = ∪Aut(Ωi) is the type obtained by the union of
all automata Aut(Ωi);

• (Ωi) is the typing for w and A obtained from Ω.

Let (An) be a sequence of automata. We define the direct
extension of (An) as the set of string defined as [(An)] =
{u1 . . . un | for each i ui ∈ [Ai]}.

Lemma 9. For any NFA A, then Ω ≤ A holds. The con-
trary (A ≤ Ω) does not hold.

Proof. Given a string u in [Ω], then there exists a se-
quence (τ2n+1) of automata in Seq(Ω) accepting u and ex-
pressible as A(s, q0), A(q0, s1), A(s1, q1), . . . , A(qn−1, sn),
A(sn, qn) for some states q0, s1, q1 . . . , sn, qn. Moreover, by
definition of direct extension, for each string u0σ1u1 . . . σnun

in [(τ2n+1)] we have that u0 ∈ [A(s, q0)], σi ∈ [A(qi−1, si)]
and ui ∈ [A(si, qi)], for each i ∈ {1, . . . , n}. But, by defini-
tion of local automata, the following sequence of transitions:

(s, w0, q0) ∈ ∆∗, (q0, σ1, s1) ∈ ∆∗, (s1, w1, q1) ∈ ∆∗, . . .

. . . , (qn−1, σn, sn) ∈ ∆∗, (sn, wn, qn) ∈ ∆∗ ∈ F

is also derivable by A.
For the second part of the proof consider the string w =

a!fc and the regex abc + d.

Lemma 10. Let w(!fn) be a string compatible with an NFA
A. Any typing in Typ(Ω) is sound for w and A.

Proof. Given any typing (Xn) in Typ(Ω), by defini-
tion, there is a sequence (τ2n+1) of automata such that
Xi = τ2i for each i ∈ {1, . . . , n}. By Lemma 9 (τ2n+1) ≤ A
holds. Moreover as, by definition, the extension of w(Xn)
is [w(Xn)] = {w0σ1w1 . . . σnwn : σi ∈ [Xi], 1 ≤ i ≤ n}.
Then w(Xn) ≤ (τ2n+1) as well since all strings w0, . . . , wn

are accepted by τ1, τ3 . . . , τ2n+1, respectively, by definition
of local automata induced by a single string. Therefore,
w(Xn) ≤ A.

Algorithm 1 PerfectAutomaton(w,A)

1. Input: w(!fn) = w0!f1w1 . . .!fnwn, A = 〈K, Σ, ∆, s, F 〉
2. Output: Ω(A, w):=∅
3. for each automaton W ∈ A(w0) do

. add W to Ω
4. for each i ∈ {1, . . . , n} do

. for each automaton X ∈ A(wi−1, wi) do
a. add X to Ω
b. for each automaton W ∈ A(wi−1) do

– if label(qfin(W )) = label(qini(X))
· add the transition (qfin(W ), ε, qini(X)) to Ω

c. for each automaton W ∈ A(wi) do
– add W to Ω
– if label(qfin(X)) = label(qini(W ))
· add the transition (qfin(X), ε, qini(W )) to Ω

//Correction steps:
5. for each automaton W ∈ A(w0) do

– if label(qini(W )) 6= s //if w0 = ε
· remove W from Ω //it is illegal

6. merge all automata in Ω being in A(w0) according to their
labels and use the (unique) initial state as initial state for Ω

7. for each automaton W ∈ A(wn) do
– if label(qfin(W )) ∈ F
· F (Ω) = F (Ω) ∪ {qfin(W )}
else //if wn = ε
· remove W from Ω //it is illegal

8. for each automaton A ∈ Ω do
– if (there is no path from qini(Ω) to A or

there is no path from A to any final state of Ω)
· remove A from Ω //it is illegal

Theorem 11. Let w(!fn) be a distributed string compat-
ible with a given NFA A, and (τn) be a sound typing for
them. Then, both w(τn) ≤ Ω and (τn) ≤ (Ωn) hold.

Proof. Since (τn) is sound for w and A, then w(τn) ≤ A
holds. In particular, for each string χ = w0σ1w1 . . . σnwn in
[w(τn)], where each σi ∈ [τi], there is a sequence of states
q0, s1, q1 . . . , sn, qn proving the membership of χ in [A] by
the following sequence of transitions

(s, w0, q0) ∈ ∆∗, (q0, σ1, s1) ∈ ∆∗, (s1, w1, q1) ∈ ∆∗, . . .

. . . , (qn−1, σn, sn) ∈ ∆∗, (sn, wn, qn) ∈ ∆∗

where qn ∈ F holds as well. But, this means that the se-
quence A(s, q0), A(q0, s1), A(s1, q1), . . . , A(qn−1, sn), A(sn,
qn) of automata belongs to Seq(Ω), so w(τn) ≤ Ω holds.
Moreover, since each A(qi−1, si) ∈ Aut(Ωi), it follows that
τi ≤ Ωi for each i, that is (τn) ≤ (Ωn).

Corollary 12. Let w(!fn) be a distributed string com-
patible with a given NFA A, and (τn) be a local typing for
them. Then, w(τn) ≡ Ω ≡ A holds.

Proof. By Lemma 9 and Theorem 11.

Theorem 13. Let w(!fn) be a distributed string and A be
an NFA compatible with w. There is a perfect typing for w
and A if and only if w(Ωn) ≡ A. If so, the perfect typing is
exactly (Ωn).

Proof. (⇒) if there is a perfect typing for w and A then
w(Ωn) ≡ A. If w and A admit a perfect typing, say (τn),
then (as it is also sound), by Theorem 11, (τn) ≤ (Ωn).
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Figure 6: A perfect automaton (construction)

Suppose that (τn) < (Ωn) held. There would be (at least)
an i ∈ {1, . . . , n} such that τi < Ωi. In other words, there
would be an automaton τ ′i ∈ Aut(Ωi) accepting some strings
rejected by τi. Consider the typing (τ ′n) ∈ Typ(Ω) contain-
ing τ ′i in position i. By Lemma 10, (τ ′n) is sound and then
τ ′i ≤ τi, by definition. But this is a contradiction. Therefore
(τn) ≡ (Ωn) and then w(Ωn) ≡ A, as (τn) is also local.

(⇐)if w(Ωn) ≡ A then there is a perfect typing for w and
A. This is true since (Ωn) is local and because, by Theorem
11, (τn) ≤ (Ωn) for any sound typing (τn).

The following two examples show that if there exists a
local typing (τn) for w and A, then (τn) < (Ωn) might hold.
This can happen even if (τn) is a unique maximal local.

Example 6. Consider the string w = a !f1 c !f2 e and the
regular expression τ = abccde compatible with w. Clearly,
the typing (b, cd) is local (sound and complete) for w and
τ because w(b, cd) ≡ τ . Nevertheless, (Ω2) = (bc?, c?d) is
(strictly) greater then (b, cd) since [bc?] = {b, bc} ⊃ {b} and
[c?d] = {d, cd} ⊃ {cd}. 2

Example 7. Let w = a !f1 !f2 d be a distributed string
and τ be the regular expression a(bc)∗d. Clearly, the typ-
ing ((bc)∗, (bc)∗) is local (also unique maximal local but
not perfect). But, as consequence of construction of per-
fect automaton, we have: Aut(Ω1) = {(bc)∗, (bc)∗b} and
Aut(Ω2) = {(bc)∗, c(bc)∗}. Consequently, Ω1 ≡ ((bc)∗b?)
and Ω2 ≡ (c?(bc)∗) do not represent a sound (and hence lo-
cal) typing since they allow strings such as abccbcd or abcbbcd
that are not accepted by τ . 2

The following example shows that even if there is no local
typing for w and τ , then Ω ≡ τ may hold.

Example 8. Let a τ be the regular expression ab + ba and
w =!f1!f2. There are two sound typings: (a, b) and (b, a),
but there is no local typing. However, Ω ≡ τ . 2

We can now use the perfect automata construction to char-
acterize the complexity of nfa-perf. We use the next lemma:

Lemma 14. Let w(!fn) be a distributed string and A be a
k-state NFA. The algorithm for building the perfect automa-
ton Ω(A, w) works in polynomial time.

Proof. Any set A(wi) or A(wi−1, wi) contains at most
k2 automata each of which having size O(k). Therefore,
the number of macro-iterations of the algorithm are O(nk2),
while the size of Ω isO(nk3). For each wi, the sets Ini(A, wi)
and Fin(A, wi) can be obtained in nondeterministic log-
arithmic space (thus in polynomial time) because for any
pair of states q1, q2 in A, we check if the string wi is in the
language [A(q1, q2)]. Finally, all the automata in A(wi) and
A(wi−1, wi) are nothing else but different copies of A having
different initial and finial states.

Now, we have:

Theorem 15. nfa-perf is in PSPACE. So it is also
PSPACE-complete by Theorem 5.

Proof. Let w(!fn) be a distributed string, τ be an NFA,
and (τn) be a typing. Construct the perfect automaton
Ω(τ, w). By Lemma 14, Ω can be built in polynomial time
w.r.t. |τ |+‖w‖. Then, check in polynomial space if w(Ωn) ≡
τ ≡ w(τn).
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And w.r.t. finding a perfect typing (if it exists), we have:

Theorem 16. ∃nfa-perf is in PSPACE. So it is also
PSPACE-complete by Theorem 8.

Proof. Let 〈τ, w(!fn)〉 be a (string) design. Construct
the perfect automaton Ω(τ, w). By Lemma 14, Ω can be
built in polynomial time w.r.t. |τ | + ‖w‖. Then, check if
w(Ωn) ≡ τ , which is feasible in polynomial space.

Additional properties. We now shows how to exploit per-
fect automaton properties to find (maximal) sound typings
when a design does not allow any perfect. Clearly, this tech-
nique can be used for seeking (maximal) local typings as
well (it leads to our 2-EXPSPACE upper bound.) Let
w(!fi) = w0!f1w1 . . .!fnwn be a distributed string and A be
a type defined by an NFA compatible with w. All the au-
tomata belonging to Aut(Ωi) can be decomposed in at most

2|Aut(Ωi)| − 1 different automata such that there are no two
of them accepting the same string. In particular, this new
set is denoted by Dec(Ωi) and defined as follows:

{∩A1 | ∪A2 : ∅ 6= A1 ⊆ Aut(Ωi), A2 = Aut(Ωi) | A1}
An example for three automata is given in Figure 7. Finally,

Dec(Ω) = {(D1, . . . Dn) : Di ∈ Dec(Ωi)}
is the set of all different typings from Dec(Ω1)×. . .×Dec(Ωn).
Given a typing (τn), we say that (τn) ∈ Dec(Ω) if there ex-
ists a sequence (Dn) ∈ Dec(Ω) such that τi ≡ Di, for each i.

Figure 7: Partitioning of (three) sets and enumera-
tion of the parts

Given a type τ ≤ Ωi for some i ∈ {1, . . . , n}, Dec(τ, i) =
{τ ∩ τ ′ : τ ′ ∈ Dec(Ωi)} denotes the partition of τ , namely
∪Dec(τ, i) ≡ τ , obtained by its projection on Dec(Ωi). Let
(τn) be any typing for a distributed string w(!fn). Given
a string u ∈ Σ∗L and an i ∈ {1, . . . , n}, then (τn)[τi|u] de-
notes the new typing obtained from (τn) by replacing τi

with the minimum NFA accepting only string u. In par-
ticular [w(τn)[τi|u]] is defined as {w0σ1w1 . . . σnwn : σi =
u, σj ∈ [τj ] ∀j 6= i} and clearly,

w(τn) ≡
⋃

u∈[τi]

w(τn)[τi|u]

We define now, extension, of (τn) a new typing obtained
from (τn) by replacing τi with new type (τi∪τ), and denoted
by (τn)[τi∪τ ]. In particular,

w(τn)[τi∪τ ] ≡
⋃

u∈[τi∪τ ]

w(τn)[τi|u]

Clearly, if τ ≤ τi, then (τn) ≡ (τn)[τi∪τ ]. Otherwise (τn) <
(τn)[τi∪τ ].

Lemma 17. Let (τn) be a sound typing for a string w(!fn)
and an NFA A compatible with w. For each i ∈ {1, . . . , n},
then (τn)[τi∪τ ] is still sound if τ is an element of Dec(Ωi)
that is incomparable with τi.

Proof. In order to prove the statement, we show that
w(τn)[τi|u] ≤ Ω holds for each u ∈ [τ ] \ [τi] (recall that, by
Lemma 9, Ω ≤ A). By definition, τ � τi entails that there
is (at least) a string accepted by both τi and τ . Let u′ be
any of these strings. Since, by Theorem 11, τi ≤ Ωi, then
there is a nonempty set A ⊆ Aut(Ωi) containing all-and-only
the automata accepting u′. Clearly, since τ ∈ Dec(Ωi) and
u′ ∈ [τ ], then τ is also in Dec(τ ′, i) for each τ ′ ∈ A. This
means that each string u ∈ [τ ] \ [τi] is accepted by all-and-
only the automata in A as well. By Theorem 11, w(τn) ≤ Ω,
and in particular w(τn)[τi|u′] ≤ Ω, as u′ ∈ [τi ∩ τ ]. In other
words, any string in [w(τn)[τi|u′]] is accepted by (at least) a
sequence of automata in Seq(Ω). Finally, as both u and u′

are recognized by all-and-only the automata in A, then each
string w0σ1w1 . . . σnwn in [w(τn)[τi|u]] (with σi = u) has a
twin in [w(τn)[τi|u′]] (with σi = u′) and both of them are
accepted by exactly the same sequences in Seq(Ω).

Theorem 18. Let (τn) be a maximal typing for a dis-
tributed string w(!fn) and an NFA A compatible with w.
Then for each i, Dec(τi, i) ⊆ Dec(Ωi).

Proof. Let i be an index arbitrarily fixed in {1, . . . , n}.
As (τn) is maximal then, by definition, it is sound and, by
Theorem 11, τi ≤ Ωi. Let Di be a copy of Dec(Ωi). Then
τi ≤ ∪Di. Remove, now, all automata in Di independent
from τi (if there was someone). Still, τi ≤ ∪Di holds. Hence,
consider the two possible (and alternative) cases:

(1) τi ≡ ∪Di or (2) τi < ∪Di

In the first case the theorem is already proven. While, in
the latter case, there is (at least) an automaton τ ∈ Di in-
comparable with τi entailing relation (τn) < (τn)[τi∪τ ]. But
since (τn)[τi∪τ ] is still sound (see Lemma 17), then there is
a contradiction because (τn) is assumed to be maximal.

6. TREE AUTOMATA TYPING
We consider in this section some more powerful typings

based on nondeterministic bottom-up tree automata. This
is typically the largest class considered for XML documents.
In this setting, the direct reduction to words cannot be used.
However, we show how to solve the problem using tree au-
tomata techniques.

nUTAs. A nondeterministic Unranked (bottom-up) Tree Au-
tomaton (nUTA) over alphabet Σ is a quadruple A = 〈K,
Σ, ∆, F 〉, where K is a finite set of states, F ⊆ K is the
set of final states, and ∆, the transition relation, is a finite
set of rules of the form a(M) → q where M is an NFA over
alphabet K, namely [M ] ⊆ K∗. Without loss of generality,
we consider normalized nUTAs where for each a ∈ Σ and
each q ∈ K, there is at most one transition rule of the form
a(M) → q. A tree t belongs to [A] if and only if there is a
mapping µ from the nodes of t to K such that: (i) µ(r) ∈ F
if r is the root of t; (ii) for each node x of t with label a
and with children y1 . . . yk, there is a rule a(M) → µ(x) in
∆ and the string µ(y1) . . . µ(yk) belongs to [M ].
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nUTA-based distributed design. Given a distributed doc-
ument T (!fn) and a type τ defined by an nUTA. A typing
for T and τ is still a positional mapping from the functions
in (!fn) to a sequence (τn) of types (here nUTAs). Recall
that the trees of type τi have their roots labeled by a unique
label si; see the definition of distributed document typing
in Section 2. We furthermore assume w.l.o.g. that each of
these nUTA τi has a single accepting state, say qi, so by
construction includes a single rule of the form si(Mi) → qi.
The new type T (τn) = 〈K, ΣL, ∆, F 〉 is obtained as follows:

1. ΣL is the union of the element names in T (!fn) and of
the labels in each type τi;

2. K contains a state qx for each node x in T labeled in
ΣL and all the states in each type τi;

3. F = {qr} where r is the root of T ;

4. For each τi, ∆ contains all the rules of τi except for its
rule of the form si(Mi) → qi;

5. For each node x of T with label a ∈ ΣL, ∆ contains
a rule of the form a(Mx) → qx where Mx is an NFA
accepting:

• only the empty string if x is a leaf node;

• the language L1 . . . Lk if x is a non-leaf node with
children y1 . . . , yk where: (i) each Lj = {qyj} if
lab(yj) is in ΣL; (ii) each Lj = [Mi] if lab(yj) = fi

and si(Mi) → qi is the (unique) rule in τi having
qi as final state.

Theorem 19. [20]+[22] nuta-equiv is EXP-complete.

Theorem 20. Problems nuta-loc, nuta-ml, nuta-perf
are EXP-hard.

Proof. It follows by slightly modifying the proof of The-
orem 5 where A and A1 are here replaced by nUTAs. The
logspace transformation ϕ does not change, namely it works
in such a way that nuta-equiv ≤L

m nuta-loc.

Theorem 21. nuta-loc is EXP-complete.

Proof. (Membership) Let T (!fn) be a distributed string,
τ be an nUTA, and (τn) be a typing. Build T (τn) (in poly-
nomial time) and check in exponential time if T (τn) ≡ τ .

(Hardness) By Theorem 20.

Theorem 22. nuta-ml is EXP-complete.

Proof. It follows by slightly modifying the proof of The-
orem 7 where τ is an nUTA and w is a tree T . We have
proved that locality is feasible in EXP. Moreover, as τi is
nondeterministic, nUTA τ̄i accepting the complement of lan-
guage [τi] may be exponentially larger in size. For finite tree
automata the nonemptiness problem is P-complete [24]. We
can avoid the materialization of T (τ ′n) ∩ τ with an “on-the-
fly”construction of the direct product of T (τ ′n) and τ . Hence,
a polynomial time algorithm on a non-materialized (single)
exponential automaton leads to EXP.

Perfect tree automaton. We next extend the construction
of the perfect automaton for words to nUTAs. Perfect typ-
ings may be obtained using this construction.

Let A = 〈K, Σ, ∆, F 〉 be an nUTA and T (!fn) be a dis-
tributed document on alphabet ΣL ∪ΣF . Since we consider
normalized nUTAs, we denote by M(a, q) the NFA in the
rule a(M) → q for each a ∈ Σ and q ∈ K.

Step 1. For each node x of T having label a ∈ ΣL do:

Step 1.1. Consider the set of all rules in ∆ of the form

a(M1) → q1, . . . , a(Mk) → qk

Step 1.2. Guess a subset of states Sx ⊆ {q1, . . . , qk}.
Step 1.3. Build for node x the NFA

Mx =
⋃

q∈Sx

M(a, q)

Step 2. For each node x of T having label a ∈ ΣL do:

Step 2.1. Consider the labels of the children of x

wx = labcdrn(x) = w0!f1w1 . . .!fhwh (h ≥ 0)

Step 2.2. For each wi = wi[1], . . . , wi[`] build the set
Mx(wi) of automata as follows. An automaton Mx(p0, p`)
is in Mx(wi) if Mx allows a sequence of transitions

(p0, q1, p1), . . . , (p`−1, q`, p`)

such that qj ∈ Syj where yj is the node of T associated to
the label wi[j], for each j ∈ {1, . . . , `}.

Step 2.3. Build the perfect automaton Ωx forMx and wx

as shown for words, by using the new definition of Mx(wi).

Step 2.4. Construct the type wr(Ωx
h) accepting the lan-

guage L0 [Ωx
1 ] L1 . . . [Ωx

h] Lh such that Li is the language
Sy1 . . . Sy` and where any yj is the node of T associated to
the label wi[j].

7. CONCLUSION
As explained in the introduction, this work can serve as a

basis for designing the distribution of a document. It would
be interesting to extend to richer Web data. First, this would
involve graph data and not just tree data. Then one should
consider unordered collections and functional dependencies
as in the relational model. Other dependencies and in par-
ticular inclusion dependencies would also clearly make sense
in this setting.

Database design has a long history, see most database
text book. Distributed database design has also been stud-
ied since the early days of databases, but much less, because
distributed data management was limited by the difficulty
to deploy distributed databases. The techniques that were
developed, e.g., vertical and horizontal partitioning, are very
different from the ones presented here because we focus on
ordered trees and collections are not ordered in relational
databases. We believe that traditional database studies even
on mainly theoretical topics such as normal forms are also
relevant in a Web setting. An interesting direction of re-
search is to introduce some of these techniques in our setting.

In the paper, the focus was on local typing that forces ver-
ification to be purely local. More generally, it would also be
interesting to consider typings of the resources that would
minimize the communications needed for type checking (and
not completely avoid them.) Also, the tree automata that
are considered in Section 6 are nondeterministic. For perfor-
mance reasons, typing is typically performed by much more
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restricted automata that are not only deterministic but fur-
thermore unambiguous [4]. Finally, it would be interesting
to study the effect of such restrictions on checking proper-
ties of distributed typings, consider cases where a distributed
document T may change from time to time by adhering to
some global DTD which uses function symbols in the DTD
itself, as well as to study the impact of distributed typing
(as studied here) on query optimization.
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