
HAL Id: inria-00429714
https://hal.inria.fr/inria-00429714

Submitted on 4 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Component-Based Software Engineering
with Fraclet

Romain Rouvoy, Philippe Merle

To cite this version:
Romain Rouvoy, Philippe Merle. Leveraging Component-Based Software Engineering with Fraclet.
Annals of Telecommunications - annales des télécommunications, Springer, 2009, Special Issue on
Software Components – The Fractal Initiative, 64 (1-2), �10.1007/s12243-008-0072-z�. �inria-00429714�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50133279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00429714
https://hal.archives-ouvertes.fr

Leveraging Component-Based Software Engineering

with Fraclet

Romain Rouvoy
University of Oslo, Department of Informatics

P.O.Box 1080 Blindern, 0316 Oslo, Norway

rouvoy@ifi.uio.no

Philippe Merle
INRIA-USTL-CNRS, ADAM Project-Team

Parc Scientifique de la Haute Borne, 40 avenue Halley,

Bât. A, Park Plaza, 59650 Villeneuve d’Ascq, France
philippe.merle@inria.fr

July 15, 2008

Abstract

Component-based software engineering has achieved wide acceptance in the domain of
software engineering by improving productivity, reusability and composition. This success
has also encouraged the emergence of a plethora of component models. Nevertheless, even
if the abstract models of most of lightweight component models are quite similar, their
programming models can still differ a lot. This drawback limits the reuse and composition
of components implemented using different programming models.

The contribution of this article is to introduce Fraclet as a programming model com-
mon to several lightweight component models. This programming model is presented
as an annotation framework, which allows the developer to annotate the program code
with the elements of the abstract component model. Then, using a generative approach,
the annotated program code is completed according to the programming model of the
component model to be supported by the component runtime environment. This article
shows that this annotation framework provides a significant simplification of the program
code by removing all dependencies on the component model interfaces. These benefits
are illustrated with the Fractal and OpenCOM component models.

1

1 Introduction

Component-Based Software Engineering (CBSE) has achieved wide acceptance in the
domain of software engineering by improving productivity, reusability, and composition.
This success has also encouraged the emergence of a plethora of component models. These
component models can now be applied at any software layer, from operating systems (e.g.,
Think [11]), to middleware (e.g., OpenCOM [6], Fractal [5]), to applications (e.g.,
Spring [15], EJB [8], CCM [21], SCA [22]). Usually, each of these component models de-
fines their own abstract and programming models. The abstract model defines the general
concepts supported by the component model (e.g., component, port/interface, binding/-
connection, composition/assembly). The programming model applies these concepts to a
particular programming language, while introducing technical artefacts dedicated to the
component model. This means, in particular, that this technical code is systematically
tangled with the business code of the application developed. Furthermore, if the abstract
models of existing component models are quite similar, their programming models can
differ a lot. This drawback limits the reuse and composition of components implemented
with different programming models (e.g., reusing an OpenCOM-based component imple-
mentation in a Fractal-based application).

A convenient way to address these issues is to use Attribute-Oriented Programming
(@op) techniques [23, 31, 10]. @op proposes to mark the program code with additional
metadata to clearly separate the business logic from the domain-specific logic (typically,
the technical properties). @op is gaining popularity with the recent introduction of
annotations in Java 2 Standard Edition (J2SE) 5.0 [13] or in XDoclet [32], and attributes
in C# [9]. Recently, the Enterprise JavaBeans (EJB) 3.0 specification extensively uses
annotations to make EJB programming easier [8]. The Service Component Architecture
(SCA) component implementation model provides also a particular set of annotations
that can be placed in the code to mark specific elements of the implementation to be
used by the SCA runtime environment [22]. However, these annotations remain tightly
specific to each component model. Therefore, annotated EJB code can not be exploited
by a SCA runtime environment and vice versa.

In this article, we present an extended version of the Fraclet framework previously in-
troduced [25, 26]. In particular, we introduce an approach that leverages the development
of component-based applications and we introduce a programming model common to sev-
eral lightweight component models. This programming model is reified as an annotation
framework, which allows the developer to mark the program code with the elements of
the abstract component model. Then, using a generative programming approach, the an-
notated program code is completed by the programming model that is supported by the
desired component runtime environment, such as Fractal or OpenCOM. We show that
this annotation framework makes easier the programming of components by removing
all dependencies on the component model interfaces. As a consequence, this approach
protects the annotated program code from component model evolutions. Finally, the an-

2

notated code can be mapped to different lightweight component models, as illustrated in
this paper with Fractal and OpenCOM.

In the remainder of the paper, we first resume the foundations of this work
(cf. section 2) and then present our motivations, which are mostly related to the problem
of technical and business code tangling (cf. section 3). Based on these descriptions, we
present our abstract model and its reification as a set of annotations (cf. section 4). We
demonstrate that components developed with this abstract model can be executed either
in Fractal or OpenCOM runtime environments (cf. section 5), and we discuss the var-
ious alternatives for implementing this approach. We finally compare our approach with
related work (cf. section 6) before concluding (cf. section 7).

2 Foundations

This section introduces both Fractal (cf. subsection 2.1) and OpenCOM
(cf. subsection 2.2) component models before presenting the principles of Attribute-
Oriented Programming (cf. subsection 2.3).

2.1 The Fractal Component Model

Fractal is the component model of the OW2 consortium for open-source middleware (see
http://fractal.ow2.org). The Fractal component model uses the usual component,
interface, and binding concepts [5]. A component is a runtime entity that conforms to the
model. An interface is an interaction point expressing the provided and required by the
component. A binding is a communication channel established between a client interface
and a compatible server interface. Besides, Fractal supports recursion with sharing and
reflective control as added values. The former means that a component can be composed
of several sub-components at any level, and a component can be a sub-component of
several components. The latter means that an architecture built with Fractal is reified at
runtime, and can be dynamically introspected and managed. Finally, Fractal provides
an Architecture Description Language (ADL) [19] to describe and deploy component-based
configurations automatically [16].

Figure 1 illustrates the different entities in a typical Fractal component architecture.
Thick black boxes denote the controller part of a component, while the interior of these
boxes correspond to the content part of a component. Arrows correspond to bindings,
and tau-like structures protruding from black boxes are internal or external interfaces.
Internal interfaces are only accessible from the content part of a component. External
interfaces appearing at the top of a component represent reflective control interfaces such
as the Lifecycle Controller (lc), the Binding Controller (bc), the Attribute Controller (ac)
or the Content Controller (cc) interfaces. The two dashed boxes (C) represent a shared
component.

3

Application

Client

Server1

Server2

B C

CA

run
*

**

**

Composite
Component

Primitive component

Shared
Component

Server
Interface

Client
InterfaceController

BindingContent

Internal
Interface

Collection
Interface

c lc bc

c lc cc

c lc cc

c lc cc

c lc bc c lc ac

c lc bc c lc ac

Control
interface

Figure 1: The architecture of a Fractal component.

2.2 The OpenCOM Component Model

OpenCOM is the component model developed by the Lancaster University in the context
of the OpenORB project. OpenCOM is a lightweight, efficient, reflective component
model that uses the core features of Microsoft COM to underpin its implementation;
these features include the binary level interoperability standard, Microsoft’s IDL, COM’s
globally unique identifiers and the IUnknown interface [6]. Recently, a Java version of
OpenCOM has been developed to provide platform independence, and to ease the de-
velopments of applications on top of OpenCOM.

The key concepts of OpenCOM are interface, receptacle and connection. Each com-
ponent implements a set of interfaces and receptacles, as shown in Figure 2. An interface
expresses a unit of service provision, a receptacle describes a unit of service requirement
and a connection is the binding between a receptacle and an interface of the same type.
Among the possible interfaces provided by an OpenCOM component, the IUknown in-
terface provides the reference of the component and an operation to navigate through
the component’s interfaces, the IMetaInterface interface provides operations to introspect
the component, the IConnections interface is used to connect the component recepta-
cles to interfaces, and the ILifeCycle interface supports the lifecycle of the component.
OpenCOM provides a standard runtime substrate per address space that manages the
creation and deletion of components, acts upon requests to connect/disconnect compo-
nents and provides service interfaces for reflective operations. The runtime substrate
dynamically maintains a graph of the components currently in use. The maintenance of
dynamic dependencies between components is relevant for the introspection and reconfig-
uration of component configurations. The reflective interfaces of OpenCOM follow three

4

IUknown

Client
Code

Meta

Interface
IMetaInterface

IConnections

Type Library

ILifeCycle

Runnable

IUknown

Server
Code

Meta

Interface
IMetaInterface

Type Library

ILifeCycle

Service

connection

interface receptacle

System graph

IUknown

IMetaArchitecture

IMetaInterception

IOpenCOM

component

OpenCOM
runtime

Figure 2: The architecture of an OpenCOM assembly.

of the meta-models proposed by OpenORB—i.e., the Interface meta-model (IMetaInter-
face), the Architecture meta-model (IMetaArchitecture) and the Behaviour meta-model
(IMetaInterception) [6].

2.3 The Principles of Attribute-oriented Programming

Attribute-Oriented Programming (@op) is a program-level marking technique. Basically,
this approach allows developers to mark program elements (e.g., classes, methods, and
fields) with annotations to indicate that they maintain application-specific or domain-
specific concerns [10, 23, 31]. For example, a developer may define a logging annotation
and associate it with a method to indicate that the calls to this method need to be
logged, or may define a web service annotation and associate it with a class to indi-
cate that the class must implement a Web Service. Annotations separate application’s
business logic from middleware-specific or domain-specific concerns (e.g., logging and web
service functions). By hiding the implementation details of those semantics from program
code, annotations increase the level of programming abstraction and reduce programming
complexity, resulting in simpler and more readable programs. The program elements asso-
ciated with annotations are transformed to more detailed program code by a supporting
generation engine. For example, a generation engine may insert logging code into the
methods associated with a logging annotation. Dependencies on the underlying mid-
dleware are thus replaced by annotations, acting as weak references—i.e., references that
are not mandatory for the application. This means that the evolution of the underly-
ing middleware is taken into account by the generation engine and let the program code
unchanged.

@op can also be used to provide continuous integration in CBSE. Continuous integra-

5

tion allows a developer to generate the middleware artifacts at any step of the component
development. Developers concentrate their editing work on only one source file per com-
ponent. The deployment metadata are continuously integrated without worrying about
updating them. When the development of a component consists of several files, @op
allows the developer to maintain only one of them while the other files are generated
automatically. Besides, working with only one file per component gives a better overview
of the program code to the developer. Therefore, the developer can concentrate on the
business logic and reduce the development time drastically.

@op has been applied in several object-oriented frameworks to ease the process of
configuring applications (e.g., Hibernate, Struts, Castor [32]), and it has been applied
by several JEE application servers to simplify the configuration of Enterprise JavaBeans
(EJB) components (e.g., JOnAS, WebSphere, JBoss). Nevertheless, these annotations
target only the configuration of the EJB components, and are specific to each application
server.

Recently, the EJB 3.0 specification has introduced extensive annotations to make
EJB programming easier [8]. The annotations defined in this specification address either
EJB component configuration or program code generation concerns. Nevertheless, this
specification presents two weaknesses. Firstly, it is dedicated to EJB components. This
means that the strengths of this specification are not directly applicable to other compo-
nent models. Secondly, the EJB specification does not focus on the EJB abstract model
but abstracts the EJB programming model. Thus, the annotations defined in the EJB
specification are tightly coupled to the EJB programming model.

The @op approach provides an useful formalism to introduce a higher-level semantics
into the artifacts of existing programming models. In particular, @op can be applied to
represent the abstract component model using annotations. These annotations remove
all the technical code that is required by a given programming model and that is tangled
with the business code. As a side effect, the use of @op allows the developer to write a
program code compliant with several component models. To achieve this, it is necessary
to identify the core concepts that are usually defined in the component models. The
specificities of existing component models are reified in some extensions of the annotation
framework.

3 Motivations

In this section, we motivate the actual limitations of CBSE in terms of dependency
to the component model (cf. subsection 3.1), business and technical code tangling
(cf. subsection 3.2), and metadata redundancy (cf. subsection 3.3).

6

3.1 Motivating Component-based Software Engineering

To motivate the limitation of current trends in the development of CBSE, we use the
example of the Comanche web server. This web server is developed using the Fractal
component model, and provides the basic features of a web server. Comanche is composed
of seven primitive components, which are grouped into four composite components (cf.
Figure 3). Incoming HTTP requests are received by the Receiver and their analysis is
systematically scheduled by the Scheduler. This analysis is first handled by the Analyzer,
which logs the request using the Logger and before dispatching its interpretation using
the Dispatcher. The Dispatcher delegates successively the HTTP request interpretation
to the File Handler and then, if it fails, to the Error Handler to produce the resulting
web page.

Scheduler

Receiver Analyzer Logger

File Handler

Error Handler

Dispatcher

Comanche

Frontend

Backend
Handlers

Figure 3: The architecture of the Comanche web server.

Listing 1 presents the implementation of the component Analyzer, and its associ-
ated data structure Request and the interface RequestHandler using the Java program-
ming model defined by the Fractal component model. The data structure Request

encapsulates a request processed by Comanche. The interface RequestHandler de-
fines a business method handleRequest used to process an incoming request. The in-
terface AnalyzerAttributes defines the setter and getter methods required by Frac-
tal to handle the component attribute filter. Both interfaces RequestHandler and
AnalyzerAttributes are then implemented by the class Analyzer to specify the behaviour
of the methods. This class also implements the interface BindingController to support
the connection of the client interfaces Logger and RequestHandler named l and rh, re-
spectively.

Listing 2 presents the description of the component using Fractal ADL. The defi-
nition comanche.Analyzer extends the definition comanche.AnalyzerType. The former
specifies the concrete implementation of the component, while the latter focuses on the
definition of the component type—i.e., the provided and required interfaces.

Finally, Listing 3 illustrates the definition of a composite component
comanche.Backend that composes the definitions of the primitive component Analyzer

and the components comanche.Handlers and comanche.Logger.

7

1 public class Request {

2 public Socket s;

3 public Reader in;

4 public PrintStream out;

5 public String url;

6 }

8 public interface RequestHandler {

9 void handleRequest (Request r) throws java.io. IOException ;

10 }

12 public interface AnalyzerAttributes extends AttributeController {

13 void setFilter (String value);

14 String getFilter ();

15 }

17 public class Analyzer implements BindingController , AnalyzerAttributes , RequestHandler {

18 private RequestHandler rh;

19 private Logger l;

20 private String filter ;

21 // BindingController interface implementation

22 public String [] listFc () { return new String [] { "l", "rh" }; }

23 public Object lookupFc (String itfName) {

24 if (itfName . equals ("l")) { return this.l; }

25 else if (itfName . equals ("rh")) { return this.rh; }

26 else return null;

27 }

28 public void bindFc (String itfName , Object itfValue) {

29 if (itfName . equals ("l")) { this.l = (Logger) itfValue ; }

30 else if (itfName . equals ("rh")) { this.rh = (RequestHandler) itfValue ; }

31 }

32 public void unbindFc (String itfName) {

33 if (itfName . equals ("l")) { this.l = null; }

34 else if (itfName . equals ("rh")) { this.rh = null ; }

35 }

36 // AnalyzerAttributes interface implementation

37 public void setFilter (String value) { this. filter = value; }

38 public String getFilter () { return this. filter; }

39 // RequestHandler interface implementation

40 public void handleRequest (Request r) throws IOException {

41 r.in = new InputStreamReader (r.s. getInputStream ());

42 r.out = new PrintStream (r.s. getOutputStream ());

43 String rq = new LineNumberReader (r.in). readLine ();

44 this .l. log(rq);

45 if (rq. startsWith (this. filter)) {

46 r. url = rq. substring (this . filter . length +1, rq.indexOf (’ ’, this . filter . length));

47 this.rh. handleRequest (r);

48 }

49 r.out. close ();

50 r.s. close ();

51 } }

Listing 1: The Java code of the component Analyzer.

8

1 <definition name =" comanche . AnalyzerType ">

2 <interface name ="a" signature =" comanche . RequestHandler " role =" server "/>

3 <interface name ="l" signature =" comanche . Logger " role =" client "/>

4 <interface name ="rh" signature =" comanche . RequestHandler " role =" client "/>

5 </ definition >

7 <definition name =" comanche . Analyzer " extends =" comanche . AnalyzerType "

8 arguments =" filter =GET ">

9 <content class =" comanche . RequestAnalyzer "/>

10 <attributes signature =" comanche . AnalyzerAttributes ">

11 <attribute name =" filter " value ="${ filter }"/>

12 </ attributes >

13 </ definition >

Listing 2: The Fractal ADL description of the component Analyzer.

1 <definition name =" comanche . BackendType ">

2 <interface name ="a" signature =" comanche . RequestHandler " role="server "/>

3 </ definition >

5 <definition name =" comanche . Backend " extends =" comanche . BackendType ">

6 <component name ="ra" definition =" comanche . Analyzer "/>

7 <component name ="rh" definition =" comanche . Handlers "/>

8 <component name ="l" definition =" comanche . Logger "/>

9 <binding client =" this .a" server ="ra.a"/>

10 <binding client ="ra.l" server ="l.l"/>

11 <binding client ="ra.rh" server ="rh.rh"/>

12 </ definition >

Listing 3: The Fractal ADL description of the component Backend.

9

The Fractal ADL definition(s) and the associated component implementation repre-
sent the elementary information required to implement a component using the Fractal
component model. However, the code used to develop this component remains tightly
coupled to the specificities and constraints of the Fractal component model and cannot
be easily executed with the runtime associated to the OpenCOM component model.

3.2 Business/Technical Code Tangling

Although CBSE provides more modularity, configurability, and reusability to applica-
tions, the use of a given component model introduces also more complexity, verbosity and
redundancy in the information expressed by the developer compared to object-oriented
programming practices. However, this complexity mostly derives from the underlying pro-
gramming model used to develop an application. In particular, this programming model
maps the abstract model concepts to the programming language artefacts used to develop
components. This means that the abstract model concepts are seamlessly drowned in the
program code. By introducing dependencies on the component model, the program code
is no longer only concerned with business properties, but also with technical properties.
The drawbacks that arise from such a tangled component implementation are mainly lo-
cated in the technical part of the program code, because developing an application using
components requires taking into account concerns that are not always related to the busi-
ness ones. For example, the technical methods required to support bindings or attributes
have to respect a behaviour fixed by the component model specification (cf. lines 21–38
in Listing 1). These methods should coherently reflect the structure of the component,
but are often error prone due to the repetitive form of the code. This means that any
evolution of the structure of the component should be carefully reported either in the
body of each technical method (e.g., adding a new client interface requires to update the
BindingController method bodies) or by adding/removing methods (e.g., removing an
attribute requires to remove two methods both in the associated AttributeController

interface and in the component implementation). Similarly, a slight evolution of the pro-
gramming model (e.g., re-factoring the signature of the method bindFc) will systematically
impact all the components developed.

When observing the code of the components, one can notice that these methods are
always referring to fields used to store the related information (reference of a binding,
value of an attribute), and the declaration of these fields appears to be common to most
of the component models that can be used.

3.3 Metadata Redundancy

Architecture Description Languages (ADL), such as Fractal ADL, provide a syntax
that facilitates the composition and the configuration of component-based architectures.
However, the independence between the ADL and the implementation of the described

10

architecture implies that some metadata is duplicated in both parts. In particular, each
component implemented is associated to a description of its structure (cf. Listing 2), but
most of the metadata described in the ADL is redundant with some pieces of code of the
component. For example, the name and the type of the client interfaces are described
in both artefacts (cf. lines 21–38 in Listing 1 and lines 3–4 in Listing 2). This means
that any structural evolution of the component should be also reflected in the associ-
ated ADL definition (e.g., adding a new client interface in the implementation requires
to add a new tag <interface...> in the description). The same comment applies to
the definition of the component attributes (names and default values), which are also
described in the ADL. Thus, keeping coherency between information described in the
component implementation and its ADL definition is often prone to errors. Nevertheless,
the ADL definition of component compositions exhibits some configuration information
that can not be described in the component implementation. In particular, the definition
of component compositions, bindings, and attribute values are only present in the ADL
definitions.

One can thus observe that most of the information related to the description of prim-
itive components can be easily inferred from the information that are already expressed
in the associated component implementation, while the primitive component descriptions
are generally shared by the composite component descriptions.

Challenges. To reduce the number of errors related to the technical code development
and to improve the coherency of metadata, we propose a lightweight programming model
called Fraclet. The objectives of Fraclet is thus to reduce the number of line of code
the developer has to write in order to i) remove the dependency to a particular com-
ponent model, ii) enforce the evolution support for components, and iii) centralised the
component metadata.

4 Fraclet: a Component Programming Model

This section introduces the Fraclet component programming model (cf. subsection 4.1)
and its mapping to a set of Java5 annotations (cf. subsection 4.2). An illustration of the
use of Fraclet is then provided by revisiting the Comanche web server (cf. subsection 4.3).

4.1 The Fraclet core model

Most existing component models (e.g., OpenCOM [4], Fractal [5], JavaBean [14], EJB [8],
CCM [21]) rely on some common core concepts, as summarized in Figure 4. A Component

is defined as an entity that Provides and Requires some interfaces. These interfaces are
usually identified by a name and a signature—i.e., a set of operations. A cardinality is
also specified to define that a Component requires several interfaces of the same type.

11

A Component can additionally define a set of Attributes to support configuration. An
Attribute is initialized with a value when the Component is loaded. A Component can
furthermore require some Services provided by the runtime structure executing it. These
Services often provide to the technical properties required by a component (e.g., logging).
Finally, the component models define the concept of Lifecycle. This concept allows the
component to be aware of its current state (e.g., created, started, stopped, destroyed).

+name

+controller

Component

+name

+signature

+min

+max

Interface

+name

+value

Attribute

+name

Service
1

*

defines

1

*

provides

1

*

requires

1
*

uses

+when

LifeCycle

1

*

notified by

Data

Figure 4: The Fraclet core model.

4.2 A mapping of Fraclet to annotations

Each core component concept previously identified is defined as an annotation applicable
to a piece of the program code. The resulting annotations are summarized in Table 1.
The annotation @Data applies on a class to describe a data structure exchanged between
components. The annotation @Component refers to a class to specify the name of the ADL
description associated to a component and possibly a reference to its hosting controller1.
The annotation @Provides applies to an interface that is provided by a component. An
attribute name can be specified when using this annotation. The attribute signature is
used when the interface signature cannot be inferred from the program code. The anno-
tation @Requires applies on the reference of an interface required by a component. The
attribute name (resp. signature) is defined to override the name (resp. the signature) of
the field marked by the annotation. The attributes min and max are useful to indicate
whether the field refers to an optional reference or to a collection of references. The an-
notation @Attribute applies to the declaration of a field. If no attribute value is defined,
the attribute value is required when composing the components together. The annotation
@Service applies to the reference to a service provided by the component runtime envi-
ronment (e.g., logging). The attribute name refers to the identifier of the service. The
annotation @Lifecyle applies to a method defined in the component code. This method

1The controller, also known as container, is the hosting infrastructure of the component.

12

defines treatments that should be executed at a given transition of the component life
cycle (e.g., from stopped to started) using the attribute when.

Annotation Code Element Parameter Description Contingency Default Value

@Data Class or data structure exchanged
Interface between components

@Component Class name component definition name optional full class name
controller container reference optional -

@Provides Class or name provided interface name optional interface name
Interface signature provided interface signature optional interface signature

@Requires Field name required interface name optional field name
signature interface signature optional field signature
min interface minimal cardinality optional 1 (mandatory)
max interface maximal cardinality optional 1 (singleton)

@Attribute Field name component attribute name optional field name
value attribute default value optional -

@Service Field name component service name required -
@Lifecycle Method when lifecycle state to handle required -

Table 1: The Fraclet annotation-based programming model.

4.3 Revisiting the Motivating Example

This section revisits the Comanche web server introduced in subsection 3.1. To illus-
trate the benefit of @op, the program code of this application is reengineered to replace
all the technical code by some of the previously defined annotations. Listings 4 and 5
show that the original business code is preserved while using the Fraclet programming
model. The data structure Request is marked with the annotation @Data. The interface
RequestHandler is marked with the annotation @Provides to define a as its default identi-
fier (line 8 of Listing 4). This information was previously defined in the ADL descriptor
of the component. The references to the interface RequestHandler and Logger in the class
Analyzer are marked with the annotation @Requires (lines 13–14 of Listing 4) to spec-
ify the dependency of the component towards required interfaces. Finally, the attribute
filter is annotated with @Attribute to declare the field as a component attribute and
defined its default value to "GET " (line 15 of Listing 4). As a consequence, the techni-
cal program code related to interface references binding and attributes handling becomes
useless. Moreover, the dependency to the Fractal component model has been leveraged.

Listing 5 presents a simplified description of the component assembly Backend. In
particular, this description extends the definition comanche.RequestHandler, which is an
abstract Fractal ADL definition associated to the interface comanche.RequestHandler.
Thus, the component comanche.Backend is defined as a composite component
that provides the interface comanche.RequestHandler, and contains the components
comanche.Analyzer, comanche.Handlers, and comanche.Logger.

4.4 Evaluation

13

1 @Data public class Request {

2 public Socket s;

3 public Reader in;

4 public PrintStream out;

5 public String url;

6 }

8 @Provides (name ="a") public interface RequestHandler {

9 void handleRequest (Request r) throws java.io. IOException ;

10 }

12 public class Analyzer implements RequestHandler {

13 @Requires private RequestHandler rh;

14 @Requires private Logger l;

15 @Attribute (value="GET ") private String filter;

17 public void handleRequest (Request r) throws IOException {

18 r.in = new InputStreamReader (r.s. getInputStream ());

19 r.out = new PrintStream (r.s. getOutputStream ());

20 String rq = new LineNumberReader (r.in). readLine ();

21 this .l. log(rq);

22 if (rq. startsWith (this. filter)) {

23 r. url = rq. substring (this . filter . length +1, rq.indexOf (’ ’, this . filter . length));

24 this.rh. handleRequest (r);

25 }

26 r.out. close ();

27 r.s. close ();

28 } }

Listing 4: The Java code of the component Analyzer.

1 <definition name =" comanche . Backend " extends =" comanche . RequestHandler ">

2 <component name ="ra" definition =" comanche . Analyzer "/>

3 <component name ="rh" definition =" comanche . Handlers "/>

4 <component name ="l" definition =" comanche . Logger "/>

5 <binding client =" this .a" server ="ra.a"/>

6 <binding client ="ra.l" server ="l.l"/>

7 <binding client ="ra.rh" server ="rh.rh"/>

8 </ definition >

Listing 5: The Fractal ADL description of the component Backend.

14

Table 2 compares the source code written by a developer when developing the Comanche
web server using only the Fractal API (A) or using the Fraclet programming model (B).
In particular, this evaluation shows that only half of the source code (56 %) is related to
the business concerns of Comanche. Thanks to Fraclet, the business concerns are isolated
from the technical artifacts imposed by the use of a particular component model. These
artifacts are automatically generated by the Fraclet generators, thus ensuring a continuous
integration of the component metadata. As a consequence, the minor evolutions of the
component model do not impact the components anymore, but only the Fraclet generators.

Metric Metric Fractal Fraclet Benefit Rate
description unit A B G=A-B G/A

Java Files 13 12 1 8 %
ADL Files 19 6 13 68 %

Java Lines 263 189 74 28 %
ADL Lines 137 47 90 66 %

Java + ADL Bytes 14 K 8 K 6 K 44 %

Table 2: The empirical measures observed on Comanche.

Fraclet is already used by several projects built on top of the Fractal component
model. The GoTM project [27]—a framework for building transaction services—and
the Fractal Deployment Framework [12]—a generic tool for deploying distributed
systems and applications— are two examples of projects using the XDoc-based imple-
mentation of Fraclet. While the COSMOS project [24]—a framework for processing con-
text information—and PEtALS [18]—an implementation of the Java Business Integration
(JBI) specification—are using the Java5-based implementation of Fraclet. Besides, other
projects have extended Fraclet to include new features, such as Dream [17]—a framework
for building message-oriented middleware—and ProActive [2]—a middleware for paral-
lel, distributed and multi-threaded computing. Experiences reported by all these projects
show that Fraclet improves the quality of the developments by:

1. reducing programming errors related to component developments (e.g., implemen-
tation of the Fractal lifecycle controller),

2. reducing the time spent to develop components,

3. increasing the robustness to evolutions of the component model (e.g., changes in the
programming API).

In particular, the application source code becomes less prone to errors, and gains
in terms of visibility by removing the technical methods that were not related to the
business concerns. By removing the technical methods from the source code, we also

15

remove the code dependency towards a particular component model, and the resulting
source code becomes independent of the component model used at runtime. Thus, thanks
to Fraclet, the developer spends less time to develop the components because he/she does
not need to deal with the specificities of the Fractal programming model anymore.
As a consequence, Fraclet contributes to reduce the learning curve for adopting CBSE.
Developers can apply CBSE principles by extending the general programming language
they are used to (e.g., the Java programming language) with domain-specific annotations.
Nevertheless, the use of these annotations still implies the manipulation of CBSE concepts,
and in some cases the use of reflective capabilities may bind a component implementation
to a particular model.

5 Implementation Issues

The Fraclet programming model can be implemented using various technologies. As
depicted in Figure 5, the generative approach adopted by Fraclet consists in parsing the
developed source code to produce both Java source code and XML descriptions.

FRACLET

Javac

FRACTAL ADL

RACTAL

Application

Figure 5: The Fraclet generative approach.

This section first introduces an implementation of the Fraclet framework using source
code transformation (cf. subsection 5.1), and then discuss alternative implementations
(cf. subsection 5.2).

5.1 Using Source Code Transformation

This section presents a possible implementation of the mapping of Fraclet annota-
tions. This implementation uses a source code transformation engine named Spoon
(cf. subsubsection 5.1.1) and allows the developer to produce and deploy either Fractal

16

(cf. subsubsection 5.1.2) or OpenCOM (cf. subsubsection 5.1.3) components developed
with Fraclet.

5.1.1 Spoon Transformation Framework

Spoon is a Java 5 open compiler built on top of Eclipse Java Development Tools (JDT)
Core [23]. Spoon provides the user with a representation of the Java Abstract Syntax Tree
(AST) in a metamodel, which allows both for reading and writing. Using this metamodel
and a specific API, Spoon allows the programmer to process Java 5 programs. This
processing is implemented with a visitor pattern that scans each visited program element
and can apply some user-defined processing jobs called processors.

Taking advantage of Java 5 features, Spoon also natively provides a framework that
allows for the definition of code templates in pure Java. By specifying templates in pure
Java, programmers can write them in their favorite Java IDE and benefit from all the
advantages that come with it (incremental compilation, completion, syntax highlighting,
contextual help, re-factoring, wizards, etc.).

5.1.2 Producing the Fractal Artefacts

The generation of the Fractal artefacts relies on the definition of one Spoon template
per annotation to support the Java programming model. These templates introduce the
references to the technical interfaces specified by the Fractal component model, and
implement the associated methods directly in the code of the component. In the particular
case of component defining attributes, an attribute controller interface is dynamically
generated with Spoon to support the management of the component attributes.

Moreover, another set of Spoon processors is defined to generate the Fractal ADL
definitions for primitive components. These processors and templates are then applied by
Spoon when parsing the component source code to both modify the component source
code and generate its associated Fractal ADL definitions, as illustrated in Figure 5. As
a consequence, the resulting Java code and XML descriptions are similar to the examples
presented in Listings 1 and 2.

5.1.3 Producing the OpenCOM Artefacts

Similarly to what has been done for the Fractal component model, Spoon templates
have been defined for handling each annotation of the Fraclet programming model and
generating the associated OpenCOM technical source code. The resulting component
is depicted in Listing 6, which introduces the technical code required by the Java pro-
gramming model of the OpenCOM component model. In particular, the OpenCOM
programming model uses an abstract class OpenCOMComponent that includes generic source
code for OpenCOM components. This implies that the class Analyzer has to define a par-
ticular constructor accepting a binder as parameter and should delegate the initialisation

17

of the component to the parent class. For each interface required by the component, the
annotated field is replaced by a structure OCM_SingleReceptacle specific to OpenCOM
for handling references. Similarly, the component attributes are stored in a dedicated
structure managed by OpenCOM and are accessible via the method GetAttributeValue.
Thus, accesses to either component dependencies or attributes are also modified in the
business source code to reflect the constraints of the OpenCOM programming model.
Finally, technical methods are introduced in the source code to manage the dependencies
of component (interface IConnections) and its life cycle (interface ILifeCycle).

Concerning the description of the architecture, we chose to reuse the Fractal ADL
processors to associate a Fractal ADL definition to each OpenCOM component. Thus,
using the Fractal ADL factory and a specific backend supporting the OpenCOM com-
ponent model [16], OpenCOM components can be easily deployed using the same defini-
tion of the composite component comanche.Backend. This means that the composition of
the OpenCOM components can be handled by the Fractal ADL factory via a dedicated
backend [16]. Nevertheless, one can also consider the development of Spoon processors
that generate ADL descriptions compliant to the Plastik language supported by Open-
COM [3]. In this case, the composition of the Plastik components can be handled by
the Fractal ADL factory via a dedicated frontend [16]. Furthermore, one can observe
that a component developed with the Fraclet programming model can be executed in
either a Fractal or OpenCOM runtime environment.

5.2 Discussing Alternative Implementations

In this section, we present and discuss various alternative implementations of the Fraclet
programming model. In particular, we discuss the use of Java5 or XDoc annotations
(cf. subsubsection 5.2.1), the difference between source code generation and transforma-
tion (cf. subsubsection 5.2.2), and finally the manipulation of either Java source code or
byte-code (cf. subsubsection 5.2.3).

5.2.1 Java5 Versus XDoc Annotations

The annotations defined by Fraclet can be implemented using either the facility provided
by Java5 or using XDoc annotation framework2. XDoc annotations are integrated in
the Javadoc comments of the source code elements. This means that these annotations
comply with any version of the Java specification and the annotated source code can be
compiled and executed on small devices using the J2ME environment. However, these
annotations are lost at runtime, which means that they have to be interpreted directly
in the source code. Besides, the Java5 annotations provide a better typing system to
ensure the correctness of the annotation parameters given that the Java5 annotations are
integrated in the language.

2XDoc annotation framework: http://xdoclet.codehaus.org/

18

1 public class Analyzer extends OpenCOMComponent

2 implements RequestHandler , IConnections , ILifeCycle {

3 private OCM_SingleReceptacle < RequestHandler > rh ;

4 private OCM_SingleReceptacle <Logger > l ;

6 public Analyzer (IUnknown binder) {

7 super(binder);

8 this .rh = new OCM_SingleReceptacle < RequestHandler >(RequestHandler . class);

9 this .l = new OCM_SingleReceptacle <Logger >(Logger . class);

10 }

11 // IConnections Interface

12 public boolean connect (IUnknown itf , String signature , long id) {

13 if (signature . equalsIgnoreCase (" comanche . RequestHandler ")) {

14 return this.rh. connectToRecp (itf , signature , id);

15 } else if (signature . equalsIgnoreCase (" comanche .Logger ")) {

16 return this.l. connectToRecp (itf , signature , id);

17 }

18 return super . connect (itf , signature , id);

19 }

20 public boolean disconnect (String signature , long id) {

21 if (signature . equalsIgnoreCase (" comanche . RequestHandler ")) {

22 return this.rh. disconnectFromRecp (id);

23 } else if (signature . equalsIgnoreCase (" comanche .Logger ")) {

24 return this.l. disconnectFromRecp (id);

25 }

26 return super . disconnect (signature , id);

27 }

28 // ILifeCycle Interface

29 public boolean shutdown () { return true; }

30 public boolean startup (Object pIOCM) { return true ; }

31 // Business code

32 public void handleRequest (Request r) throws IOException {

33 r.in = new InputStreamReader (r.s. getInputStream ());

34 r.out = new PrintStream (r.s. getOutputStream ());

35 String rq = new LineNumberReader (r.in). readLine ();

36 this .l. m_pIntf .log (rq);

37 String filter = (String) GetAttributeValue (" comanche . RequestHandler ", " Interface ",

38 " filter "). value ;

39 if (rq. startsWith (filter)) {

40 r. url = rq. substring (filter . length +1, rq. indexOf (’ ’, filter .length));

41 this.rh. m_pIntf . handleRequest (r);

42 }

43 r.out. close ();

44 r.s. close ();

45 } }

Listing 6: The Java code of the OpenCOM component Analyzer.

19

Fraclet already provides two implementations that support either XDoc or Java5 an-
notations.

5.2.2 Transformation Versus Generation Processing

The technical code associated to a particular component model can be woven with the
business code in different ways. The first option consists in generating a class that extends
the business code of the component class and includes all the technical code dedicated to a
particular component model. An alternative to generation consists in modifying the source
code written by the developer to introduce the technical code. This approach reduces
the memory footprint of component (by reducing the number of classes associated to a
component) and supports the validation of the business source code with regards to the
component model specification (e.g., hidden communication path detection). However,
the uncoupling supported by the generative approach provides the capability to select the
component model to use at load-time.

The two implementations of Fraclet already support processing of annotations by
either transformation (for Java5 annotations) or generation (for XDoc annotations).

5.2.3 Compile-time Versus Load-time Parsing

The completion of the business code with the technical code can be done either statically
at compile-time or more dynamically at load-time. The introduction of the technical arti-
facts at compile-time generates the source code of the component and its Fractal ADL
description, while the introduction at load-time generates bytecode and the component
factory internal representation—i.e., an AST for Fractal ADL.

The current Fraclet implementations only support compile-time generation. Never-
theless, a load-time version of Fraclet can be developed. The generation of the bytecode
can be achieved using a bytecode transformation framework, such as ASM3, that visits
the annotations included in the business code and generates the technical methods. In
Fractal ADL, a load-time integration consists in extending the ADL factory with an
Annotation Loader component.

6 Related work

This section compares our work with existing approaches such as Aspect-Oriented Pro-
gramming and Model-Driven Engineering. We also compare to the existing technologies
that use Attribute-Oriented Programming to leverage the management of technical prop-
erties.

3The ASM framework: http://asm.ow2.org

20

Attribute-Oriented Programming has already been applied in the context of
CBSE. The Enterprise JavaBeans (EJB) 3.0 [8] and the Service Component Architec-
ture (SCA) [22] specifications extensively use annotations to make programming easier
but these approaches provide no complete abstraction of their programming model. [28]
presents an a posteriori approach that extends an ADL to mark components with an-
notations. Nevertheless, this work is limited to the introduction of additional technical
properties, such as the property of Deny of Service detection, to legacy components. Our
work is an a priori approach to leverage CBSE using an annotation-based abstraction of
the programming model of the component model.

Aspect-Oriented Programming (AOP) provides a partial solution to the problem
of technical code abstraction. In [28], the annotations defined at the architectural level are
consumed in the program code by aspects defined with AspectJ. The annotations mark
potiential victim interfaces and are consumed to inject the Deny of Service detection code.
Similarly, the AOKell implementation of the Fractal component model provides an aspect
that automatically injects the technical code related to the handling of the component
client interfaces [29]. However, AOP is not able to generate additional artifacts such as
the attribute controller interface or the component definitions. Our approach provides
Java and XML generators to support both program code and ADL definition generation.

Model-Driven Engineering (MDE) promotes the use of Platform-Independent
Models (PIM) to define the business concern of an application [30]. The PIM can be
transformed into different Platform-Specific Models (PSM) that take into account the
specificities of a given platform (e.g., a given component model). Our approach follows
the same idea at the program code level rather than at the model level. Indeed, the anno-
tated program code can be considered as a Platform-Independent Code (PIC) composed
of the business concern of the application and the annotations related to CBSE. Then,
the generators produce the program code compliant with a given programming model
as a Platform-Specific Code (PSC). Our approach is a practical application of MDE for
the programming level, as a consequence it appears as an interesting solution to provide
component model independency. In [31], the authors combined UML stereotypes and
tagged values to simulate an annotation mechanism when modeling an application. The
stereotype and the tagged values are thus mapped to annotations when generating the
application code. This interesting approach brings annotations to the model level but it
does not try to abstract the diversity of underlying platforms as proposed in this paper.

7 Conclusion

This article has presented Fraclet, a lightweight component model that leverages CBSE.
This model gathers the core concepts of the component programming models manipulated
by the developers. Reified as a set of annotations, the developer can write a program code
that contains only the business concerns of the application, making it more legible. The

21

compliance with a given component programming model is ensured by generators that
consume the annotations to produce the technical code required by a component model.
The generative approach provides an interesting solution to the problem of the evolution
of component models because a modification of the programming model of the component
model impacts only the generators and no more all the applications. Finally, an annotated
program code can be executed on various component-oriented platforms. In this article,
the generators for the Fractal and OpenCOM component models are illustrated and
demonstrate the benefits of our approach.

Current middleware evaluations show that about half of the source code is related
to the business concerns (measures observed on GoTM [27], Fractal Deployment
Framework [12], and COSMOS [24] projects). This means that, thanks to the use
of Fraclet, the application source code becomes less prone to errors, and gains in terms
of visibility by removing the technical methods that were not related to the business
concerns. By removing the technical methods from the source code, we also remove
the code dependency towards a particular component model, and the resulting source
code becomes independent of the component model used at runtime. However, even if
Fraclet does not forbid it, the integration of concerns, such as reflection, persistency, or
transactions, may restrict the compatible target components, and ultimately introduce a
dependency to a particular component model.

Among the possible evolutions of this approach, the support of additional component
models is considered (e.g., Spring [15], JavaBean [14], EJB [8], CCM [21], SCA [22]). We
believe that the definition of a generic support for programming components requires the
definition of a modular meta-model similarly to the xADL [7] approach, which provides an
extensible architecture description language based on XML. Another possible extension
consists in supporting crosscutting concerns in the programming model (e.g., transaction,
persistency). However, the support of additional concepts in the Fraclet core model
would reduce the number of target component models supporting all the features, while
increasing potential conflicts between annotations. Thus, we are interested in enforcing
the validation of the resulting source code to ensure its reliability with regards to the
component model used at runtime [20]. This validation can be also extended to the
verification of the business code to detect hidden communication paths by analyzing
method parameters as done in ArchJava [1].

Availability. Two implementations of Fraclet are already available under the GNU
LGPL license and can be downloaded from http://fractal.ow2.org/fraclet.

Acknowledgements

The authors wish to thank Denis Conan, Carlos Noguera, Nicolas Pessemier, and Renaud
Pawlak for their contributions to the Fraclet programming model and its implementations.

22

The authors also thank the reviewers for their valuable comments.

References

[1] Aldrich J., Chambers C., Notkin D. ArchJava: Connecting Software Architec-
ture to Implementation. Proceedings of the 24th International Conference on Software
Engineering (ICSE’02). ACM, Orlando, Florida, USA, p. 187–197, Mai 2002.

[2] Baduel L., Baude F., Caromel D., Contes A., Huet F., Morel M., Quilici
R. Grid Computing: Software Environments and Tools, Chapter Programming, De-
ploying, Composing, for the Grid. Springer-Verlag, January 2006.

[3] Batista T., Joolia A., Coulson G. Managing Dynamic Reconfiguration in
Component-Based Systems. Proceedings of the 2nd European Workshop on Software
Architecture (EWSA’05), Lecture Notes in Computer Science, volume 3527. Springer-
Verlag, Pisa, Italy, p. 1–17, June 2005.

[4] Blair G.S., Coulson G., Andersen A., Blair L., Clarke M., Costa F.M.,
Duran-Limon H.A., Fitzpatrick T., Johnston L., Moreira R.S., Parla-
vantzas N., Saikoski K.B. The Design and Implementation of Open ORB 2.
IEEE Distributed Systems Online, 2(6), 2001.

[5] Bruneton E., Coupaye T., Leclercq M., Quéma V., Stefani J.B. The
Fractal Component Model and its Support in Java. Software: Practice and Expe-
rience – Special issue on Experiences with Auto-adaptive and Reconfigurable Systems,
36(11-12):p. 1257–1284. doi:10.1002/spe.767. John Wiley & Sons, August 2006.

[6] Coulson G., Blair G., Grace P., Taiani F., Joolia A., Lee K., Ueyama J.,
Sivaharan T. A Generic Component Model for Building Systems Software. ACM
Transaction on Computer Systems, 26(1):p. 1–42. doi:10.1145/1328671.1328672,
February 2008.

[7] Dashofy E.M., van der Hoek A., Taylor R.N. An infrastructure for the rapid
development of XML-based architecture description languages. Proceedings of the
22rd International Conference on Software Engineering (ICSE’02). ACM, Orlando,
Florida, USA, p. 266–276. doi:10.1145/581339.581374, Mai 2002.

[8] DeMichiel L., Keith M. Enterprise JavaBeans (EJB) Specification. Sun Mi-
crosystems, Inc., Santa Clara, California, U.S.A, 3.0 edition, December 2005.

[9] Ecma International. C# Language Specification. Geneva, Switzerland, 3.0 edi-
tion, June 2005.

23

[10] Eichberg M., Schäfer T., Mezini M. Using Annotations to Check Structural
Properties of Classes. Proceedings of the 8th International Conference on Funda-
mental Approaches to Software Engineering (FASE’05), Lecture Notes in Computer
Science, volume 3442. Springer-Verlag, Edinburgh, UK, p. 237–252, April 2005.

[11] Fassino J.P., Stefani J.B., Lawall J.L., Muller G. Think: A Software Frame-
work for Component-based Operating System Kernels. USENIX Annual Technical
Conference, General Track. Monterey, California, USA, p. 73–86, June 2002.

[12] Flissi A., Dubus J., Dolet N., Merle P. Deploying on the Grid with Deploy-
Ware. Proceedings of the 8th International Symposium on Cluster Computing and
the Grid (CCGrid’08). Lyon, France, p. 177–184, Mai 2008.

[13] Gosling J., Joy B., Steele G., Bracha G. The Java Language Specification,
Third Edition. Addison-Westley Professional Computing, Santa Clara, California,
USA, December 2005.

[14] Hamilton G. JavaBeans Specification. Sun Microsystems, Inc., San Antonio Road,
Palo Alto, CA, 1.01 edition, August 1997.

[15] Johnson R., Hoeller J., Arendsen A., Sampaleanu C., Harrop R., Ris-
berg T., Davison D., Kopylenko D., Pollack M., Templier T., Vervaet
E., Tung P., Hale B., Colyer A., Lewis J., Leau C., Evans R. The Spring
Framework - Reference Documentation, 2.0.6 edition, 2007.

[16] Leclercq M., Özcan A.E., Quéma V., Stefani J.B. Supporting Heterogeneous
Architecture Descriptions in an Extensible Toolset. Proceedings of the 29th Inter-
national Conference on Software Engineering (ICSE’07). IEEE Computer Society,
Minneapolis, USA, p. 209–219. doi:10.1109/ICSE.2007.82, Mai 2007.

[17] Leclercq M., Quéma V., Stefani J.B. DREAM: A Component Framework for
Constructing Resource-Aware Configurable Middleware. IEEE Distributed Systems
Online, 6(9), September 2005.

[18] Louis A. Use JBI Components for Integration. JavaWorld.com, July 2006.

[19] Medvidovic N., Taylor R.N. A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software En-
gineering, 26(1):p. 70–93, January 2000.

[20] Noguera C., Duchien L. Annotation Framework Validation using Domain Mod-
els. Proceedings of the 4th European Conference on Model Driven Architecture
Foundations and Applications (ECMDA’08). Springer-Verlag, Berlin, Germany, June
2008.

24

[21] OMG. CORBA Component Model (CCM) Specification. Needham, MA, USA, 3.0
edition, September 2002.

[22] Open Service Oriented Architecture. SCA: Service Component Architecture,
1.0 edition. Java Common Annotations and APIs, March 2007.

[23] Pawlak R. Spoon: Compile-time Annotation Processing for Middleware. IEEE
Distributed Systems Online, 7(11), November 2006.

[24] Rouvoy R., Conan D., Seinturier L. Software Architecture Patterns for a
Context-Processing Middleware Framework. IEEE Distributed Systems Online, 9(6),
June 2008.

[25] Rouvoy R., Merle P. Leveraging Component-Oriented Programming with
Attribute-Oriented Programming. Proceedings of the 11th International ECOOP
Workshop on Component-Oriented Programming (WCOP’06), Technical Report, vol-
ume 2006–11. Karlsruhe University, Nantes, France, July 2006.

[26] Rouvoy R., Pessemier N., Pawlak R., Merle P. Using Attribute-Oriented
Programming to Leverage Fractal-Based Developments. Proceedings of the 5th In-
ternational ECOOP Workshop on Fractal Component Model. Nantes, France, July
2006.

[27] Rouvoy R., Serrano-Alvarado P., Merle P. Towards Context-Aware Trans-
action Services. Proceedings of the 6th International IFIP Conference on Distributed
Applications and Interoperable Systems (DAIS), Lecture Notes in Computer Science,
volume 4025. Springer-Verlag, Bologna, Italy, p. 272–288, June 2006.

[28] Schiavoni V., Quéma V. A Posteriori Defensive Programming: An Annotation
Toolkit for DoS-Resistant Component-Based Architectures. Proceedings of the 21st
ACM Symposium on Applied Computing (SAC’06). ACM, Dĳon, France, p. 1734–
1738, April 2006.

[29] Seinturier L., Pessemier N., Duchien L., Coupaye T. A Component Model
Engineered with Components and Aspects. Proceedings of the 9th International SIG-
SOFT Symposium on Component-Based Software Engineering (CBSE’06), Lecture
Notes in Computer Science, volume 4063. Springer-Verlag, Stockholm, Sweden, p.
139–153, June 2006.

[30] Stahl T., Volter M., Stockfleth B.V. Model-driven Software Development:
Technology, Engineering, Management. John Wiley & Sons, July 2006.

25

[31] Wada H., Suzuki J. Modeling Turnpike Frontend System: A Model-Driven De-
velopment Framework Leveraging UML Metamodeling and Attribute-Oriented Pro-
gramming. Proceedings of the 8th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS’05), Lecture Notes in Computer Science,
volume 3713. Springer-Verlag, Montego Bay, Jamaica, p. 584 – 600, October 2005.

[32] Walls C., Richards N. XDoclet in Action. In Actions series, Manning Publica-
tions, December 2003.

26

	Introduction
	Foundations
	Fractal
	OpenCOM
	@OP

	Motivations
	Motivating Application
	Code Tangling
	Metadata Redundancy

	Fraclet
	Core model
	Annotation mapping
	Illustration
	Evaluation

	Implementations
	Reference Implementation
	Spoon Framework
	Fractal Generators
	OpenCOM Generators

	Other Implementations
	Annotations
	Processors
	Parsers

	Related work
	Conclusion

