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Abstract:  The stability and performance of a networked control system are strongly influenced by the 
network delay and packet drops. In this paper, we consider that late arrived sampling data are dropped, so 
that we only focus on the analysis of the impact of packet drop sequences on the control loop stability 
and performance. For any dropping sequence specified by (m,k)-firm model, and considering a simple 
mono-variable linear system with a proportional controller and zero control action in case of sampling 
data drop, we derived the stability conditions based on the upper bound of the plant state variance. It has 
been shown that the stability only depends on the values of m and k but not the pattern of the dropping 
sequence. In case of network overload, this gives much freedom to actively dropping some packets while 
still keeping the system stable. An analytic method to determine the optimal control gain for any given 
packet drop pattern is also derived, providing thus a guideline for optimal control and network resource 
scheduling co-design.  Copyright © 2009 IFAC 
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1. INTRODUCTION1 

With the progress of networking technology, more and more 
control systems are now linked by networks, forming a 
research topic named Networked Control Systems (NCS) 
where one or more feedback loops are closed via a shared 
communication network (Antsaklis and Baillieul 2007). In 
such systems, the measurements quantized by the sensors are 
sent to the controller over the network link. After the 
computation of the controller based on these measurements, 
the control output is then sent to the actuators that may also 
be via the network. 

Unlike fieldbus design approaches in the past that mainly 
focused on providing to applications with real-time QoS 
(Quality of Service) guarantee from network point of view, 
the design of NCS focuses on the QoC (Quality of Control) 
optimization from the application point of view. For NCS 
design, the challenge is how to optimize on the one hand the 
QoC with the presence of the network induced delay and 
packet loss, and on the other hand the share of the limited 
network resources (e.g. network bandwidth). The underlying 
network of a NCS could be either a fieldbus (e.g. CAN 
Controller Area Network) or a general-purpose network (e.g. 
Ethernet, WiFi, or even Zigbee/IEEE802.15.4). As the 
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network link is often shared among different applications and 
control loops, the network overload may occur and must be 
correctly handled. Otherwise excessive network delay and/or 
packet loss may lead to bad QoC or even to system 
instability.  

For dealing with network overload, three control and 
implementation (e.g. task and packet scheduling) co-design 
approaches are available. One is to dynamically change the 
priority of packets in order to favour the data transfer of some 
critical control loops to the detriment of the other less critical 
applications. This approach can be easily implemented on the 
prioritized bus like CAN (Juanole and Mouney 2007) but its 
generalization to other kinds of networks is far from 
straightforward. The second approach consists in dynamically 
changing the control loops’ sampling periods by sending less 
frequently the sampling data to reduce the network load. This 
approach has been proposed mainly for optimally sharing the 
processor on which several controllers are executing (Seto et 
al. 1996), (Eker et al. 2000), (Simon et al. 2005). However its 
implementation for the network resource sharing could be 
difficult for general purpose network. Note that this approach 
has been proved effective for certain particular networks, as 
FTT-Can (Antunes et al. 2007). For instance, at the network 
overload, the period change decision must still be transmitted 
to the sensor nodes via network, implying complicated 
mechanisms. The third approach consists in selectively 
dropping sample data within a certain tolerated limit during 
the resource overload period, while still keeping the desired 



 
 

     

 

QoC or graceful degraded QoC (Ramanathan 1999), 
(Hadjicostis and Touri 2002), (Bommannavar and Basar 
2008). Among these three approaches, it is clear that 
changing packet priority does not reduce the total network 
load but only re-allocates more network resources to the most 
important control loops and less resources to the others. 
While changing the period or dropping packets are more 
radical solutions to the workload reduction. 

In this work, we adopt the third approach since comparing to 
changing the sampling period it appears easier to implement 
and more efficient than that of the priority change. However 
the following problems must be carefully addressed before 
adopting this approach. The first problem is the choice of the 
dropping sequence when selective dropping should be 
implemented. What is the impact of the dropping sequence 
on the QoC? The second problem is how to design optimal 
control law when a dropping sequence is effective. 

In what follows, we describe in section 2 the NCS 
architecture we considered, the packet dropping policy based 
on (m,k)-firm model and then give the analytic relationship 
between the packet drop sequence and the control system and 
state what are the considered stability criterion and 
performance optimisation objective. We particularly show in 
section 2.3 how the network-induced delay can be 
incorporated into the discrete-time system model under our 
“zero control” action assumption. This allowed us to only 
focus on the study of the data drops. Section 3 states the 
stability condition under any given dropping sequences. As 
the dropping sequence is repeated periodically of k-periodic, 
the traditional stability in variance (Aström and Wittenmark, 
1997) does not exist when the horizon tends to infinite, so the 
upper bound of the variance is used instead to assess the 
system stability. The new metric allows us to upper bound 
the system output variance. We also give the method to 
determine the optimal gain for any given dropping sequence. 
Section 4 provides a numerical application of our analytic 
results. Through this example we show two points: 1) our 
analytic results can be easily applied to compute the allowed 
(m,k)-firm dropping patterns while upper bound the plant 
state variance; 2) the default value of the controller gain is a 
tight upper bound of the optimal gain. Section 5 discusses the 
possible implementation plans of our approach and Section 6 
summarizes the new contributions of this work. 

2. SYSTEM MODEL AND PROBLEM STATEMENT 

2.1  Network Control System (NCS) architecture 

The NCS model shown in Fig. 1 consists of a continuous 
plant (linear, mono-variable) and a digital controller 
connected onto a networked architecture. The output of the 
plant is sampled periodically (period h) and has to be 
transmitted immediately through a network (see signal yi in 
Fig. 1). This transmission introduces a delay. We suppose 
that the closed loop system is controllable if this delay is less 
than a given value δ.  A correct sample, for this plant and this 

controller, is a sample that can be transmitted in less than δ to 
the controller.  

 

Fig. 1. System architecture 

Therefore, as soon as the network is overloaded and is no 
more able to transmit in time (δ< ) the sampled data, the 
policy that we propose consists in dropping the packet that 
contains this data since late arrived data is useless for such 
kind of applications. Note that this strategy, with respect to 
priority adjustment, allows to keep always an amount of 
bandwidth for other data flows sharing the network. 

 

Fig. 2. Algorithm of the controller under sample loss. 

We assume that the controller node is synchronized with the 
sensor one (this service is provided in certain network 
protocol). The signal management in the closed loop system 
is: a) clock-triggered sampling of plant output (period h); b) 
clock-triggered controller (periodic task, period h)  executing 
a constant delay control law under a constant skew δ (a 
similar policy is proposed in Liou and Ray, 1991); and c) 



 
 

     

 

event-driven actuator, updating the plant-inputs as soon as the 
controller output becomes available. 

If a sensor sample is dropped, it is recognized as vacant 
sampling by the controller (Halevi and Ray 1988) and the 
actuator applies the “zero control” action to the plant. Fig. 2 
illustrates both cases. Applying a “zero control” signal to the 
actuator in case of absence of sampling data is justified by the 
fact that it would cost the least amount of control energy 
among all possible control actions (Hadjicostis and Touri 
2002), (Imer et al., 2006), (Sadjadi 2003). Of course another 
way is also possible which consists in applying the “last 
available control”. This last way is equivalent to the zero-
order hold (ZOH) action in continuous time but may lead to 
more control energy. 

2.2 Sample Drop Policy 

As explained in the former section, the approach considered 
in this paper to solve network congestion is to selectively 
drop some instances of systems outputs. Some solutions exist 
that discard data packets in order to reduce the effective 
utilization of the system. Among these solutions, the 
technique often mentioned is (m,k)-firm policy (Ramanathan, 
1999) (Quan and Hu, 2000). The (m,k)-firm model requires 
that at least m out of any k consecutive packets must be 
delivered by the network. In (Jia et al., 2005) and (Jia et al. 
2007) was first studied how to choose the value of k and the 
rate of m over k so that the system remains stable for mono- 
and multiple-variable linear systems. The impact of the 
packet drops distribution on the QoC has been evaluated but 
without giving a general relationship.  

In this paper, we continue to adopt the (m,k)-firm based 
dropping policy and give in section 3 the general analytic 
relationship between a packet drop sequence and the QoC. 

2.3 System Model 

The first order plant is described by the discrete time 
dynamics ( ( )f ih  is noted if  in the following): 

 
1 , 0

and
i i i i

i i i

x x u q

y x p

α β β β+ = + + ≠

= +
 (1)  

where ix  represents the plant state, iu  its input; iq  and ip , 
are white noises, assumed to be independent and with zero 

mean and whose variances will be noted 2qσ and 2
pσ . 

Particularly ip  models the quantization noise in an additive 

way and iq  represents the actuator noise. 

Considering a proportional controlleri i iu yγ= Π , where iΠ  
models if the plant state sample is transmitted to the 

controller or not ( 1iΠ =  if the thi  sample is transmitted and 

0 otherwise). iΠ  is called (m,k)-pattern. 

Then the closed loop model is: 

 1 ( ) ( )i i i i i ix x p qα β γ β γ+ = + Π + Π +      (2) 

 
We consider that the delay between the time of each plant 
output sampling and the time of the corresponding actuation 
instant is always equal to δ  (see section 5 for the possible 
implementation of this assumption). In order to compensate 
this skew (figure 3), we use a Prediction-Based Model (Marti 
and Velazco, 2007) that computes the control signal u, with 
the estimated state vector at the actuation instant ih δ+ . 

 

Fig. 3. Impact of the transmission delay. 

During the interval ( ih , ih δ+ ), the plant (linear) evolves and 

the estimated state vector at ih δ+ , is ( ) ( )x ih e x ihαδδ+ = . 

If we multiply the terms of the equation (2) by the constant 

eαδ ,  we obtain: 

( )
( ) ( )

( 1) ( ) ( )

( )

i

i

e x i h e x ih

e p ih q ih

αδ αδ

αδ

α βγ

β γ

+ = + Π

+ Π +
 

and the obtained equation shows that: 

( )
( ) ( )

( 1) ( ) ( )

( )

i

i

x i h x ih

e p ih q ihαδ

δ α βγ δ

β γ

+ + = + Π +

+ Π +
 

Then, without loss of generality we can work directly with 

the model (2) where the noises are  and c c
i ie p e qαδ αδ  (same 

properties as  and i ip q ). 

2.4  Stability conditions and optimisation issues 

First we need to identify the condition on the closed loop 
control that ensures the stability of an unstable plant under 
output and process noises and subject to a specific dropping 
strategy of the sampled plant output. As specified in section 
2.2, we apply a proportional controller with a gain γ and the 
transmission of plant state samples are controlled thanks to a 



 
 

     

 

(m,k)-firm policy. For any sequence of k samples, only m are 
transmitted according to a predefined (m,k)-pattern. So, the 
packet sequence delivery is k-periodic. 

From control theory, the control design goal for a system 
under noise (or cost criterion) is to determine the controller 
gain which minimizes the variance of the output (see for 
example, Aström and Wittenmark, 1997). In this paper, we 
consider an infinite horizon and propose to guarantee the 
closed-loop stability by calculating the gain γ  in order that 

i
i

supvar( x )should be finite. This property allows taking into 

account all the future of the system. 

Moreover, finding an optimal controller means to determine 
the parameters of the system that makes this limit as small as 
possible. More precisely, the optimisation issue consists in 
finding: 

- the parameters of the dropping policy: m, k and the (m,k)-
pattern, 

- the gain γ of the controller. 

The purpose of the next section is to provide a mathematical 
support for the specification of the parameters. 

3. ANALYTICAL APPROACH 

In the following, we note var( )i iv x= . The assumptions 

made on the noises ip  and iq , show that: 

1i i i iv a v b+ = + , 0 0v = , 0i ≥  (3) 

where: 2( )i ia α βγΠ= +  and 2 2 2 2( )i q p ib β σ γ σ Π= +  

We denote 0 1 1... kA a a a −= . Bearing in mind that 0iΠ =  for 

k-m terms and 1iΠ =  for m terms, it is readily seen that: 

 2 2( )( ) m k mA α βγ α −= +  

This shows that A depends only on m and k and not of Π . 

We set 
2

1 1 1... , 0
i k

i i k j j i k
j i

B b b a a i k
+ −

+ − + + −
=

= + ≤ <∑  and   

0
max ( )i

i k
B B

≤ <
= . 

In fact, taking account of the k-periodicity of ia  and ib , we 
have: 

 

( )

1

1 1
1

1

1 1
1

1 1

...

...

...

(1 )

i k

i i k j j i k
j i

i k

i i j j i k
j i

i i i i i i k

i i i

B b b a a

b a b a a

b a B b a a

b A a B

+ −
+ + + +

= +
+ −

+ + −
= +

+ + −

= +

= +

= + −
= − +

∑

∑  

Then iB  can be computed by the recurrence relation:  

1 (1 )i i i iB a B b A+ = + − , for 0i ≥ ,  

with 
1

0 1 1
0

...
k

j j k
j

B b a a
−

+ −
=

= ∑ . 

 

We obtain the following result. 

Theorem 1.  

1) If 1A ≥ , the sequence ( )nv  is unbounded. 

2) If 0 1A≤ < , then the sequence ( )nv  is bounded and: 

0
sup

1n
n

B
v

A≥
=

−
 

For short, the system is stable if and only if 0 1A≤ <  

Sketch of proof. From equation (3), taking into account the k-
periodicity of ia  and ib , it can be seen that for 

0  and 0i k n≤ < ≥ :  

( 1)i n k i nk iv Av B+ + += +  (4) 

1) If 1A ≥ , the equality (4) shows that 0 0 0nkv v nB nB≥ + = . 

We note that 
1

2 2
0 1 1 1

0
... 0

k

j j k k q
j

B b a a b β σ
−

+ − −
=

= ≥ ≥ >∑ ; 

therefore, 2 2
nk qv nβ σ≥  showing that the sequence ( )nv  is 

unbounded. 

2) If 0 1A≤ < , from equation (4), we can deduce that 

( )
1 1

ni i
i nk i

B B
v A v

A A+ = + −
− −

, for 0  and 0i k n≤ < ≥ . 

Therefore lim
1

i
i nk

n

B
v

A+ =
−

.  

It can be shown that 
1

i
i

B
v

A
≤

−
 for any i. Due to the k-

periodicity of  iB , we have 
1

i
i nk

B
v

A+ ≤
−

 and therefore 

sup
1

i
i nk

n

B
v

A+ =
−

. Finally, sup
1n

n

B
v

A
=

−
. 
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Let us consider now the optimisation problem. For this 
purpose, given a (m,k) dropping policy ( ), ,m k Π , the 

optimisation problem is to find γ that minimizes 

0
( ) sup ( )n

n
M vγ γ

≥
= , bearing in mind that 



 
 

     

 

2 2( )( ) m k mA α βγ α −= + ,  under the constraint 1A< . This is 
equivalent to: 

1

0

k

mα
γ γ

β

−
− <   where 0

αγ
β

= −  

A way to evaluate the optimum can be achieved thanks to an 
iterative algorithm that computes ( )M γ for γ from 

1

min 0

k

mα
γ γ

β

−
= − to 

1

max 0

k

mα
γ γ

β

−
= +  by step equal to d. 

This can be complex because of the computation of iB . 
Therefore, we propose a convenient and simple upper bound 
for inf ( )M

γ
γ . 

Π  being given, if 0
αγ γ
β

= = − , then 0( ) 0A γ = . 

Corollary .  

2 22
2 2 2 2

0 2 2
( ) ( ( 1) )

( 1) ( 1)

N
q

q pM
β σαγ β σ α σ

α α
= + − −

− −
 

where 1N −  is the length of the longest run of 0 in the 
pattern Π  (see Fig. 4). 

 

Fig. 4. Example of pattern Π. 

We notice that 0( )M γ  depends only on the longest run of 0 

in the pattern Π , N. 

Sketch of proof.  

It has been seen before that 1 (1 )i i i iB a B b A+ = + −  where ia , 

ib , iB  and A  depend on γ. Since 0( ) 0A γ = , it turns out 

that 1i i i iB a B b+ = + . Setting 2 2 2 2
q pc β σ α σ= + , this relation 

shows that the sequence  is strictly increasing for (see Fig. 4):  

- 1j i j n≤ < +  with jB c= , 

- 1 1 2j n i j n n+ ≤ < + +  with 
1j nB c+ = , 

- …, 

- 1 1 1 2... ...m mj n n i j n n n j k−+ + + ≤ < + + + + = +  with 

1 1... mj n nB c
−+ + + = . 

Consequently, 

1 1 20 1 1 1( ) max max( , ,..., )i j n j n n j k
j i j k

M B B B Bγ + − + + − + −
≤ < +

= = . 

Denoting 1 2max( , ,..., )mN n n n= , it is seen that 0( ) NM xγ =  

where Nx  is the Nth iteration of the relation 
2 2 2

1i i qx xα β σ+ = +  with the initial condition 1x c= .  It is 

well known that: 

( ) ( )
( )

12
12 2 2

2

1

1

N
N

N qx c
α

α β σ
α

−
−

 − 
= +  

− 
 

 

which entails the result. 
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/* Calculation of M(γ), for γ, m, k and Π 
/* Input data 

/*  - α, β : characteristic of the plant 
/*  - 2

pσ , 2
qσ :noises on plant output and input 

/*  - γ: controller gain 
/*  - m,k,Π  
/* Result 

/*  - R = M(γ) 
 
M(α, β, 2

pσ , 2
qσ ,γ, m,k,Π) 

begin  

 for J in 0..k-1 loop 

   a(J) :=( α + β * γ *Π(J)*( α + β * γ * Π(J)); 
   b(J) := β * β *( 2

qσ + γ * γ * 2
pσ * Π(J)) ; 

 end loop 

 A :=exp(2*m*Log(|α+β*γ|)+2*(k-m)*Log(|α|)); 
 pa :=1 ; 

 B(0) :=b(k-1)*pa ; 

 for I in k-2..0 loop 

   pa :=pa*a(I+1) ; 

   B(0) :=B(0)+b(I)*pa ; 

 end loop 

 Bmax :=B(0) ; 

 for J in 0..k-2 loop 

   B(J+1) :=a(J)*B(J)+b(J)*(1-A) ; 

   if B(J+1)>Bmax then 

       Bmax :=B(J+1) 

   end if 

 end loop 

 R :=Bmax/(1-A);  

 return(R); 

end 

Fig. 5. Algorithm for ( )M γ  evaluation. 



 
 

     

 

Obviously, 0inf ( ) ( )M M
γ

γ γ≤ .  One the one hand, the cor-

ollary shows that it’s possible to compute easily a value of γ 
that respects the stability condition but on the other hand, we 
would like to know if the bound 0( )M γ is tight. This will be 
investigated in the next section that presents an experiment. 

4. NUMERICAL APPLICATION 

We apply this approach on a classical case study. We 
consider a plant described by equation (1) and whose 
parameters are:  

-  3α =  and 1β = ,  

-  under the noises p and q, whose variances are 2 1pσ =  and 

2 1qσ = . 

In order to avoid a too large dispersion of the plant state, we 
impose the variance of the plant output to be bounded by a 
given value 1000limv = . So we have to ensure that the gain γ 

of the controller is such as limM( ) vγ < . 

The control architecture is distributed as shown in Fig. 1.  

We consider that the dropping policy is handled by a 
dedicated admission controller implemented in the sensor or 
in a router. The available memory in this device allows 
representing a pattern whose size is less or equal to 10 
( 10k ≤ ).  

Furthermore, we impose to limit the network bandwidth used 

by this application by ensuring 
1

0.5
m

k k
≤ ≤ . The 

computation of 
0

( ) sup ( )n
n

M vγ γ
≥

=  is done thank to the 

algorithm presented in Fig.5. 

The result we obtained is given in Table 1. The two first 
columns give the (m,k) constraint: m, k, and the pattern Π. 
The third and fourth columns provide optγ  that minimises the 

limit of the plant output variance for this constraint and 

opt optM M( )γ=  (see Fig. 6 for the algorithm providing 

optγ ).  The column 5 contains 0M( )γ  and in order to 

estimate, for this case study, if 0γ  is a tight upper bound 

of optγ , we provide two information: the first one (n< ) gives 

the number of γ  tested in [ [min max,  γ γ  such as  

0( ) ( )M Mγ γ< , the second one (ε ) furnishes an indicator on 

the relative distance between 0M( )γ  and optM( )γ  and is 

evaluated as 
0 opt

opt

M( ) M( )

M( )

γ γ
ε

γ
−

= . 

 

 

/* Calculation of optγ  such as optM( ) inf M( )
γ

γ γ=  

/* -Input data 

/*  * α, β : characteristic of the plant 

/*  * 2
pσ , 2

qσ :noises on plant output and input 

/*  * γ: controller gain 
/*  * limits on k, m/k and limv  

/* -Result 

/*  * optγ , optM( )γ , 0M( )γ  for each admissible Π 

begin  

  for each (m,k) such as 2..10k = , 0.5m
k ≤    loop 

   
1

min 0

k

mγ γ α β−= − ;    1
max 0

k

mγ γ α β−= +    

   max mind ( ) 100γ γ= − ; 

   optγ = minγ ; opt optM M( )γ= ; 

   for each g in [ min maxd ...  γ γ+ [ , step d  loop 

     M= M( )γ  ; 

     if (M< limv ) then 

                 if (M< optM M< ) then 

                    optM M= ; optγ = γ ; 

                  end if 
           end if 
      end loop 
  print(m,k,Π, optγ , optM , 0M( )γ ); 

 end loop 
end 

 

Fig. 6. Evaluation ofoptγ , optM( )γ , 0M( )γ  for each (m,k) 

constraint that is admissible. 

 

The smallest limit of the plant state variance is obtained for a 
(1,2) constraint whose pattern is 10" "Π = . In this case, the 
best gain is -2,966667optγ =  and 90,11optM( )γ = . Note 

that, for this pattern, on 100 regularly spaced values of γ, 10 
of them are such that 0( ) ( ) ( 3) 91M M Mγ γ< = − = .  Fig. 7 

shows the curve ( )M γ for this configuration. 

The largest limit of the variance corresponds to a (5,10) 
pattern, 1110100100""Π = . The optimal gain is 

-2,9933optγ =  and  819,70optM( )γ = . 0( ) 820M γ = . Only 

2 values of γ are such as 0( ) ( )M Mγ γ<  and ε is smallest 

than 0,00001 (see Fig. 8).  

For this example, the value of 0 3
αγ
β

−= = −  appears to 

provide a tight upper bound of  inf ( )M
γ

γ . 



 
 

     

 

Table 1. optγγγγ , optM( )γγγγ  according to m, k, ΠΠΠΠ    

( , )m k  Π  optγ  optM  
0M( )γ  n<  ε  

( 1, 2) 10 -2,9667 9,01E+01 9,10E+01 10 1,0% 

( 1, 3) 100 -2,9956 8,19E+02 8,20E+02 3 0,1% 

( 2, 4) 1100 -2,8933 7,86E+02 8,20E+02 26 4,3% 

( 2, 5) 10100 -2,9692 8,13E+02 8,20E+02 15 0,9% 

( 3, 6) 110100 -2,9667 8,12E+02 8,20E+02 11 1,0% 

( 3, 6) 110010 -2,8600 7,75E+02 8,20E+02 32 5,8% 

( 3, 7) 1100100 -2,9954 8,19E+02 8,20E+02 2 0,1% 

( 3, 7) 1010100 -2,9676 8,12E+02 8,20E+02 14 1,0% 

( 3, 8) 10100100 -2,9968 8,19E+02 8,20E+02 3 0,1% 

( 4, 8) 11100100 -2,9933 8,20E+02 8,20E+02 2 0,1% 

( 4, 8) 11010100 -2,9667 8,12E+02 8,20E+02 10 1,0% 

( 4, 8) 11010010 -2,9667 8,12E+02 8,20E+02 11 1,0% 

( 4, 8) 11001010 -2,8400 7,71E+02 8,20E+02 35 6,4% 

( 4, 9) 110100100 -2,9949 8,19E+02 8,20E+02 1 0,1% 

( 4, 9) 110010100 -2,9696 8,12E+02 8,20E+02 10 0,9% 

( 4, 9) 110010010 -2,9949 8,19E+02 8,20E+02 1 0,1% 

( 4, 9) 101010100 -2,9696 8,12E+02 8,20E+02 12 1,0% 

( 4,10) 1100100100 -2,9962 8,19E+02 8,20E+02 2 0,1% 

( 4,10) 1010100100 -2,9962 8,19E+02 8,20E+02 2 0,1% 

( 5,10) 1110100100 -2,9933 8,20E+02 8,20E+02 2 0,1% 

( 5,10) 1110010100 -2,9733 8,13E+02 8,20E+02 9 0,9% 

( 5,10) 1110010010 -2,9933 8,20E+02 8,20E+02 2 0,1% 

( 5,10) 1101100100 -2,9933 8,20E+02 8,20E+02 2 0,1% 

( 5,10) 1101010100 -2,9667 8,12E+02 8,20E+02 10 1,0% 

( 5,10) 1101010010 -2,9667 8,12E+02 8,20E+02 10 1,0% 

( 5,10) 1101001100 -2,9667 8,12E+02 8,20E+02 11 1,0% 

( 5,10) 1101001010 -2,9667 8,12E+02 8,20E+02 11 1,0% 

( 5,10) 1100110010 -2,8933 7,86E+02 8,20E+02 27 4,3% 

( 5,10) 1100101010 -2,8333 7,69E+02 8,20E+02 37 6,6% 
 

5.  IMPLEMENTATION ISSUES 

As stated above, the goal of our communication and control 
co-design approach is to optimize both the network 
bandwidth utilization and the QoC.  

The approach we proposed consists in selectively dropping 
the sampling data packets to reduce the network load while 
still maintain an acceptable QoC for the application. In fact, 
as we have shown in section 2 and 3, for a given sampling 
period, the control loop can tolerate a certain consecutive 
data packet drops, i.e. the longest run of 0 in the (m,k)-
pattern. To achieve the selective data dropping in case of 
network overload, a dropping mechanism should be 
implemented either in the network and/or at sender nodes 
(e.g. the sensor node in our control loop), and a trigger 

condition should also be implemented to know the condition 
to decide the packet dropping. 

 

Fig. 7. M(γ) under a (1,2) constraint ( 10" "Π = ). 

 

Fig. 8. M(γ) under a (5,10) constraint ( 1110100100""Π = ). 

 

For the synchronous system considered in Fig. 2, a simple 
way to if the network is in overload situation or not is the use 
of a timer at the sender node (sensor) by setting the timeout 
value to δ − τsc. Where τsc is the expected packet transmission 
delay from the sensor node and the controller node plus a 
secure margin (e.g. mean value + the variance). This delay 
can be either estimated on-line (similar to the round trip time 
estimation in TCP) on fixed off-line when it is possible. If a 
sample data packet is not transmitted in time (i.e., before 
δ − τsc), it indicates that the network is in congestion and we 
should reduce the workload by sending the sampling data 
packet according to a pre-configured (m,k)-pattern (could be 
implemented using a k-bits register). The system passes thus 
from the normal mode to a degraded mode. The system can 
try to return back to the normal mode after a fixed period or 



 
 

     

 

by observing that the delay before sending the data packet is 
much lower than δ − τsc. 

6. CONCLUSIONS 

In this paper we decided to choose a simple mono-variable 
linear system with a proportional controller to illustrate the 
approach of control and communication co-design. We 
assumed “zero control” action in case of sampling data drop. 
So for dealing with network congestion we proposed to 
selectively drop sampling data according to (m,k)-firm model.  

Following new results are presented: 1) We proved (Eq. 3) 
that the network-induced delay can be incorporated into the 
discrete-time system model under our “zero control” action 
assumption, allowing thus the system stability analysis by 
only considering the data drops. 2) When periodic dropping 
pattern is applied to the system output sampling data, classic 
plant state variance does not converge to a value. In this case 
the upper bound of the variance can be used instead. 3) We 
derived that the system stability (upper bound of the 
variance) only depends on the value of m and k but not (m,k)-
pattern (theorem 1). Moreover, we identified a gain 0γ  that 
can easily be computed (even on line) and that provides a 
tight approximation of the best upper bound of the variance; 
this gain only depends on the longest run of 0 in the (m,k)-
pattern (corollary). 

Although a very simple system has been chosen in this paper, 
it is worth noting that the principle of this approach can also 
be applied to multi-variable linear systems. For instance in 
(Jia et al. 2007) and (Felicioni et al. 2006), a two-variable 
system has been considered and ZoH has been assumed, the 
stability as well as the QoC under (m,k)-firm dropping policy 
have been investigated using LQ cost function. The results 
are also encouraging. 

Our future work aims at extending this approach to handling 
multiple control loops sharing a same network (wired or 
wireless) where the design of packet scheduling and selective 
dropping should significantly contribute to optimizing the 
resource utilization while still keeping the system stable and 
with a graceful QoC degradation during network congestion 
situations. 
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