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On the Degree of Standard Geometric
Predicates for Line Transversals in 3D

Hazel Everett ~ Sylvain Lazard ~ William Lenharf  Lingiao Zhang

November 8, 2007

Abstract

In this paper we study various geometric predicates for determining tseege of and categorizing the config-
urations of lines in 3D that are transversal to lines or segments. We tertiidegrees of standard procedures of
evaluating these predicates. The degrees of some of these pracadriirprisingly high (up to 168), which may
explain why computing line transversals with finite-precision floating-paiithmetic is prone to error. Our results
suggest the need to explore alternatives to the standard methods aftaugithese quantities.

1 Introduction

Computing line transversals to lines or segments is an itapboperation in solving 3D visibility problems arising
in computer graphics [2, 7, 8, 9, 10, 14]. In this paper, welgtarious predicates and their degrees concerning line
transversals to lines and segments in 3D.

A predicate is a function that returns a value from a discsete Typically, geometric predicates answer questions
of the type “Is a point inside, outside or on the boundary oé®'s We consider predicates that are evaluated by
boolean functions of more elementary predicates, ther lagtimg functions that return the siga (0 or+) of a multi-
variate polynomial whose arguments are a subset of the pgvameters of the problem instance (see, for instance [1]).
By degreeof a procedure for evaluating a predicate, we mean the mawigegree in the input parameters among all
polynomials used in the evaluation of the predicate by thegualure. In what follows we casually refer to this measure
as the degree of the predicate. We are interested in thealbgause it provides a measure of the number of bits
required for an exact evaluation of our predicates whenrpatiparameters are integers or floating-point numbers;
the number of bits required is then roughly the product oftkbgree with the number of bits used in representing each
input value.

In this paper, we first study the degree of standard proceduredetermining the number of line transversals to
four lines or four segments in 3D; recall that four linesRif admit 0, 1, 2 or an infinite number of line transversals
and that four segments admit up to 4 or an infinite number & fiansversals [3]. We also consider the predicate
for determining whether a minimal (i.e., locally shortestpment transversal to four line segments is intersected by
triangle. These predicates are ubiquitous in 3D visibpitgblems. The latter predicate, for instance, can be uged fo
determining whether two triangles see each other in a sddnamgles (that is, for determining whether there exists a
segment joining the two triangles and that does not propeitysect any of the other triangles). Finally, we study the
predicate for ordering planes through two fixed points, gdahe containing a third rational point or a line transversa
to four segments or lines. This predicate arises in theingtiggiane-sweep algorithm that computes the minimal free
segments tangent to four amokgonvex polyhedra in 3D [2].

Our study shows that standard procedures for solving thesdigates have high degrees. We study, in partic-
ular, procedures that involve computing the Plicker cowadis of the line transversals involved in the predicates.
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Throughout the paper, the points defining input geometiiitives (which can be lines, segments, and triangles) are,
by assumption, given by their Cartesian coordinates andi¢lgeees of the procedures for evaluating predicates are
expressed in these coordinates. We show that, for detergnthe number of transversals to four lines or four seg-
ments, such standard methods lead to procedures of degoee382respectively. For determining whether a minimal
segment transversal to four line segments is intersecteditigngle, we show that these methods lead to a procedure
of degree 78. Also, for ordering, in a rotational sweep alzolite, two planes, each defined by a line transversal to
four lines, such methods lead to a procedure of degree 144hdfmore, in some implementations, the Plucker co-
ordinates of the relevant line transversals are computadiay that the degrees of these procedures are even higher;
for instance, the procedure for evaluating the latter magdifor ordering planes then become of degree 168 instead of
144. These very high degrees may help explain why using fixedision floating-point arithmetic in implementations
for solving 3D visibility problems are prone to errors whewem real-world data (see, for instance, [11]).

The degrees we present are tight, that is, they correspoting tmaximum degree of the polynomials to be eval-
uated, in the worst case, in the procedures we consideroltidlioe stressed that these degrees refer to polynomials
used in specific evaluation procedures and we make no claittmeooptimality of these procedures.

In the next section we describe a standard method used fquudorg the line transversals to four lines, which is
common to all our predicates. In Section 3 we describe thdigates and their degrees. Some experimental results
are presented in Section 4.

2 Computing lines through four lines

We describe here a method for computing the line transwetsalour lines in real projective spa® (R). This
method is a variant, suggested by Devillers and Hall-Hglaf&l also described in Redburn [15], of that by Hohmeyer
and Teller [12]; note that, for evaluating predicates, #itel method is not appropriate because it uses singulage val
decomposition for which we only know of numerical methodsl éimus the line transversals cannot be computed
exactly, when needed.

Each line can be described using Plicker coordinates (3&ef¢t example, for a review of Pliicker coordinates).
If a line ¢ in R is represented by a direction vectbrand a pointp in R3 then? can be represented by the six-
tuple (U, U x (TEJ) in real projective spac&°(R), whereO is any arbitrarily, fixed, origin anc denote the cross
product. The side producd of any two six-tuple¥ = (a1,ay,a3,a4,8s,a5) andk = (x1,X2,X3,X4,X5,Xg) IS L Ok =
agX1 + asxo + agXs + a1 Xq + axXs + asxg. The fundamental importance of the side product lies in #ut that a six-
tuple k € P5(R) represents a line in 3D if and only Ko k = 0; this defines a quadric iR°(R) called the Pliicker
quadric. More generally, recall that two lines interseatgal projective spac@3(R) if and only if the side product of
their Pliicker coordinates is zero. Notice that this imptiesgt there is a predicate for determining whether two lines
intersect inP3(R) which is of degree two in the Pliicker coordinates of the limed, if the lines are each defined by
two points, of degree three in the Cartesian coordinatesesft points.

Oriented lines ofR3, with direction vectort and through a poinp, can be represented similarly by a six-tuple
(4,d x (7[3) in real oriented projective spacee(, the quotient ofR®\ {0} by the equivalence relation induced by
positive scaling). The sign (positive or negative) of thdesbperator of two oriented linésandk then determines
on which “side” of/, k lies; for instance, ibp andoq are two lines oriented fror to p and fromo to g and/ is an
arbitrarily oriented line such thd p, g, ando are not coplanar, theff ® op) (¢ ® oq) < 0 if and only if £ intersects
segmenipq (see Figure 1(a)).

Given four linesty, ..., ¢4, our problem here is to compute all lings= (x1, X2, X3, X4,%s,%s) € P°(R) such that
ko =0, for 1< i < 4, which can be written in the following form:

X1
a a a a; a & X2 0
b4 b5 be b]_ b2 b3 X3 0
Cs C - 0 @
4 C C C C C3 X4
d4 d5 de d1 dz d3 X5 0
X6



where the rows of the % 6 matrix contain the Pliicker coordinates of the four lindsisTan be rewritten as

B a & ag X3 asXy + asXz 0
bg b1 by bs X4 n baxq + bsxo _ 0 (2)
C6 Cb C2 C3 X5 C4X1 + C5X2 0
ds di d» ds X6 dax1 + dsXo 0

Let 6 denote the determinant of the above 4 matrix. Assumingd # 0, we can solve the system fgs, X4, X5, and
X in terms ofx; andx,. Applying Cramer’s rule, we get

X3 = —(01x1+Pix2)/d
Xo = —(a2x1+B2x2)/d
Xs = —(0axy+PBax2)/d
Xe = —(04x1+Pax2)/d

whereq; (respectivelyB;) is the determinarii with theit" column replaced byas, by, cs4,ds) " (respectively(as, bs, cs, ds)T).
We rewrite this system as

X1 = —ud

X2 = —VvO

X3 = O1u+P1v 3)
X4 = Oau+PBav

Xs = Ozu+PBav

Xg = Qgu+PBav

with (u,v) € P(R). Sincek is a line, we havék® k = 0, which implies
X1X4 + X2X5 +X3Xe = 0.

Substituting in the expressions for. . . xg, we get

AW+ Buv+CV? =0 (4)
where
A = a104— (1257
B = a1Bs+B104—P20—03),
C = BiBs—B3d.

Solving this degree-two equation {o,v) and replacing in (3), we get (assuming tiag 0) that the Plucker coordi-
nates of the transversal linksre:

x1 = BOFJIVB?-4AC

X2 = —2Ad

X3 = —-Bai1+2AB1+a1v B2 —4AC

X4 = —Boay+2AB2+0,vVB2—-4AC ®)
X5 = —Basz+2AB3+ 03V B2—4AC

X6 = —Bos+2ABs+ 0svB2—4AC.

Lemma 1. Consider four lines, given by the Cartesian coordinatesaifgpof points, that admit finitely many line
transversals ifP3(R). If the four lines are not parallel to a common plane, the Rircoordinates of their transversals
in P3(R) can be written asp + ¢;v/A, i = 1,...,6, where@, ¢;, andA are polynomials of degree at mdkt, 6, and

22, respectively, in the coordinates of the input points. @tlee, the Plicker coordinates of the transversals can be
written as polynomials of degree at md€&t Moreover, these bounds are, in the worst case, reachedfee tof the
coordinates.



Proof. The assumption that the four lines admit finitely many transals inP3(R) ensures that the 4 6 matrix of
Plucker coordinates (in (1)) has rank 4. Consider first thee aghere the four input lines are not all parallel to a
common plane. Then, thexd3 matrix of the direction vectors of the four lines has rankBy. the basis extension
theorem, this matrix can be complemented by one of the otilamms of the matrix of Plicker coordinates (of (1))
in order to get a 4« 4 matrix of rank 4. We can thus assume, without loss of geitgrtlat the 4x 4 matrix of (2) has
rank 4.
Since, by assumption, the four lines admit finitely many sramsals ifP3(R), A, B, andC in (4) are not all zero.
We compute the degree, in the coordinates of the input pahthe various polynomial terms in (5). For each input
line ¢;, the first three and last three coordinates of its Plickeresgmtation have degree 1 and 2, respectively. Hence
0, a1, andB; have degree 5 and, and3; have degree 6 far= 2,3,4. Hence A B, andC have degree 11 and the
bounds on the degrees@f ¢;, andA follow. Note, in particular, that, iA # 0, these bounds are reachedifer4,5, 6.
Consider now the case where the four input lines are pataletommon plane. Since the four lines admit finitely
many transversals iB3(R), they are not parallel. It follows that thex43 matrix of the direction vectors of the four
lines has rank 2. Two vectors, séai, bi,ci,d;) fori = 1,2, are thus linearly independent and, by the basis extension
theorem, the corresponding«2 matrix can be complemented by two other columns (&aybi, ¢, d;) for i = 4,5)
of the matrix of Plicker coordinates (of (1)) in order to defan4x 4 matrix of rank 4. As above, a straightforward
computation gives the Plicker coordinates of the line trarsal. We get

Xy =01U, X2=02U, X3=-Ud, X4=03U+P3V, X5s=04U+PsV, Xg=—-VO
where(u,v) € P1(R) is solution of the equation
AW +Buv=0 where A =a03+0504 and B =aiBs+asBs+ (6)

0,071,052, B3, B4 have degree 6 ands, a4 have degree 7 (any = B, = 0) thusA’ and B’ have degree 13 and 12,
respectively. Note thak’ andB’ are not both zero since there are finitely many transverséis.Pliicker coordinates

of the transversals can thus be written as polynomials afegegt most 19 and, for one of the transversals (the one not
in the plane at infinity), this bound is reached for three dowates (namelya, Xs, Xs). O

Lemma 2. Consider four lines, given by the Cartesian coordinatesaifgpof points, that admit finitely many line
transversals irfP3(R). If the four lines are not parallel to a common plane, we campate on each transversal two
points whose homogeneous coordinates have the fpsdi /A, i = 1,...,4, whereq, ¢i, andA are polynomials of
degree at most7, 6, and22, respectively, in the coordinates of the input points. @tliee, we can compute on each
transversal two points whose homogeneous coordinatesodya@mials of degree at mo$®. Moreover, these bounds
are reached, in the worst case, for some coordinates.

Proof. Denote byw; (resp.ws) the vector of the first (resp. last) three coordinate&gf. . . ,xs), the Plicker coordi-
nates of a liné, and letn denote any vector @&3. Then, if the four-tupléws x n,w; - n) is not equal tq0,0,0,0), it is

a point (in homogeneous coordinates) on the kifby Lagrange’s triple product expansion formula). By cdesing
the axis unit vectors fam, we get that the four-tuplg®, xs, —xs,X1), (—Xs,0,X4,X2), (X5, —X4,0,X3) that are non-zero
are points on the transversal linkes Either five of the six Plicker coordinates lofire zero or at least two of these
four-tuples are non-zero and thus are pointkoin the latter case, the result follows from Lemma 1. In therfer
case, two points with coordinates 0 or 1 can easily be condpuridinek since the line is then one of the axis or a line
at infinity defined by the directions orthogonal to one of thisa O

Remark 3. In some implementations (for instance, the one of [15]),4he4 submatrix of the matrix of Pllicker
coordinates (seél)) used for computing the line transversals is chosen, byultefas the leftmost submatrix whose
determinant has degree 7 in the coordinates of the inputtpoiin this case, the Pliicker coordinates of the line
transversals are written ag + ¢iV/A, i = 1,...,6, where@, ¢;, andA are polynomials of degree at mazd, 7, and

26, respectively, in the coordinates of the input points (drese bounds are reached). Similarly for the homogeneous
coordinates of two points on the transversals.



3 Predicates

3.1 Preliminaries

We start by two straightforward lemmas on the degree of pegds for determining the sign of simple algebraic
numbers. Ifx is a polynomial expression in some variables, we denote byxfi¢he degree ok in these variables.
This first lemma is trivial and its proof is omitted.

Lemma 4. If a,b, and c are polynomial expressions of (input) rational nensbthe sign of & b,/c can be determined
by a predicate of degremax{2deda),2dedb) +degc)}.

Lemma 5. If aj,Bi, 8,4, i = 1,2, are polynomial expressions of (input) rational numbel® sign ofay + B1vd+
(a2 +B2V/3) /M can be obtained by a predicate of degree

max{4dedai), 4dedpi)+2dedd), 4deday)+2dedqyu), 4dedpz)+2dedd)+2dedp),
2dedo1)+2dedp1) +degd), 2dedoay)-+2dedpz)+2ded)+degd)}.

Proof. The predicate is to evaluate the sign of an expression ofdime &+ b, /i, wherea = ay + B1Vd, b=a+
Bo\/3, anda;, i, d are rational. This can be done by evaluating the signa, &f anda? —b?u. The first two
signs can be obtained by directly applying Lemma 4. On therotiand,a® — b?u is equal toA+ Bv/3 with A =
02+ B25 — asp— B2ud andB = 2a1B1 — 2aB2p. The sign ofA+ Bv/3 can be determined by another application of
Lemma 4, which gives the result. O

3.2 Transversals to four lines

We consider first the predicate of determining whether fowed admit 0, 1, 2, or infinitely many line transversals in
P3(R) (that is lines inP3(R) that intersect, ifP3(R), the four input lines). An evaluation of this predicate ditg
follows from the algorithm described in Section 2 for conipgtthe line transversals. Recall that, in the sequel, all
input points are, by assumption, given by their Cartesiamdioates.

Theorem 6. Given four lines defined by pairs of points, there is a predicd# degree22 in the coordinates of these
points to determine whether the four lines admit 0, 1, 2, @nitely many line transversals iF3(R).

Proof. We consider three cases. First, if the four lines are paralleich can easily be determined by a predicate
of degree 3, then they admit infinitely many line transversalP*(R). Second, if the four lines are not parallel but
parallel to a common plane, which can easily be determined pyedicate of degree 3, then the four lines admit
infinitely many transversals if Equation (6) is identicatigro and, otherwise, 2 line transversal?i{R) ; this can
thus be determined with a predicate of degree 13 (see thé @rbemma 1). Finally, if the four lines are not parallel
to a common plane, they admit infinitely many transversdigifiation 4 is identically zero and, otherwise, 0, 1, or 2
transversals depending on the signdafin Lemma 1) which is of degree 22 in the coordinates of thetgailefining
the lines. O

Note that if the leftmost (instead of the rightmost) 4 submatrix of the matrix of Plucker coordinates (in (1)) is
used for computing line transversals (see Remark 3) theprtieedure described in the above proof has degree 26
instead of 22.

All line transversals are defined R? except in the case where the four input lines are parallettamon plane,
in which case the intersection of this plane with the planmfatity is a line transversal at infinity. Note also that,
determining whether a line transversalfif(R) is transversal ifR® amounts to determining whether the transversal is
parallel to one of the four input line%, that is if their direction vectors are collinear. This candone, by Lemmas 1
and 4, by a predicate of degree 36 in the Cartesian coordinhtae points defining the input lines.

Note, however, that if the points defining thehave rational coordinates and if the transversal is pataliene of
the;, the Plicker coordinates of the transversal are rationdgeéd, the multiplicative factor of the direction vectors
is rational (since one of the coordinates of the directicetaeof the transversal is rational.g, x2 in (5)) and thus all
the coordinates of this direction vector are rational, Whiroplies thatA is a square in (5). Hence, deciding whether
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Figure 1. (a): Transversal intersects segmemigonly if (¢©op) (¢®oq) < 0. (b-c): An illustration for the proof of Lemma 10.

a transversal is parallel to one of the input lifesan be done by first determining whettleis a square and, if so,
testing whether the direction vectors are collinear. Istfuliows from Lemma 1 that determining whether a transversa
is parallel to one of the input lines can be done with a fixed-precision floating-point arithmesmg a number of
bits roughly equal to 22 times the number of bits used in gTENng each input value. This should be compared
to the degree 36 of the above procedure. In this paper we leatdcted our attention to evaluation procedures for
predicates that consist entirely of determining the sigmotynomial expressions in the input parameters. We se® her
an example of a predicate which may be more effeciently etatuby a procedure which permits other operations,
in this case, dertermining whether a rational number is aggurhis provides an interesting example of a geometric
predicate whose algebraic degree does not seem to be aglyeatiequate measure of the number of bits needed for
the computation.

3.3 Transversals to four segments

We consider here the predicate of determining how many veasals four segments & admit. Recall that four
segments may admit up to 4 or infinitely many line transvergil In this section, we prove the following theorem.

Theorem 7. Given four line segments, there is a predicate of degree 3Baéncoordinates of their endpoints to
determine whether those segments admit 0, 1, 2, 3, 4, orteifimhany line transversals.

Note that if, the leftmost (instead of the rightmost)y 4 submatrix of the matrix of Pliicker coordinates (in (1)) is
used for computing line transversals (see Remark 3) theprtuedure described below for the predicate of Theorem 7
has degree 42 instead of 36.

We consider, in the following, the supporting lines of tharfesegments, that is, the lines containing the segments;
in the case where one (or several) segment is reduced to & yweiconsider as supporting line, any line through this
point and parallel to at least another supporting line. W& fionsider the case where the four supporting lines admit
finitely many transversals i®(R); this can be determined by a predicate of degree 22, by Theére

Lemma 8. Given four segments iR® whose supporting lines admit finitely many line transvessalP®(R), deter-
mining the number of transversals to the four segments catobe with a predicate of degree 36 in the coordinates
of their endpoints.

Proof. Let ¢ denote an (arbitrarily) oriented line, as well as its Pliioct@ordinates, that is transversals to the four
lines; £ can be computed as described in Section 2. We consider ttieaie of determining whethérintersects each
of the four segments, in turn. Letandqg denote the endpoints of one of these segments. For any ttiadlisointsr
ands, denote bys the Plicker coordinates of the lingeoriented fronr to s; depending on the context also denotes
the line throughr ands or the segment fromto s.

If a point o does not lie in the plane containing lideand segmenpq (see Figure 1(a)), then lingintersects
segmenipqif and only if the oriented liné is on opposite sides of the two oriented lines frono p and fromoto g,
thatis if (/®op) ({®0q) < 0 (recall that> denotes the side operator — see Section 2).



On the other hand, pointlies in a plane containing linéand segmenpq if and only if ¢ intersects (ifP3(R))
both linesop andoq, that is both side operatofs> op and/® oqg are zero. By choosing poimtto be for instance
(1,0,0), (0,1,0), (0,0,1), or (1,1,1), we ensure that one of these points will not be coplanar withd segmenpq
unless segmenmniqlies on/.

Hence the predicate follows from the sign of side operatbith@ line transversal and of a line defined by two
points, one of which with coordinates equal to 0 or 1. The eegf the Plicker coordinates of the line through these
two points is thus 1 (in the coordinates of the input pointdence, by Lemma 1, the predicate can be computed
by determining the sign of polynomials of degree at most 2@efinput lines are parallel to a common plane and,
otherwise, by determining the sign of expressions of thefa#- b,/c wherea, b andc have degree at most 18, 7, and
22, respectively; moreover, these bounds are reached. Byrae4, the predicate thus has degree 36, which concludes
the proof. O

We now consider the case where the four lines admit infiniteyy transversals. Recall that#4(R), four lines
or line segments admit infinitely many transversals onlgjf [
1. they lie in one ruling of a hyperbolic paraboloid or a hyjoid of one sheet,
2. they are all concurrent, or
3. they all lie in a plane, with the possible exception of augrof one or more that all meet that plane at the same
point.

We treat the cases independently.

Lemma 9. Given four segments i3 whose supporting lines are pairwise skew and admit infipitekny line
transversals, determining the number of their line tramsaks can be done with a predicate of degree at most 36
in the coordinates of their endpoints.

Proof. When four lines are pairwise skew, their common transversaishe parameterized by their points of inter-
section with one of the lines; moreover, the set of commonstrarsals to the four segments corresponds (through
this parameterization) to up to four intervals on that lind ¢he transversals that correspond to the endpoints dof thes
intervals contain (at least) one endpoint of the segmetsy8 can compute and order all these interval endpoints and
determine whether there exists a transversal (to the faumsets) through each midpoint of two consecutive distinct
interval endpoints. By construction and by [3], the fourreegts admit such a transversal if and only if they admit
infinitely many transversals.

The set of interval endpoints, on, say, segngris a subset of the endpoints &f and of the intersection points
of s; with the planes containing; and an endpoint of3 or s, and of the intersection points of with the planes
containingsz and an endpoint af,. The coordinates of these points can be trivially computedhtional expressions
of degree 4 in the coordinates of the segment endpoints. ddrelioates of the midpoints are thus rational expressions
of degree at most 8.

The transversal to the four lines through (any) one of thegklaoints intersects liné, and lies in the plane
containing linefs and the considered midpoint; the coordinates of the intsepoint between this plane adglare
rational expressions of degree at most 19. Finally, deténgiwhether a transversal (to the four lines) through two
points whose coordinates are rational expressions of d&jamd 19 is a transversal to each of the four segments can
be done, as in the proof of Lemma 8, using side operators. ¢{eme can decide whether the four segments admit
infinitely many transversals with a predicate of degree &atrié since the Pliicker coordinates of the line transversal
are of degree at most 35.

Now, if the four segments admit finitely many transversakscan determine the number of transversals as follows.
As mentioned above, the set of transversals can be parapeetday intervals on a line and the interval endpoints
correspond to transversals that go through a segment entdpotransversal is isolated if and only if it corresponds
to an interval that is reduced to a point. Thus, a transvéssablated only if it goes through two distinct segment
endpoints (the segments necessarily have distinct entdpgimce, by assumption, their supporting lines are pagrwis
skew and thus no segmentis reduced to a point). Determintiegher the lines through two distinct endpoints intersect
the other segments can easily be done, as described in thiegbloemma 8, by computing the sign of side operators
which are here of degree 3 in the coordinates of the segmepbénts. O



Lemma 10. Given four segments iR® whose supporting lines are not pairwise skew and admit tefiynimany
line transversals, determining the number of their linensaersals can be done with a predicate of degree 7 in the
coordinates of their endpoints.

Proof. First, note that testing whether two segments intersectbeadone using side operators with a predicate of
degree 3. The four lines containing the segments are natisaiskew and they admit infinitely many line transversals.
Thus, they are all concurrent or they all lie in a plahewith the possible exception of a group of one or more that all
meet that plane at the same point [3]. Four cases may occur:
(i) all four lines lie in a planeH,

(ii) three lines lie in a planél and the fourth line intersects in exactly one point,

(i) two lines lie in a planeH and two other lines intersekt in exactly one and the same point,

(iv) three lines are concurrent but not coplanar.

Differentiating between these cases can be done by detegnihether sets of four segment endpoints are coplanar
(which is a predicate of degree 3). We study each case in turn.

Case (i). The four segments are coplanar. Any component of trandgezsatains a line through two distinct seg-
ment endpoints. Hence the four segments have finitely mamgversals if and only if any line through two distinct
endpoints that is a transversal to the four segments is tatésitransversal. This only occlisee Figure 1(b)) when
the transversal goes through the endpoints of three segrsanh that the segment, whose endpoint is in between
the two others, lies (itd) on the opposite side of the transversal than the two otlggnerts. This can be tested by
computing the sign of scalar products and side operatovedeet the transversal and the lines through a poit in

H and the segment endpoints (see Figure 1(b)). This leadsredicpte of degree 4.

Case (ii). Three lines lie in a plankl. Testing whether the fourth segment intersects the pgtanan easily be done

by computing the point of intersection betwddrand the line containing the fourth segment, leading to aipagel

of degree 3. If the fourth segment does not intersect ptdntine four segments have no transversal unless the first
three segments are concurrent in which case the four segmawe one or infinitely many transversals depending on
whether the four lines supporting the segments are conaur@therwise, lep denote the point of intersection. We
assume that the three segmentBliare not concurrent; otherwise the four segments have iglfjmtany transversals.
Thus, any component of transversals contains a line thrqughd through a segment endpoint. Hence the four
segments have finitely many transversals if and only if amy throughp and a segment endpoint that is a transversal
to the four segments is an isolated transversal. Testinghehesuch a line is a transversal to all segments can be
done, as in the proof of Lemma 8, by computing the sign of spirators of the line transversal and of lines through
a segment endpoint and a pomhot in H; the coordinates of poinp are rational expressions of degree 4, thus the
Plucker coordinates of the transversal have degree at maghi6h leads to a predicate of degree 7. Such a line
transversal is isolated (see Figure 1(c)) if and onfytife transversal goes through two endpoints of two distinct
segments that lie on the same side (in pleb)eof the transversal or not depending whetbpds in between the two
endpoints or not. This test can be done by computing the digealar products and side operators between the
transversal and the lines through a paimtot inH and the segment endpoints (see Figure 1(c)). This testedsis ko

a predicate of degree 7. We can thus determine the numbeslaféd transversals with a predicate of degree 7.

Case (iii). Two lines lie in a plandd and two other lines intersekt in exactly one and the same point. (Note that
there may be two instances of pladdor a given configuration.) This case can be treated simiks|Case (ii).

Case (iv). Three lines are concurrent but not coplanar. If none of theetltorresponding segments intersect, they
have no common transversal. If only two segments interdeethree segments have exactly one transversal; checking
whether that transversal intersects the fourth segmeneasity be done with a predicate of degree 3. Now, if the
three segments intersect, then the four segments haveehfimany transversals if they are concurrent or if their

1For simplicity, we do not discuss here the case where thetimesversal contains one of the four segments.
2We assume here for simplicity that the line transversal costab segment.



supporting lines are not concurrent. Otherwise, if the frgments are not concurrent but their supporting lines are,
the four segments then have a unique transversal. This satbalchecked with a predicate of degree 3. O

We can now conclude the proof of Theorem 7. By Theorem 6, wedetermine with a predicate of degree 22
whether the four lines containing the four segments adnitefinmany transversals iB3(R). If the four lines admit
finitely many transversals, then, by Lemma 8, determinirgilmber of transversals to the four segments can be done
with a predicate of degree 36. Assume now that the four lidestanfinitely many transversals. Note that determining
whether the input lines are pairwise skew can easily be datieanpredicate of degree 3. Thus, by Lemmas 9 and
10, determining whether the four segments admit O, 1, 2, 8r #finitely many line transversals can be done by a
predicate of degree at most 36. Hence, we can determine thiearwof transversals to four segments with a predicate
of degree 36. O

3.4 Transversals to four segments and a triangle

We consider here the predicate of determining whether amainsegment transversal to four line segments is inter-
sected by a triangle. Given a line transvers# a setS of segments, a triangl€ occluded if ¢ intersectsT and

if there exist two segments i whose intersections with lie on opposite sides of. We describe a method for
evaluating the predicate for determining whether a triamgicludes a transversal to a given set of line segments and
establish its degree.

Theorem 11. Let /¢ be a line transversal to four line segments that admit fipiteany transversals and let T be a
triangle. There is a predicate of degree 78 in the coordisaibthe points defining the segments and the triangle to
determine whether T occludés

Proof. Let¢ denote an oriented line transversal to segments. , s4, each defined by two poingsandfi,i=1,...,4,
and letT be a triangle defined by three poimigg, andr. The Plucker coordinates éfcan be computed as described
in Section 2. We only consider the case where the four linesaiming segments have finitely many transversals
because, otherwise, since the four segments admit finitalyyriransversals, each transversal goes through at least
one endpoint of the four segments and it is straightforwlaad the degree of the predicate is then much smaller.

We first determine whethérintersectsT by taking the side product @fwith each supporting line of (oriented
consistently)? intersectdT if and only if no two side products have opposite sigres (-1). Similarly as in the proof
of Lemma 8, there is a predicate of degree 38 for determiiagign of these side operators.

Assuming that intersectsl’, we next find the point of intersection. By Lemma‘Z;an be represented parametri-
cally in the formrt+ pt. We determine the value bfor which the determinant gb, g, r, i+ pt is equal to zero; denote
this value oft by tg. This determinant has the forag + bgtg, where, by Lemma 239 andbg are polynomials of degree
22ifs1,...,s4 are parallel to a common plane or, otherwise, have the tptnp+/A whereg, ¢, andA have degree 20,
9, and 22, respectively, in the coordinateod,r, g, f;.

Now, for each segmerst, we compute the point of intersection fwith ¢ in terms of the parameterusing the
method similar to that of the previous section: choose atmpinot in the plane determined lsyand/ and compute
the valuet for which the determinant o, f;, 0;, T+ pt equals 0. Denote this value hy Sinceo; can be chosen with
all coordinates equal to 0 or 1, we get, similarly as in theviogs paragraph, that each of these determinants has the
form & + bt whereg; andb; are polynomials of degree 214f, ..., s are parallel to a common plane or, otherwise,
have the formp+ ¢+/A whereg, ¢, andA have degree 19, 8, and 22, respectively.

Determining whetheT occlude< is now only a matter of determining whethgities between two of the values
ti,i =1,...,4, which requires only that we be able to compatalues, that is, compute sifin—t;). Observe that
ti—tj = %b‘?bj < 0, so sigrt; —tj) = sign(ajb; — a;bj) sign(b;) sign(b;). It follows from the above characterization
of thea; andb; that a product;b; is either a polynomial of degree 434, ...,s4 are parallel to a common plane or,
otherwise, has the form+ ¢ /A whereg, ¢, andA have degree at most 39, 28, and 22, respectively (and thesel®o
are reached in the worst case). Applying Lemma 4 yields agaezlof degree 78, which concludes the proof. [J

Note that, if the leftmost (instead of the rightmostx 4 submatrix of the matrix of Pliicker coordinates (in (1))
is used for computing line transversals (see Remark 3) theprocedure described above for the predicate of Theo-
rem 11 has degree 90 instead of 78.



(b)

Figure 2. PlanesP; andP, such thaP; < P,

3.5 Ordering planes through two fixed points, each containig a third (rational) point or a
line transversal

Let/ be a line defined by two pointg andvs, and? be the linef oriented in the directiomvs.

We define an ordering of all the planes containingith respect to the oriented lieand a reference poif@ (not
on/). Let Py be the plane containin@ and/, and letP; andP, be two planes containingy We say thaP; < P, if and
only if Py is encountered strictly befo® when rotating counterclockwise abdia plane fronP, (see Figure 2a).

Let pi be any point on plan® but not on?, for i = 1,2, and letD(p,q) denote the determinant of the four points
(v1,V2, p,q) given in homogeneous coordinates.

Lemma 12. Withx =D(O, p1) - D(O, p2) - D(p1, p2), we have:
(@) Ifx>0thenR > P,.
(b) Ifx <OthenR < P,.
(c) If x =0then
(i) ifD(p1,p2) =0, then R =P,
(i) elseif D(O, p1) =0, then R < Py,
(iii) else R > P..

Proof. Assume first thaD(O, p1) - D(O, p2) > 0, that is, thatp; and py lie strictly on the same side of the plaRe
(see Figure 2b). Then the order®f andP; is determined by the orientation of the four pois, v2, p1, p2), that is
by the sign oD(p1, p2). Itis then straightforward to notice thBt > P, if and only if D(p1, p2) > 0. Hence, ify > 0,
thenP; > P, and, ifx < 0, thenP; < P».

Suppose now thdd(O, p1) - D(O, p2) < 0, that is, thap; and py lie strictly on opposite sides of the plaPRe (see
Figure 2c). The order dP, andP; is then still determined by the sign B p1, p2). However,P, > P if and only if
D(p1, p2) < 0. Hence, we have in all cases thaty if- 0, thenP; > P, and, ifx < 0, thenP, < P,.

Suppose finally thgt = 0. If D(p1, p2) = 0, thenp; andp, are coplanar, angy = P,. Otherwise, ifD(O, p1) =0,
then Py = Py thus P, is smaller to all other planes (containilﬁ'g and in particulaP, < P,. Furthermore, since
D(p1, p2) # 0, P1 # P> and thusP; < P,. OtherwiseD(O, pz) = 0 and we get similarly the®, < P;. O

Computing a point on a plane defined by/ and a line transversal. We want to order plane that are defined

by line ¢ and either a rational point not dh or by a line transversal tband three other lines. In the latter case, we

consider a point on the line transversal (which is non-regipin general; see Lemma 2). The following lemma tells

us that, in general, such a plaRecontains no rational points outside ffand that in the cases where it does contain

such a rational point, the line transversal is then ratiotnce, if the points computed on the line transversal, as
described in Lemma 2, are not rational, there is no need talséar simpler points on the plane (but not fn

10



Lemma 13. The plane P containing a rational liné and a line transversal t@ and three other segments, each
determined by two rational points, contains in general niboraal points except oA Furthermore, if plane P contains
a rational point not or¥ then the line transversal is rational.

Proof. Suppose that the plarfecontains a rational poinp not on¢. Then the plane contains three (non-collinear)
rational pointsp and two points orf, and thusP is a rational plane. This plane intersects the three otlggnsats in
three points, all of which are rational and lie on the transak So the transversal is a rational line which implies tha
the discriminanB2 — 4AC in Equation (5) is a square, which is not the case in general. O

Comparing two planes. We want to order planeB that are defined by either lineand another (input rational)
point not on?, or by linef and a line transversal tband three other lines.

By Lemma 12, ordering such planes abdutmounts to computing the sign of determinants of four pafims
homogeneous coordinates). Two of these points are inpiin€afational) points orf (v andvy) and each of the
two other points is either an input (affine rational) painti = 1,2, or is, by Lemma 2 (and Lemma 13), a point
whose homogeneous coordinates have degree at most 19 ¢odidinates of the input points) or a point of the form
pi +qivAi, i = 1,2, where the; have degree 22 and where theandg; are points with homogeneous coordinates of
degree at most 17 and 6, respectively. If the four points lanepaut points, then the determinant of the four points has
degree 3 in their coordinates.

If only three of the four points are input points, then theedetinant of the four points is either a polynomial of
degree 22 or it has the for®(p1,r1) + D(o1,r1) A1 where the degrees of thi() are 20 and 9, respectively, in the
coordinates of the input points. Hence, by Lemma 4, the sighi®expression can be determined with a predicate of
degree 40.

Finally, if only two of the four points are input points, théme determinant has one of the following forms (de-
pending on whether the quadruples of lines defining the Wemsals are parallel to a common plane); the degrees are
given in terms of the coordinates of the input points:

(i) D(u1,u2) which is of degree 40.
(i) D(ug, p1)+D(u1,q2) VA1 where theD() have degree 38 and 27, respectively.
(i) D(p1,p2) + D(au, p2) VA1 + (D(p1,a2) + D(q1,92) vA1) v/Az where theD() have degree 36, 25, 25, and 14,
respectively.

Hence, by Lemma 5, the sign of these expressions can be dietermith a predicate of degree at most 144 (and the
bound is reached in the worst case). We thus get the follovésaglt.

Theorem 14. Let ¢ be an oriented line defined by two points, lgtlge a point not or¢, and let BB be the plane
determined by and p. Given two planes P, containing/ there is a predicate which determines the relative order
of P, and B about/ with respect to Phaving the following degree in the coordinates of the inmit{s:
(i) degree 3if Ri = 1,2 are each specified by a (input) point p
(i) degree 40 if R is specified by a pointjpand B is determined by a line transversal fcand three other lines
l1,42,43, each specified by two (input) points;
(iii) degree 144 if Ri = 1,2 are each determined by a line transversaltand three other lineg; 1,4; », ¢ 3, each
specified by two (input) points.

Remark 15. Similarly as before, note that, if the leftmost (insteadhef tightmosty x 4 submatrix of the matrix of
Plucker coordinates (itf1)) is used for computing line transversals (see Remark 3) tthepredicates of Theorem 14
have degree 3, 46, and 168.

4 Experiments

In this section, we report the results of experiments thatyae the behavior of the predicate for ordering, in a
rotational sweep about a line, two planes each defined byeariamsversal to four lines, that is the predicate related
to Theorem 14(iii). The degree of the procedure we use foluatiag this predicate is 168 because we use for
computing line transversals to four lines the code of Redpus], which, as noted in Remarks 3 and 15, leads to
degree 168 instead of 144 as in Theorem 14(jii).
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. Ell 1012|100 | 108 | 100 | 104 | 102
predicat
degree 168 99.6% | 50.4% | 7.6% 0.8% 0.08% | 0.008%
degree 3 995% | 82% | 0.08% | 0.001%

Table 1. Percentages of failure of the degree 168 and degree 3 preslicaing double-precision floating-point interval-amititic, fore varying
from 10-12t0 1072,

The standard approach to comparing two such planes is tevakiate the predicate using fixed-precision interval-
arithmetic. This is very efficient but may fail when the sigham expression cannot be successfully determined
because the result of the evaluation of the expression igtarval that contains zero. If this happens, the answeto th
predicate is then obtained by either evaluating exactlettpression (and thus its sign) using exact arithmetic or by
increasing the precision of the interval arithmetic unither the result of the evaluation of the expression is agriat
that does not contain zero or the separation bound is attéé®e for instance [4, 13, 16, 18]); in both approaches the
computation is much slower than when using fixed-precisiterval-arithmetic. We are thus interested in determining
how often the fixed-precision interval-arithmetic evaloatof our predicate fails.

To test our predicate, we generate pairs of planes, eacheddiintwo lines, one chosen at random and common
to the two planes, and the other defined as a transversal tmthmon line and to three other random lines. We are
interested in evaluating our predicate in the case wheréathelanes are very close together, that is, when there is
significant risk of producing an error when using finite-fpsem floating-point arithmetic.

We generate two sets of four lines. Each line of the first séeétermined by two points, all of whose coordinates
are double-precision floating-point numbers chosen umifpat random from the intervg-5000 5000. The second
set of lines is obtained by perturbing the points definingetuf the lines of the first set; the fourth line is not pertdrbe
and is thus common to the two sets. To perturb a ppinte translate it to a point chosen uniformly at random in a
sphere centered @t with radiuse.

We compute, for each of these two sets of four lines, a linestrarsal. If either set of four lines does not admit a
transversal (which happens roughly 24% of the time), wewtwat that data and start again. Otherwise, we choose
a transversal in a consistent way for the two sets of fouslittgat is, such that one transversal converges to the other
whene tends to zero. Each transversal, together with the commendiefines a plane.

For various values of, varying from 102 to 1010, we evaluate the predicate using double-precision floating
point interval arithmetic until we obtain 1000 pairs of péagnfor which the computation of the predicate fails. We
measure the percentage of time that the computation fdiks.r@sults of these experiments are shown in Table 1.

We observe, as expected, that wheis sufficiently small (1019), that is, when the two planes are often close
enough to each other, the fixed-precision interval-ariticr@edicate fails with high probability and that this prob
ability decreases asincreases. When = 102, the probability of failure is close to zero. Finally, we kaalso
observed that the predicate fails when the angle betweemthplanes is less than roughly 1®radians, which is, of
course, independent ef

Note finally that the percentage of failure of the degree I@8lipate using fixed-precision interval-arithmetic is,
as expected, high compared to lower-degree predicatete Tailso shows the failure rate for the degree 3 predicate
related to Theorem 14(i). We use the same experimental sclsmabove, that is, we chose at random three points
that define a plane and perturb one of these points by atanost

All the experiments were made on a i686 machine with AMD Athlo73 GHz CPU and 1 GB of main memory
using the CGAL interval number type with double-precisiaafing-point numbers [5].
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