
HAL Id: inria-00431859
https://hal.inria.fr/inria-00431859

Submitted on 13 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rule-Based Semi Automatic Web Services Composition
Ehtesham Zahoor, Olivier Perrin, Claude Godart

To cite this version:
Ehtesham Zahoor, Olivier Perrin, Claude Godart. Rule-Based Semi Automatic Web Services Com-
position. 2009 IEEE Congress on Services I - SERVICES 2009, Jul 2009, Los Angeles, CA, United
States. pp.805-812, �10.1109/SERVICES-I.2009.77�. �inria-00431859�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50131357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00431859
https://hal.archives-ouvertes.fr

Rule-based semi automatic Web services composition

Ehtesham Zahoor, Olivier Perrin and Claude Godart

LORIA, INRIA Nancy Grand Est Campus Scientifique

BP 239 54506 Vandoeuvre-lès-Nancy Cedex, France

{ehtesham.zahoor, olivier.perrin, claude.godart}@loria.fr

Abstract

In this paper we propose a rule-based approach for the

semi-automatic Web services composition problem, giving

end-user the control to guide the overall composition pro-

cess. The end-user builds the composition flow by select-

ing known Web service instances or constrained Web ser-

vice types, called nodes, and by connecting them using a set

of control/data flow connectors. The specified nodes will

then be bound to concrete Web service instances using a set

of rule-based queries satisfying the associated constraints.

When compared to the traditional approaches, our model

is declarative, allows for specifying both the functional and

non-functional requirements, provides connectors that in-

clude both the data and control flow aspects and aims to

choose the one best matched Web service for a node instan-

tiation.

1. Introduction

Traditional methods for Web services composition prob-

lem such as WSBPEL or WS-CDL have resolved the basic

interoperability problem. However, in complex service ori-

ented applications the services may need to be composed

on the fly, with service instances not known in advance, and

thus introducing the problem to automatically synthesize

and adapt Web services composition process satisfying user

request. There have been many approaches to the automatic

composition problem but it is still considered highly com-

plex task due to the rapid increase in the number of avail-

able services to choose from, the heterogeneity of the access

protocols used and data formats they offer. Further, the pro-

liferation of Web services may lead to a situation where we

have many services with similar functionalities and thus we

need to cater for the non-functional properties.

In this paper we propose a rule-based approach for Web

services composition problem, putting the user in the con-

trol of the composition process. This leads to the semi-

automatic Web services composition problem as the com-

position flow is guided by the user. The motivation for our

work comes from the growing usage of mashups that are

defined in the literature [3, 16, 1] as the new wave for com-

posing Web services.

Our model allows user to select Web service instances

and Web service types, called nodes, and connect them us-

ing the proposed set of connectors in order to define a pro-

cess. When compared to the traditional approaches, our

model has many differences: first, constraints on nodes in-

clude both the functional and non-functional specifications

to be used for Web service discovery. Then, as mashups are

the application level service composition and focus on com-

posing the data from Web services [16], our proposal aims

at providing a set of connectors that include both the data

and control flow aspects. Further, in contrast to the procedu-

ral approaches, we propose a declarative approach to model

the composition process and as opposed to the AI planning

based approaches, we propose to select one best matched

service (based on user specified criteria) as a result of node

instantiation, this would be of critical importance due to the

rapid increase in the number of available services. Our ap-

proach also handles the case when the service instantiation

needs to be backtracked based on dependency between ser-

vices and allows for propagation of newly chosen solution.

The paper is organized as follows. We discuss related

work in section-2 and present the motivating example in

section-3. We broadly discuss our proposal in section-4,

while we detail the composition flow in section-5 and the

concrete composition process in section-6. Implementation

details are given in section-7 while section-8 concludes.

2. Related work

Web services composition is a highly active and widely

studied research direction and there have been many ap-

proaches to automate the composition process. Most of

these approaches can be divided into Workflow composi-

tion and AI planning based approaches, as discussed in [9].

The composition result can be regarded as a wokflow be-

cause it includes the atomic Web services and the control

and data flow between them. Static workflow composition

approaches require an abstract composition flow to be spec-

ified and the selection and binding is performed automat-

ically by the Web services composition process, while the

dynamic workflow composition approaches require to both

build the composition flow and select atomic service auto-

matically based on user request as proposed in [11]. The

composition process can also be regarded as a AI planning

problem by assuming that each Web service can be specified

by its pre-conditions and effects. These approaches require

the user to specify the process by a set of pre-conditions and

effects and the AI planners can then generate a plan with-

out any pre-defined workflow. These approaches are based

on: situation calculus [7], rule-based planning [5], theorem

proving [15] and other approaches including [12].

The problem of traditional approaches (such as WS-

BPEL or WS-CDL) is that all what is not explicitly modeled

is forbidden. In fact, WSBPEL and WS-CDL have in com-

mon that they are highly procedural, i.e., after the execution

of a given activity the next activities are scheduled. Seen

from the viewpoint of an execution language their procedu-

ral nature is not a problem [14]. However, unlike a classical

system, Web services tend to be rather autonomous and an

important challenge is that all parties involved need to agree

on an overall global process. Moreover, this way of mod-

eling renders difficult to model complex orchestrations, i.e.

those in which we need to express not only functional but

also non-functional requirements such as cardinality con-

straints (one or more execution), temporal constraints, ex-

istence constraints, negative relationships between services,

or security requirements on services (e.g. separation of du-

ties). With current approaches, the designer should explic-

itly enumerate all the possible interactions and must either

over-constrain or over-specify the orchestration. In case of

multiple constraints (security and temporal for instance), it

becomes very difficult to do that without declarative speci-

fications. A more detailed discussion can be found in [8].

Our approach can be categorized as a composition

framework (similar to the Astro approach [4]) and it pro-

vides the ability to dynamically discover the Web services

by using the ”service selection rule” to be processed. Our

approach can also be considered as an extension to [6] but in

this work we provide an extended set of connectors (to han-

dle both control and data flow), introduce specification of

non-functional properties, introduce concepts such as prop-

agation and propose that some part of the composition may

be static (with known Web service instances) while some

other may require dynamic binding. Further, we argue the

existence of private constraints for a service as proposed in

[6]. Our approach proposes inferring the worksWith depen-

dency using the service composability rules [5]. In addi-

tion, we have also proposed an implementation framework

for our proposal using known Web service standards.

3. Motivating example

For the motivating example, we have chosen the case

study of a SOA based Corporate Cash Management (CCM)

solution1. Pierre has been hired as the treasury in an organi-

zation, the bigCo. One of his core responsibilities includes

the CCM process, which is defined to be the process of man-

aging a company’s short-term resources, gathered for exam-

ple from various financial institutions and ERP systems, to

sustain its ongoing activities and to mobilize funds.

At bigCo, CCM is currently achieved by manually con-

tacting different participating entities resulting in a tedious,

less efficient and time consuming process. Pierre is willing

to enhance this manual process of CCM by using the SOA

principles, given that various financial institutions and in-

ternal systems being used at bigCo are exposing their func-

tionalities using Web services.

In this context his responsibilities may include to com-

pose cash positions held in multiple banks and internal ERP

systems using the provided Web services; to determine in-

vestment or loan plans using the intelligent decision system

Web service; to discover possible loan/investment options

from various financial institutions based on some specified

constraints (using the provided Web services); and to iden-

tify and execute Web services to get offer rating for the pro-

posed investment or loan offers.

4. Proposed framework

Our proposal aims to provide a declarative framework

for addressing the semi-automatic Web services composi-

tion problem, such as the one presented in the motivating

example. In this section we will briefly discuss the main

concepts related to our approach and will detail them in the

sections to follow. The composition process starts when the

Service Node*

Connectors

Service X*

Concrete composition

Intermediate Language
<connector>

 <outputvariable>?var</outputvariable>

 <service>ServicX</service>

 <Node>

 <constraints>...</constraints>

 </Node>

</connector>

...

2

Transformation

block–getServiceNode: service:Service(?s)

 ∧hasType(?s,"someType")∧ hasConstraints

 (someConstraints) ∧ ... → select(?s)

...

Execution

Offer – loanAmount: 100000€, duration:

7Years, Percentage: 7% ...

OfferRating - Excellent ...

1

Composition Flow

3

Instantiation

Service Node: someWebService

Some Other Node: someOtherWebService

5
4

Figure 1. Proposed model components

user specifies the composition flow using a user friendly in-

terface (see figure 1-1), allowing her/him to drag and drop

1http://www.oasis-open.org/presentations/security/KCronin.ppt

components as similar to the Mashup creation tools such as

Yahoo! Pipes. The user interface will be backed up by a

declarative language, called the intermediate language, (see

figure 1-2), though the end-user does not need to know the

details of the intermediate language and works directly at

the interface level. The various concepts introduced in the

declarative language (that map directly to the components

provided on the user-interface) include:

• Web services - The user can specify the Web services

instances known in advance.

• Nodes - If the Web service instance is not known in ad-

vance, the user can specify the Web service node which

has a unique type such as Bank or Credit Union. User

can also add constraints to the Web service node to be

satisfied when binding the node to some Web service

instance of the same type.

• Connectors - Connectors link different nodes and Web

service instances and specify the control and data flow

between them.

The intermediate language will then be processed by the

composition engine to transform it into a set of rule-based

queries, called blocks (see figure 1-3).

Then, the instantiation process will bound the Web ser-

vice nodes to the actual Web services (see figure 1-4). Fi-

nally, the execution of query blocks will return the results

(see figure 1-5).

5. Composition flow

5.1 Connectors

Connectors link different Web service nodes or in-

stances. Below we highlight some of the basic connectors,

including a special form of data flow connectors known as

operators.

Sequence is the most basic connector that executes the next

Web service in sequence. It specifies both the invocation of

some Web service specified in the target variable and also

stores the invocation result in the output variable. In its ba-

sic form, sequence is a control flow connector but we can

augment it to handle the data flow by specifying the data

to be passed as the input variable, which is then forwarded

to the target Web service for some processing. The role of

input variable here is more than just specifying the input

parameters of the service to invoke, by considering that the

input may have been obtained by some processing earlier

by some other service and/or connector (and thus the data

flow aspect). Sequence connector takes the following form,

the ?inputVariable is optional:

<sequence>

<outputVariable>?resultVar</outputVariable>

<inputVariable>?sourceVariable</inputVariable>

<target>serviceName/node</target>

</sequence>

The Split connector specifies the control (and data) split to

multiple splitBlocks. The split decision can be based on

contents of input data and this special case is called content-

based-split. Further, actual split can take one of three forms:

same input data (or control) is forwarded to all splitBlocks,

the AND-Split; to at-least one of the splitBlocks, OR-Split

and to exactly one of the splitBlocks, XOR-Split:

<split scheme="AND/OR/XOR">

<inputVariable>?sourceVariable</inputVariable>

<splitBlock>

<condition>some condition</condition>

...

</splitBlock>

<!-- other splitBlocks -->

</split>

The split condition is optional and is needed in the case

of content based split. Further, the split connector has

no output variable to bound the results. The separation

between split and aggregation is guided by the different

split and aggregation schemes and to handle this, we

introduce the aggregate connector below.

The Aggregate connector receives a collection of results,

for example from different splitBlocks or output variables.

Once a complete set of results has been received, it binds

a single aggregated result to the output variable. In order

to decide that a set is complete, we introduce the following

aggregation schemes: all - all the results should be con-

sidered, exactly-one - one of the results should be consid-

ered, at-least-one - the first result that is received is con-

sidered, and subset - only a subset of results is aggregated.

However, when the aggregate connector is coupled with the

XOR based split connector, the only possible aggregation

scheme is exactly-one.

<aggregate scheme="(all/exactlyOne/at-least-one/subset)">

<outputVariable>?resultVar</outputVariable>

<!-- some result variables or splitBlocks -->

</aggregate>

Data operators These operators provide operations such

as data transformations and validations for the data to be

passed between different components. This includes a

large variety of data transformation operations ranging

from string manipulation, basic mathematical calculation

operations to advance operations such as enriching data

from service nodes and others. Some commonly used data

transformation and validation operations such as translator,

enricher, filter, normalizer and others are discussed in [16].

The proposed set of connectors can be compared to the

OWL-S control constructs used for the composite process

definition. A major difference is that our connectors can

handle both control and data flows. When compared to the

sequence connector of OWL-S, our sequence connector is

similar but it handles both control and data flows. For the

split and aggregation process, two control constructs are in-

troduced in OWL-S named split and split+join. Partial syn-

chronization in OWL-S, i.e to split all and join some sub-

bag, is similar to the proposed split/aggregate schemes. The

choice OWL-S construct can be handled using the XOR

based split connector while the if-then-else OWL-S con-

trol construct maps to the proposed if-then-else connector,

which is not discussed due to space limitations. Further, the

iterator connectors, similar to the proposed OWL-S itera-

tors can be used, for example to process each of the results

returned by some node instead of selecting the best match.

5.2 Constraints

For the nodes in composition flow, user can further add

constraints that are not only to be satisfied during Web ser-

vices discovery but also specify one specific path (solution)

to choose from all available paths (solutions) for the Web

services composition process. These constraints can be in

the form of non-functional requirements such as security,

reliability, quality requirements. They can also be in the

form of some domain specific functional properties (loan

duration, interest percentage for the motivating example).

!""#$"!%$&'!(()

*+(,%&'-./&0&123%$3%)

!""#$"!%$&'*45*$%)

!"#$%&'(

!"#$)*+$,%&'(
-./0!12*$#

3$4525"'

!12*$#

6,$75*08'5"'

%95:7;0!"45$*1

%&'(0<"7$

!""#$"!%$'$6!1%(7023$)

.&*5'=

!$,>54$

!"##$%&"'(

8,(%$#&'9$1,*,23:&!;243%)

<=&!;243%/$;!,3,3"

>?@@@@)

)*$'+&"'(

,

-

.

/

0

!$49,$?0.$:5&@:$

39,&*5"'0A0B1,2

/$,4$'*&=$0C0DE

!"#(&'+1#&(

;;;

F",(2F5*+

G"HH$,!$,>54$I

Figure 2. Motivating Example

The constraints can either be local to some node, can be

based on properties related to a fragment of the process or

based on the overall composition process. They can also be

modified and passed between different nodes.

5.3 Example

Let us now review the motivating example and see how

the composition flow can be specified. For the CCM sce-

nario, the first part of composition requires Pierre to iden-

tify the current cash positions for the bigCo. As the Web

service instances are known in advance, Pierre specifies the

concrete instances for someBank, someOtherBank and for

the ERP System Web services.

He specifies the AND-split as the connector which splits

the user request to multiple Web service instances and then

specifies the aggregate-all to get the results (see figure 2-

1, for simplicity we have not shown the split operation of

user request). The generated intermediate language code is

shown below:

<aggregate scheme="all">

<outputVariable>?assets</outputVariable>

<split scheme="AND">

<!-- splitBlocks with sequence to Web services -->

</split>

</aggregate>

The aggregated information from banks and ERP sys-

tem, i.e the ?assets variable, is then sequenced to the

intelligent decision making system to either opt for invest-

ment or loan option (see figure 2-2, sequence is the default

connector and is represented by an arrow).

<sequence>

<outputVariable>?DSResult</outputVariable>

<inputVariable>?assets</inputVariable>

<service>decisionSystemService</service>

</sequence>

The information returned by the decision system will be

then filtered to get only the relevant data (see figure 2-2),

space limitation restrict us to discuss the generated inter-

mediate language code. We assume that the filtered deci-

sion and amount information are bound to ?decision and

?invLoanAmount variables respectively.

The filtered information will then be splited using the

XOR split scheme to different financial institutions for pos-

sible investment or loan offers. If the decision is to get loan,

information is sent to the first splitBlock of the generated

intermediate language code shown below. As the bank Web

services providing loan offers are not known in advance,

Pierre specifies the Web service node of type Bank and pro-

vides constraints such as loan period, expected interest per-

centage and others (see figure 2-3).

<aggregate scheme="exactlyOne"> <!--Loan or Investment-->

<outputVariable>?offer</outputVariable>

<split scheme="XOR">

<inputVariable>?decision</inputVariable>

<splitBlock> <!--Loan decision -->

<condition>?decision=Loan</condition>

<sequence>

<outputVariable>?bankLoanOffer</outputVariable>

<inputVariable>?invLoanAmount</inputVariable>

<node>

<nodeType>Bank</nodeType>

<constraints>

<securityRating>High</securityRating>

<reliabilityRating>High</reliabilityRating>

<loanDuration>7Years</loanDuration>

<interestPercentage>5</interestPercentage>

</constraints>

</node>

</sequence>

</splitBlock>

For the investment decision, let us further consider that

the company wants to invest with a specific priority level;

the information is sent to the second splitBlock which will

first sequence the data to the credit union service node and

in case of no complete offer, some building society service

can be contacted (see figure 2-4). Information returned will

then be aggregated by using the aggregate-subset connec-

tor. For the credit union and building society nodes, user

can also specify constraints such as investment period, and

some other non-functional properties (omitted due to the

space limitations).

<splitBlock><!--Investment decision -->

<condition>?decision=Investment</condition>

<sequence>

<outputVariable>?CUOffer</outputVariable>

<inputVariable>?invLoanAmount</inputVariable>

<!-- credit union node -->

</sequence>

<operator name="filter">

<outputVariable>?CUamount</outputVariable>

<inputVariable>?CUOffer</inputVariable>

<messagePart>offerAmount</messagePart>

</operator>

<operator name="subtract">

<outputVariable>?remainingAmount</outputVariable>

<!-- expression: ?invLoanAmount - ?CUamount -->

</operator>

<if>

<condition>?remainingAmount>=10000</condition>

<sequence>

<outputVariable>?BSOffer</outputVariable>

<inputVariable>?remainingAmount</inputVariable>

<!-- building society node -->

</sequence>

</if>

<aggregate scheme="subset">

<outputVariable>?investOffer</outputVariable>

<inputVariable>?CUOffer</inputVariable>

<inputVariable>?BSOffer</inputVariable>

</aggregate>

</splitBlock>

...

Finally the investment or loan offer is filtered and sent to

the rating service, which provides rating for the financial in-

stitution providing the offer. Again, as the service instance

is not known in advance, user specifies Web service node

as of type Rating. User can also add a special constraint

worksWith, which will allow to filter only the rating services

that ”work with” the offer service selected earlier (see fig-

ure 2-5). We will discuss this special construct in section-6.

Space limitations restrict us to discuss the generated inter-

mediate language code.

6. Concrete composition

The generated intermediate language can then be used

for the concrete composition process, which is divided into

following three phases.

6.1 Translation

The concrete composition process starts by converting

the intermediate language into a collection of rule-based

queries, called blocks (see figure 1-3). These blocks act as

the privacy control constructs as only the exposed results of

some block will be available to the later blocks; whereas

the unexposed internal details such as the constraints used

by the block, will be hidden from other blocks. For each

block, the associated query may have some local variables

to operate on and possibly some constraints to be satisfied.

It exposes its results by binding the output variables which

are then available in the blocks to follow.

6.2 Instantiation

The translation process will be followed by the instan-

tiation of all the Web service nodes specified by the user

to some actual Web service instances (see figure 1-4). The

instantiation process may however decide to delay the in-

stantiation of the nodes whose invocation is conditional as

an attempt to improve performance. The instantiation query

block will operate on the knowledge base containing Web

service instances with associated properties and will first fil-

ter only the Web services of the specified node type. Then,

it will further filter the Web services based on the user-

specified constraints. The result may be a collection of Web

service and in case of a loosely constrained node, the re-

sult set can be very large. Our proposal thus aims to choose

the best matched Web service based on some user-specified

criteria such as the quality rating for the Web service, by

assuming that some trusted third-party has quality ratings

assigned to services. This choice can also be based on some

other non-functional requirements or as our proposal aims

to put user in the control of composition process, the user

can also manually select the Web service.

If the instantiation result set for a node is empty then

we have following possibilities. If some constraint is un-

satisfied, user can be given option if she/he wants to relax

the constraint. For example the user can decide to relax the

quality rating from high to some other level in an attempt to

discover new instances. Further, if the worksWith relation

is unsatisfied, we need to backtrack to the results of depen-

dent block to select some other instantiation solution and

then proceed to finding solution for the current block. The

process continues until all backtrack solutions have been ex-

plored. Finally when none of above two situations hold, the

composition process fails with notifying the user of the in-

termediate results and unbound node.

6.2.1 The worksWith dependency

We consider that a service worksWith some other service us-

ing the modified form of the composability rules discussed

in [7]. These rules consider the syntactic and semantic prop-

erties of Web services. Syntactic rules include the rules for

operation modes (one-way, request-response. . .), and the

rules for binding protocols and data formats of interacting

services. However, we can relax the rule for data formats

by considering that two services providing data in different

formats can still work with each other, by using the trans-

late transformation operation as discussed earlier in section

5-1.

The Semantic rules include the message composability

rule which defines that two Web services are composable

only if the output message of one service is compatible with

the input message of another service. In case of seman-

tic Web services described using OWL-S, it is important to

consider that the input and output parameters are defined

in the domain ontology as specifying them as datatypes add

very little to semantics ([10] has a detailed discussion). Fur-

ther, the operation semantic composability defines the com-

patibility between the domains, categories and purposes of

two services while the qualitative composability defines the

requester’s preferences regarding the quality of operations

for the composite service. Then, the composition soundness

considers whether a composition of services is reasonable,

see [7] for details.

6.2.2 Backtracking

The backtracking process involves finding an alternative to

some previously chosen node instantiation solution. Back-

tracking is needed when the worksWith relation for some

node is unsatisfied resulting in empty result set.

6.2.3 Propagation

Once the backtracking process execution terminates, result-

ing in a newly chosen solution (instance), the composition

solution must be recomputed and may require the propaga-

tion of newly chosen solution. This would likely be the case

when a (partial) solution to the composition process has

already been determined and backtracking to some higher

node (in hierarchal order) may result in propagating the new

solution. Further, propagation may also be needed when

the user fine tunes the solution by manually selecting some

other Web service after the instantiation process.

The propagation process will require recomputing the

composition and this may result in significant overhead to

re-instantiate the service nodes. Our proposal aims to re-

instantiate only the Web service nodes that have depen-

dancy on the node to backtrack (either a worksWith depen-

dancy or a data dependancy).

6.3 Execution

The instantiation phase will be followed by the execu-

tion phase, which will return the results of the Web services

composition (figure 1-5).

7. Implementation details

7.1 Architecture

In order to test our proposal, we have implemented a Java

based application and tested it with multiple examples, in-

cluding the motivating example. Below we briefly discuss

various implementation related concepts.

Web services
OWL-S repository

SQWRL

SWRL

custom built-ins

Connectors

transformation

instantiation/

Results

Offer – loanAmount: 100000€,

duration: 7Years ...

OfferRating - Excellent ...

execution

execution

Intermediate Language

<connector> ...

 <Node>

 <constraints>...</constraints>

 </Node>

</connector>...

Figure 3. Implementation Architecture

OWL-S is a OWL-based Web service ontology provid-

ing constructs for describing a Web service in terms of a

service profile (which describes what a service provides and

allows service classification using ServiceCategory attribute

and specification of non-functional properties using Servi-

ceParameter attribute), the process model (which describes

how the service works) and the service grounding (which

specifies concrete details such as message formats, network

addresses used and others).

The Semantic Web Rule Language (SWRL) is intended

to be the rule language for the semantic web. The SWRL

rules are written in terms of OWL classes, properties and

individuals. SWRL also provides a set of core built-ins for

strings manipulation, basic mathematical operations. . . It

also allows to extend the core built-ins to add user defined

built-ins. An example of a SWRL rule to express that a

person with a older female sibling has a older sister can be

written as:

Person(?p) ∧ hasAge(?p, ?pAge) ∧ hasSibling(?p,?s) ∧

Woman(?s) ∧ hasAge(?s, ?sAge) ∧

swrlb:greaterThan(?sAge, ?pAge) → hasOlderSister(?p,?s)

In the rule above, Person is a class with a sub-class

named Woman and hasSibling and hasOlderSister are OWL

properties with domain and range of the class Person. The

rule also uses the hasAge property (with domain as Per-

son and range of primitive datatype Integer) and the SWRL

builtin (swrlb:greaterThan) to add hasOlderSister property

to all individuals who have older female siblings. The Se-

mantic Query-Enhanced Web Rule Language (SQWRL)

adds querying capabilities to SWRL by providing primi-

tives to select, count and perform other operations on the

results of a SWRL rule. Finally, SQWRL queries (and so

as SWRL rules) require a rule-solver and for that we have

used the JESS rule-solver (see figure-3 for the overall im-

plementation architecture).

7.2 Example

For the implementation, we have programmed Java

based Web services to return sample data form different

systems. We have also created their OWL-S descriptions

which include the specification of the non-functional prop-

erties using the approach specified in DAML2 OWL-S ex-

amples. However, our proposal can also adapt the vari-

ous QoS extensions to the OWL-S such as QoS-MO [13],

QoSOnt [2] and other approaches that extend OWL-S for

specifying QoS properties. For the CCM scenario, the con-

crete composition process starts with the translation of in-

termediate language code into a set of query blocks. Below

we discuss the query blocks for various parts of the compo-

sition, for simplicity we will not discuss the node instanti-

ation process separately and will highlight the instantiation

blocks as they are encountered in the control flow of the

composition process.

The first part of the composition (see figure 2-1), is static

and although it does not require querying the rule base to

search for Web services and invocation using rule engine;

we here provide implementation of how such approach can

be used.

service:Service(SomeBankService) ∧ service:supports(

SomeBankService,?SBSGrounding) ∧ grounding:hasAtomic

ProcessGrounding(?SBSGrounding, ?SBSAtProcGrnding)∧

grounding:wsdlDocument(?SBSAtProcGrnding,?SBSWsdl)∧

service:Service(SomeOtherBankService)∧...

connectors:aggregateAll(?assets,?SBSWsdl,

?SOBSWsdl,?ERPSWsdl) → sqwrl:select(?assets)

We have created a SQWRL query which searches

through the OWL-S service model to get the grounding in-

formation for the Web services (we have only presented the

query for SomeBankService) and then passes the URI’s to a

custom SWRL built-in, aggregateALL. This custom built-

in then calls the Web services to get results and aggre-

gates/bounds them to the output variable, ?assets. We

2http://www.daml.org/services/owl-s/1.1/examples.html

can then sequence the variable ?assets to the decision-

SystemService again using the custom SWRL built-in se-

quence. The result of the operation will be available in the

variable ?DSResult. We need to then filter the relevant

message parts, such as decision and amount, from the re-

sult.

connectors:sequence(?DSResult,?assets,"decisionSystem

Service") ∧ connectors:filter(?InvLoanAmount,

?DSResult,"Amount") ∧ connectors:filter(...)

→ sqwrl:select(?decision, ?InvLoanAmount)

Next the contents of the ?decision variable, invest-

ment or loan decision, will be used to either opt for the loan

or investment offer. Let us first consider the case that the

loan offer decision is chosen. According to the composi-

tion flow, the loan request is sent to the bank service, not

known in advance and which should be selected based on

some constraints.

service:Service(?loanBank) ∧ service:presents(?loanBank,

?lbProfile) ∧ profile:serviceCategory(? lbProfile,

?lbCategory) ∧ profile:code(? lbCategory, ?categoryCode)

∧ swrlb:equal(?categoryCode, "522110") ∧

profile:serviceParameter(?lbProfile,?SPReliability)∧

profile:sParameter(?SPReliability, HighlyReliable) ∧

profile:serviceParameter(?lbProfile, ?SPDuration) ∧

profile:sParameter(?SPDuration, 7_Years) ∧ ...

other constraints ∧

service:supports(?loanBank, ?lbGrounding) ∧ grounding:ha

sAtomicProcessGrounding(?lbGrounding,?lbAtProcGrnding)∧

grounding:wsdlDocument (?lbAtProcGrnding, ?loanBankWsdl)

→ sqwrl:select(?loanBank, ?loanBankWsdl)

The query first selects the loan bank services based on

the Web service classification code specified in the service-

Category attribute of the service profile. We have used

NAICS3 categorization for the Web services and the code

value 522110 is for commercial banking. So the initial part

of the query will select only the bank services. Next we

specify the non-functional constraints such as reliability and

some functional properties such as the loan duration and in-

terest percentage. Finally, in the last part of query we get the

selected Web service wsdl URI from its grounding. As our

approach proposes to select only one best match service, for

the implementation we select the first Web service instance

we get after executing the query.

Running the above query on our services repository

will return two Web service instances, someLoanBankSer-

vice and someOtherLoanBankService and we will select

the someLoanBankService to be used. Next, we get the

loan offer from the someLoanBankService using the se-

quence operation, space limitation restrict to discuss the

query. Finally, we send the offer we have received from

the someLoanBankService to the rating service, and again

as the Web service is not known in advance, we specify the

constraints and use query to search for the rating service as

below.
3http://www.census.gov/eos/www/naics/

service:Service(?ratingService) ∧ service:presents(?....

∧ profile:code(?rsCategory, ?categoryCode) ∧

swrlb:equal(?categoryCode, "561450") ∧ ... some

constraints ... ∧ worksWith(?loanBank, ?ratingService)∧

→ sqwrl:select(?ratingService, ?rsWsdl)

The query is similar to the one we mentioned earlier for

the bank service, the NAICS code ”561450” is for the rat-

ing services. In the constraints, we introduce the property

worksWith, i.e we want to only search for the rating ser-

vices that actually ”work with” the someLoanBankService.

For the implementation we have created a OWL-S property

named worksWith that specifies which bank, credit union

and building society services work with which rating ser-

vice. This property can be handled dynamically by adding

SWRL rules for service composability rules discussed ear-

lier. The selected someLoanBankService, does not work

with any rating service and the result set of the above men-

tioned query will be empty. Thus we need to backtrack and

select some other service from the results of previous query,

that is the someOtherLoanBankService and then search for

the rating services that work with it. This time we find

the someOtherRatingService and next we get the offer rat-

ing from the service using the sequence operation query (as

similar to the decisionSystemService query).

Let us also consider the case when investment decision

is chosen by the decision system, as similar to the queries

mentioned above; we first get the credit union service (us-

ing the NAICS code ”522130” for credit unions) and the

corresponding offer by the selected service. Further, let us

consider that the selected Web service does not provide the

investment option for the complete investment amount and

thus some building society service must be contacted for the

remaining amount. The query below handles this, assum-

ing the credit union offer amount is bound to the variable

?cuAmount by some earlier query.

service:Service(?buildingSociety)∧service:presents

(?buildingSociety, ?bsProfile) ∧ swrlb:equal

(?bsCategoryCode, "522294") ∧... swrlb:subtract

(?amntRemaining,?InvLoanAmount,?cuAmount)∧

swrlb:greaterThanOrEqual (?amntRemaining, 10000)

→ sqwrl:select(?buildingSociety,?bsWsdl,?amntRemaining)

The above query only selects the building society ser-

vice is the amount remaining, obtained after subtracting the

credit union offer amount from the total amount, is greater

than 10000. This serves as an example of how constraints

can be modified and passed between nodes.

8. Conclusion

In this paper we have proposed a rule-based declarative

framework for the semi-automatic Web services composi-

tion problem. Our approach requires the end-user to build

the composition flow by specifying the Web service in-

stances/types and data/control flow connectors to link them.

The user interface is backed up with a declarative language,

called intermediated language which is then used to instan-

tiate the concrete composition process which involves trans-

lating the declarative language to rule based queries, called

blocks, instantiating the Web service types and finally ex-

ecuting the process to get the results. We have also pre-

sented a sample Corporate Cash Management (CCM) sce-

nario, that highlights our approach. A sample implemen-

tation to the sample scenario has been provided to discuss

how our approach can be realized using the known Web ser-

vices standards.

References

[1] D. Benslimane, S. Dustdar, and A. P. Sheth. Services

mashups: The new generation of web applications. IEEE

Internet Computing, 12(5):13–15, 2008.
[2] G. Dobson, R. Lock, and I. Sommerville. Qosont: a qos on-

tology for service-centric systems. In EUROMICRO-SEAA,

pages 80–87, 2005.
[3] X. Liu, Y. Hui, W. Sun, and H. Liang. Towards service com-

position based on mashup. In IEEE SCW, 2007.
[4] A. Marconi, M. Pistore, and P. Traverso. Automated compo-

sition of web services: the astro approach. IEEE Data Eng.

Bull., 31(3):23–26, 2008.
[5] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Com-

posing web services on the semantic web. VLDB J., 12(4),

2003.
[6] E. Monfroy, O. Perrin, and C. Ringeissen. Dynamic web

services provisioning with constraints. In OTM Conferences

(1), pages 26–43, 2008.
[7] S. Narayanan and S. A. McIlraith. Simulation, verifica-

tion and automated composition of web services. In WWW,

pages 77–88, 2002.
[8] M. Pesic and W. M. P. van der Aalst. A declarative approach

for flexible business processes management. In Business

Process Management Workshops, Austria, 2006.
[9] J. Rao and X. Su. A survey of automated web service com-

position methods. In SWSWPC, pages 43–54, 2004.
[10] D. Redavid, L. Iannone, T. R. Payne, and G. Semeraro. Owl-

s atomic services composition with swrl rules. In ISMIS,

pages 605–611, 2008.
[11] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker.

Modeling and composing service-based and reference

process-based multi-enterprise processes. In CAiSE, 2000.
[12] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composi-

tion of web services using semantic descriptions. In In Web

Services: Modeling, Architecture and Infrastructure work-

shop in ICEIS 2003, pages 17–24, 2002.
[13] G. F. Tondello and F. Siqueira. The qos-mo ontology for

semantic qos modeling. In SAC, pages 2336–2340, 2008.
[14] W. M. P. van der Aalst and M. Pesic. Decserflow: Towards

a truly declarative service flow language. In The Role of

Business Processes in Service Oriented Architectures, 2006.
[15] R. J. Waldinger. Web agents cooperating deductively. In

FAABS, pages 250–262, 2000.
[16] E. Zahoor, O. Perrin, and C. Godart. Mashup model and

verification using mashup processing network. In Collabo-

rateCom2008. ACM, 2008.

