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Abstract

The navigation activity is an every day practice for any
human being capable of locomotion. Our objective in
this work is to reproduce this crucial human activity
inside virtual environments. Putting together the high
complexity of a realistic environment such as a city, a
big amount of virtual humans and the real-time con-
straint requires to optimize each aspect of the animation
process. In this paper, we present a suitable topological
structuring of the geometric environment to allow fast
path finding as well as an efficient reactive navigation
algorithm for virtual humans evolving inside a crowd.

1 Introduction

The autonomy of a virtual human is defined by its ca-
pacity to perceive, act and decide of its actions. The
behaviour is usually described through several simple
skills that can be mixed to generate a more complex and
credible behaviour. One of the most important skills is
the ability to navigate inside a virtual environment as it
is part of a large number of behaviours. Reproducing
this fundamental behaviour requires to address differ-
ent topics such as the topological model of the environ-
ment, path planning and collision avoidance techniques.
In order to credibly animate several hundreds of pedes-
trians in real-time, each of these techniques should be
optimized without leaving out behavioural studies. In
this article, we propose a general model, inspired by
studies on human behaviour to simulate the navigation
process inside indoor and outdoor environments. This
model is compounded of four parts:
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∙ a spatial subdivision algorithm detecting bottle-
necks inside the environment;

∙ a hierarchical path planning algorithm based on
the abstraction and generalisation of topological
properties extracted from the spatial subdivision;

∙ an efficient structure computing neighbourhood re-
lations between entities;

∙ a general and modular algorithm which handles re-
active navigation and includes visual optimization
of the trajectory and collision avoidance. The hu-
man behaviour is configured through complemen-
tary modules describing rules inspired by psycho-
logical studies.

Related works are presented in the next section, in-
cluding the presentation of characteristics of the pedes-
trian behaviour. Section 3 presents the spatial subdivi-
sion algorithm and the hierarchical path-planning algo-
rithm. Section 4 describes the neighbourhood structure
and the reactive navigation architecture based on studies
on pedestrian behaviour. Finally, section 5 gives some
results and benchmarks.

2 Related works

2.1 Spatial subdivision and path planning
Path planning and environment representation have
been widely studied in the field of robotics where nav-
igation is a necessary task to achieve [Lat91]. In the
field of behavioural animation, similar methods are
used. Three general approaches can be distinguished
: roadmaps, cell decomposition and potential fields.

The roadmap approach consists in computing a
network of standardized paths (lines, curves) passing
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through free spaces. Different approaches are used
to compute roadmaps. The visibility graph [ACF01]
connects together vertices of the environment if and
only if they see each other. The computation of the
Voronoi diagram inside free spaces allows to use gen-
erated edges to produce the roadmap. The cell decom-
position method consists of decomposing free spaces
into cells. Once this decomposition is computed, a con-
nectivity graph can be extracted, whose nodes are cells
and edges traduce cells adjacency. Two general meth-
ods can be distinguished: the exact cell decomposition
consists in computing cells such as their union is ex-
actly the free space (constrained Delaunay triangula-
tion, convex polygons, trapezoidal), and the approxi-
mate cell decomposition consists in using predefined
cell shapes, whose union is strictly included in the free
space (uniform grids, quadtrees) [BT98,Kuf98]. An in-
teresting discussion, outlining the interest of generating
abstract cells on the top of uniform grids, can be found
in [TB96]. This solution provides a great increase of
performance for path finding computation as the num-
ber of cells is smaller. In the potential field method,
the environment is discretized into a fine regular grid.
A potential is associated to each cell which corresponds
to the sum of a repulsive potential generated by the ob-
stacles of the environment and an attractive potential
generated by the goal. Thus, gradient methods can be
applied to find a path to the goal. But this method is sub-
ject to local minima problems and does not necessary
reach the goal. To recover from local minimas, some
randomized methods have been studied [KKL96].

2.2 Reactive navigation
A spatial subdivision of the environment is not suffi-
cient to handle navigation as several moving entities can
populate the same environment. In that case, a system
allowing dynamic collision avoidance is necessary to
achieve consistency and realism. Several approaches
can be distinguished such as particle systems, flock-
ing and behavioural systems. Those techniques differ
essentially by the number of simulated entities, their
level of control and the associated collision detection
method.

Particle systems are physically based simulations
defining attractive and repulsive forces associated to ob-
stacles and simulated entities. Forces applied to the en-
tity are added in order to determine the new direction
of the entity [RKBB94, HFV00, BMdOB03]. Flocks
are rule based systems defining the behaviour of an

entity in function of the behaviour of the nearest en-
tities [Rey00, BLA02]. Loscos et al. [LMM03] use
a fine regular grid to handle reactive navigation and
to store information about pedestrian movements en-
abling the emergence of flows of pedestrians. Ulicny
et al. [UT02] use a layered approach to model the in-
dividual behaviour inside a crowd by combining rules
and finite state machines. Those types of systems raise
the problem of nearest neighbour queries which is one
of the bottlenecks on the number of possible simulated
entities. Several approaches have been proposed to op-
timize those requests using spatial data structures such
as bin-lattice [Rey00], K-d trees [O’H00] or Kinetic
Data Structures [GKM∗01]. Methods based on the ex-
ploitation of an informed environment have been de-
veloped [TD00, FBT99]. This way, some specific be-
haviours related to the type of the entity and the nav-
igated area [HK02] have been modelled. Some stud-
ies have also focused on crowd simulation and its lev-
els of autonomy [MT97] in order to provide a realistic
crowd behaviour inside virtual environment. Comple-
mentary works have been performed on the optimiza-
tion of the real time visualization of crowds by using
hierarchical impostors [O’H02] and real-time shading
of impostors [TLC02]. In order to increase the realism
of animation, Ashida et al. [ALA∗01] made a statisti-
cal analysis of pedestrians walking along a section of
sidewalk. They exhibit subconcious actions, that they
integrated into the animation system with a stochastic
process to control their activation.

2.3 Pedestrian behaviour
Goffman [Gof71] describes techniques used by pedes-
trians to avoid bumping into each other. The social
link between strangers is characterized by silence and
indifference [RQ98] and to perform that, different be-
haviours are used. The first technique called exter-
nalization concerns the way that people are constantly
making others aware of their intentions in order to mini-
mize the interaction. Lee et al. [LW92] show that pedes-
trians are using social conventions such as driving rules
to let other people easily predict their normal trajec-
tory. The second technique called scanning is used by
pedestrians to selectively gather externalized informa-
tion from other people. The third technique is called
the minimization of adjustment which expresses that
people adjust their trajectory several meters before the
conflict to make it perceptible early by others with the
objective to reduce interaction and avoid coordination.
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Figure 1: Computation steps of spatial subdivision.

Goffman introduces the notion of the oval security re-
gion whose front distance corresponds to an anticipa-
tion area depending on the pedestrian speed, while the
width is the accepted gap to pass beside a person or an
obstacle or to follow a wall. He defines also the law of
minimal change which means that a pedestrian will try
in its journey to reduce the amount and the amplitude of
turns.

Hillier et al. [HPH∗93] show that the majority of
human-pedestrian movement occurs along lines of
sight, that they named as axial lines. A. Turner et
al. [TP02] propose the EVA system based on a visibil-
ity graph, compare results of this agent-based simulator
with real data on the Tate Britain Gallery and conclude
that they were able to reproduce the aggregate move-
ment with a good correlation. M. Relieu [RQ98] intro-
duces the notion of urban discrimination which means
that the pedestrian focuses his attention inside his cur-
rent region to select pertinent information relevant of
the activity he is engaged in.

3 From environment to path find-
ing

3.1 Spatial subdivision

Our spatial subdivision model is presented in fig. 1.
It is compounded of several computation steps starting
from the 3D geometric database and generating a 2D
spatial subdivision using convex cells and identifying
bottlenecks.

2D map extraction
The first step converts the 3D geometric database of the
environment into a 2D map containing all constraints

Figure 2: Example of a map extraction from 3D
database.

delimiting obstacles under the assumption that the en-
vironment is flat. It consists in cutting the database with
two parallel planes corresponding to the floor and a cut-
ting plane whose distance to the floor is generally equal
to the height of a humanoid. This extracts all geometry
belonging to the navigation area. This geometry is then
projected on the XY plane in order to compute a 2D
map representing the environment. In order to organize
this information and to simplify the constraints, a con-
strained Delaunay triangulation is computed [KBT03],
resulting in a first spatial subdivision using triangular
cells. A connectivity graph is extracted from this tri-
angulation and a transitive closure is computed starting
from a user selected cell in order to extract the naviga-
tion area. Constraints are then filtered in order to extract
those delimiting this area while removing the other ones
and filtered in order to merge colinear segments (with a
given threshold). The example of fig. 2 presents differ-
ent steps of the 2D map extraction on a part of the 3D
model of a city: the projection of the geometry on the
XY plane and the map extracted after constraint filter-
ing and simplification.

Minimal distance between corners and walls
The constraints previously extracted delimit the navi-
gation area. But an information is still missing for the
navigation inside the environment: bottlenecks. Those
bottlenecks characterize the minimal distance between
corners and walls. Without this information, it is diffi-
cult to ensure that a given humanoid can navigate from
one point to another. To detect bottlenecks, we propose
an algorithm based on a modification of the constrained
Delaunay triangulation algorithm. In the following, we
will consider two types of segments and two types of
points inside the triangulation:

∙ Cs : is the set of constrained segments.

∙ ℱs : is the set of free segments.
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(a) (b)

(c) (d)

Figure 3: (a) 2d map of environment. (b) Original con-
strained Delaunay triangulation. (c) Computed shortest
distances between corners and walls. (d) Constrained
Delaunay triangulation with shortest distances.

∙ Cp : is the set of points extracted from the environ-
ment

∙ Dp : is the set of points generated for the purpose
of minimal distance computation between walls
and corners.

First, a constrained Delaunay triangulation of the seg-
ments in Cs is computed. Then, for each triangle
(A,B,C) of the triangulation, if (BC ∈ Cs)∧(AC ∈ℱs)∧
(AB ∈ Cs∪ℱs)∧ (A ∈ Cp) and if the orthogonal projec-
tion PA of A lies on segment BC then the segment BC is
removed and replaced by segments BPA and CPA which
are added in Cs and PA is added in Dp. Triangulation is
locally recomputed in order to take those modifications
into account. This process is repeated until no more tri-
angle satisfies the condition of the rule. An example of
generated shortest distances is shown in fig. 3(c). The
fact that points belonging to Dp can not be reprojected
ensures the convergence of the algorithm. This compu-
tation generates a triangulation containing shortest dis-
tances between corners and walls (Cf. fig. 3(d)). This
identification of bottlenecks ensures that if the width of
an entity is smaller than the length of a free segment,
the entity can pass through the segment without collid-
ing with walls.

Convex cell optimisation
The constrained Delaunay triangulation computed dur-
ing the previous step constitutes a first spatial subdi-
vision using triangular cells. In order to simplify this
subdivision and to minimize the number of cells, an al-
gorithm merges triangles in order to generate convex
cells while locally conserving bottleneck information.
This algorithm first sorts all free segments, based on
their decreasing length. The sorted list is iterated and

Figure 4: The subdivision of the environment of fig. 3

Figure 5: Graph extracted from spatial subdivision of
fig. 4.

the two cells sharing the current segment are merged if
and only if the resulting cell is convex and the length
of the shared free segment is greater than the length of
all free segments delimiting the resulting cell. The re-
sulting subdivision is compounded of convex cells and
identifies bottlenecks. An example of convex cell opti-
misation can be found in fig. 4. This spatial subdivision
accurately maps the environment geometry and the ex-
traction of bottlenecks automatically identifies the most
constrained parts of this environment. Thanks to this
information, accessibility between adjacent cells can be
filtered before any path planning computation by using
the humanoid width.

3.2 Topology and abstraction
Once the convex cell subdivision is computed, a graph
containing topological relations is extracted. A node
of this graph is a convex cell and an edge represents a
free segment shared by to adjacent cells with a length
greater than the width of the humanoid. The figure 5
represents the graph extracted from the spatial subdivi-
sion presented in figure 4. Each node c of the graph can
be topologically qualified according to the number of
connected edges given by the arity(c) function:

∙ if arity(c) = 0 then c is a closed cell.

∙ if arity(c) = 1 then c is a dead end cell.
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∙ if arity(c) = 2 then c is a passage cell.

∙ if arity(c)> 2 then c is a crossroads cell.

This information enables the topological abstraction of
the environment. For example, a sequence of passage
cells can be interpreted at a certain level of abstraction
as a unique passage. Thus, when planning, the geo-
metric information related to the low level cells can be
omitted and summarized in a higher abstract level. The
main idea of the abstraction algorithm is to generate an
abstraction tree by merging interconnected cells while
trying to preserve topological properties. When merg-
ing several cells into a single one, the composition of
cells is stored in a tree structure in order to generate the
abstraction tree. Before explaining the algorithm, some
functions have to be defined. Let note p(c) = arity(c)∗
(arity(c)−1) the number of paths traversing the cell c.
Let note add(c1, c2) = p(c1 ∪ c2)− p(c1)− p(c2) the
number of added paths when merging cells c1 and c2
and removing all shared boundaries. The abstract levels
are computed as follow:

1. All dead end and passage cells are extracted.
Then all sequences of interconnected cells are ab-
stracted in order to generate a balanced binary tree.
Thus, each sequence of cells is reduced to a unique
abstract cell.

2. All dead end cells are merged with their adjacent
crossroads cells. If this pass generates new dead
end cells, the algorithm returns to step 1.

3. All passage cells are merged with one of their ad-
jacent crossroads cells.

4. For all pairs (c1, c2) of crossroads cells, the num-
ber of added paths add(c1,c2) is computed. Let m
be the minimum number of added paths. All pairs
of cells such as add(c1, c2) =m are merged to cre-
ate a new abstract cell. If this step generates new
dead end or passage cells, the algorithm returns
to step 1. Otherwise, this step is repeated until the
obtention of a unique closed cell.

The proposed algorithm removes dead ends and lin-
ear paths. This suppression of dead ends is a very
good property as they are often responsible for the worst
computation time. Moreover, the use of the add func-
tion during step 4 tends to reduce the number of traver-
sals for a given abstract cell compounded of two cross-
roads cells.

Figure 6: A roadmap generated using 1 key point by
free segment in the environment of fig. 4

3.3 Hierarchical path planning

Thanks to the spatial subdivision, it is possible to auto-
matically generate a roadmap enabling path-planning.
But inside large and complex environments, this
roadmap can also be large and then reduce the perfor-
mances of path finding algorithms. But the parallel ex-
ploitation of the roadmap and the topological abstrac-
tion enables a drastic reduction of the path planning
graph size, resulting in real-time path finding compu-
tation inside large and complex environments.

Roadmap generation and abstraction
As cells are convex, there always exists linear paths
traversing each cell and connecting all free segments
belonging to the boundaries. For each cell, key points
are generated on free edges and are connected with lin-
ear paths (Cf. fig. 6). Let suppose that k key points are
generated on each of the n free segments belonging to
the boundaries of a given cell c. The number of gener-
ated paths inside this cell is n(n−1)k2 = p(c)k2. Each
cell is then informed with its associated paths. More-
over, in accordance with the topological abstraction,
all paths traversing abstract cells are precomputed and
stored using references to the sub-precomputed paths in
order to limit the amount of needed memory.

Path Finding
During the previous step, a data structure containing the
topological abstraction and the associated roadmap ab-
straction has been generated. It is used to compute the
minimal topological graph needed to extract the mini-
mal roadmap enabling path planning. Let note Ce the
cell containing the entity, Cg the cell containing the
goal, Ctop the top level abstract cell containing Ce and
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Cg. Before explaining the algorithm, two functions need
to be introduced:

∙ pickElement(S): it removes an element from the
set S and returns this element.

∙ split(C) : it returns a set containing the lower level
cells or abstract cells compounding the abstract
cell C.

In the following algorithm, Sresult will contain
all cells necessary for path planning computa-
tion:

Sresult = Sresult
tmp = ∅ ; Sexplore =Ctop

while Sexplore ∕= ∅ do
while Sexplore ∕= ∅ do

c = pickElement(Sexplore)
if (Ce ∈ c∧Ce ∕= c)∨ (Cg ∈ c∧Cg ∕= c) then

Sexplore
tmp = Sexplore

tmp ∪ split(c)
else

Sresult = Sresult ∪{c}
end if

end while
Sexplore = Sexplore

tmp ; Sexplore
tmp = ∅

end while
The set Sresult contains cells Ce, Cg and several ab-

stract cells corresponding to abstract paths connecting
those two cells. All precomputed paths associated to
the cells of Sresult are extracted and used to compute
the path-planning graph in which nodes are key points
and edges are paths linking those key points. In order
to compute the path, start and goal points are added in
the graph and connected to all key points generated on
the boundaries of their respective cells. The generated
path, that is partially abstract, is then materialized using
stored information about the composition of precom-
puted paths. The resulting path is then furnished as a
sequence of free segments instead of a sequence of key
points. In the next section, we will show that this feature
enables visual path optimization that is a characteristic
of human navigation.

The graph is minimal in respect with the topologi-
cal abstraction and is drastically smaller than the origi-
nal non abstracted roadmap. It contains a maximum of
two dead ends (if Cg and Ce belongs to a dead end) ;
thus it removes the worst case for path-planning algo-
rithms. Moreover, the number of available paths to the
goal is reduced thanks to the use of precomputed paths
associated to abstract cells. The impact on path finding
computation time and complexity is logarithmic (see

Figure 7: The reactive navigation model.

the result section for benchmarks). This property en-
ables real-time path finding for several virtual humans
within large environments, enabling this key feature for
real-time applications.

4 Navigation
Each virtual human is now able to plan its own path to
reach its goal. The next step is to follow the path while
avoiding collisions with other humanoids and with the
environment. The architecture of our reactive naviga-
tion model is summarized in fig. 7. The first part is the
computation of the neighbourhood graph. The second
part is the reactive navigation modular algorithm filter-
ing the optimal speed computed to follow the path in
order to predict and avoid collisions while generating a
human like behaviour.

Notations. By now, the humanoid H is represented
with the following parameters: P(H) is its position,
W (H) is its width and S(H) is its speed.

4.1 Neighbourhood graph
All collision prediction algorithms are based on neigh-
bourhood computation. When dealing with this sort of
computation, two aspects need a particular attention:

1. the construction complexity of neighbourhood re-
lations,

2. the possible relation between the computation
complexity and the prediction distance.

The neighbourhood graph is a compromise between
those two aspects. It creates long distance neighbour-
hood relations in sparse crowds and short distance rela-
tion in dense crowds without impact on computational
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Figure 8: Filtered Delaunay triangulation between enti-
ties.

cost. It is based on a two dimensional Delaunay trian-
gulation of the humanoid’s positions filtered with vis-
ibility. This triangulation has a construction cost of
O(n lnn) [BY98] for n humanoids that enables its com-
putation for a large number of pedestrians. It generates
a linear number of neighbourhood relations (edges of
the triangulation) with an upper bound of 3n− 3 rela-
tions. This results in an average number of direct neigh-
bours lower than 6. Those relations ensure the predic-
tion of all collisions, because one of the Delaunay tri-
angulation properties is to link each point (humanoid)
to its nearest neighbour. Moreover, this triangulation
generates the crowd topological structure with a com-
putational cost independent of the distance between en-
tities. The neighbourhood relation length is correlated
to the local density inside the crowd allowing far colli-
sion prediction in sparse crowds and near prediction in
dense crowds.

As the triangulation is not correlated with the envi-
ronment geometry, neighbourhood relations are filtered
using ray casting inside the convex cell structure. The
number of rays is lower than 3n− 3 and the associated
computational cost is optimized thanks to the under-
lying subdivision. This filtering process generates the
neighbourhood graph in which each edge represents a
neighbourhood and a visibility relation. An example of
such a graph is given in fig. 8; green edges are removed
during the filtering process. Once computed, this graph
enables a direct access to visible neighbours of a given
humanoid while automatically adapting the prediction
distance to the crowd density. In the following, the term
of direct neighbourhood will refer to the set of neigh-
bours connected with an edge to the humanoid.

4.2 Reactive navigation

The reactive navigation process is described through a
pipe filtering the speed vector of the entity (Cf. fig. 7).
First, the planned path is analyzed in order to provide
an ideal speed to adopt. This speed is filtered by the
personal space module in charge of respecting a given
minimal distance to humanoids and obstacles. Then the
collision avoidance module modifies this speed in order
to avoid collisions. This part of the algorithm is pa-
rameterized in order to copy out human like navigation
rules. Finally, a security module verifies this speed in
order to take into account the inertia of the humanoid.

Visual trajectory optimization
As described in the section 3.3, the path is furnished as
a sequence of segments (or portals) to pass, in order to
reach the goal. In this path, two consecutive segments
are belonging to the same convex cell. A characteristic
of pedestrian behaviour is to use visual optimization of
the path. In order to do so, we propose a simple and
fast visual optimization algorithm exploiting properties
of the convex cell subdivision.

The visual optimization algorithm consists of se-
quentially intersecting visibility cones defined thanks to
the path segments. This computation stops if the cone
is empty or if the angle of the cone in O is lower than a
certain threshold. If one of those two constraints is vi-
olated, the last valid cone is selected by the algorithm.
As cells are convex, this cone defines an obstacle free
region in which the humanoid can navigate. In figure
9, the cones OAB, OCD and OFE are sequentially in-
tersected to compute the speed chosen collinear to the
bisecting line. The second constraint influences the tra-
jectory taken by the pedestrian: if the angle has a high
value, the humanoid will pass through the center of the
segments, if this value is low, the humanoid will skim
along obstacles. This parameter, defined for each hu-
manoid, enables the configuration of the pedestrian tra-
jectory. This algorithm reproduces a well known char-
acteristic of the pedestrian behaviour and rapidly com-
putes an optimized and realistic trajectory continually
refreshed in function of the pedestrian location rela-
tively to the segments compounding its path.

Personal space
The personal space is a social rule defining a distance
to respect between navigating pedestrians (dN) and be-
tween pedestrians and obstacles (dW ). At least three
situations can justify the violation of this distance: the
crowd density is too high, the humanoid navigates in-
side a group, the humanoid is overtaking one of its
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Figure 9: Visual trajectory optimization.

neighbours. This rule is weak and do not have to be al-
ways respected. It is modeled as a repulsion force mod-
ifying the orientation (but not the norm) of the speed
vector. Let SN be a set containing the positions of the
direct neighbours and SW be a set containing the projec-
tions of the pedestrian position on the constraints delim-
iting its current cell. The output speed SO is computed
from the input speed SI as follow:⎧⎨⎩ R(p,S,d) = ∑x∈S

−∣∣x−p∣∣+d
d (x− p)

SO = ∣∣SI ∣∣ R(p(H),SN ,dN)+R(p(H),SW ,dW )+SI
∣∣R(p(H),SN ,dN)+R(p(H),SW ,dW )+SI ∣∣

If the sum of repulsive forces and SI is null, this equa-
tion is not valid. In this case, SO is equal to SI . This
equation only modifies the direction of the speed vec-
tor but not the norm in order to deform the trajectory to
respect the personal space constraint.

Collision avoidance
The collision avoidance algorithm uses a linear trajec-
tory extrapolation for collision prediction and a local
optimization algorithm for the computation of a new
speed avoiding collisions. This algorithm is configured
with collision reaction modules describing possible ty-
pologies of reaction.

Collision prediction
Let SI be the proposed speed for humanoid H and N be
the tested neighbour. Pr = P(H)−P(N) is the location
of H relatively to N. Sr = S(N)− SI is the speed of H
relatively to N. Solutions of the following equation are
the possible collision times between humanoids H and
N:

P2
r +(Pr.Sr)t +S2

r t = (W (N)+W (H)+ ε)2

This equation expresses the evolution of the distance
during time between humanoids N and H. ε is a min-
imal security distance which can, eventually, vary over
time. If this equation has no solution or a unique so-
lution, there is no predicted collision. If there are two
solutions t1 and t2, with t1 < t2, three cases can arise:

Figure 10: The four collision types.

∙ t2 ≤ 0 : this is a past collision, so there is no pos-
sible collision in the future.

∙ t1 < 0∧ t2 > 0 : this is a collision, repulsive forces
must be generated in order to correct the situation.

∙ t1 ≥ 0 : a collision will arise at time t1.

This information is also used to qualify the type of the
collision. Let tc be the computed collision time, CH =
P(H)+SI .tc be the location of H at tc and CN = P(N)+
S(N).tc be the location of N at tc:

∙ if (CN −CH).SI < 0 the collision is a rear colli-
sion,

∙ if (CN −CH).SI > 0∧ SI .S(N) < 0 the collision is
a front collision,

∙ if (CN −CH).SI > 0∧ SI .S(N) ≤ 0 the collision if
a back collision,

∙ if ∣∣S(N)∣∣= 0 the collision is a static collision.

Those types of collision are summarized in fig. 10.
They are used to configure the local avoidance algo-
rithm with a subscription of collision avoidance to dif-
ferent types of collision.

Collision reaction modules
Reactions adopted when avoiding collisions can be
classified in two (non-exclusive) categories: speed
modification and direction modification. In order to de-
scribe the navigation behaviour, we introduce the no-
tion of collision reaction module. Its role is to compute
a new speed SO for humanoid H with an actual pro-
posed speed SI that avoids the collision with humanoid
N. The position of H relatively to N has the following
expression: Pr(t) = P(H)−P(N)+(SI−S(N))t

Avoiding the collision is equivalent to finding a new
relative speed S′r = SO− S(N) such as the distance be-
tween the straight line defined by P(H)− P(N) + S′rt
and point (0,0) is greater than W (H)+W (N)+ε, where
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ε is a security distance. The problem can be reformu-
lated as the research of SO such as P(H)−P(N)+ S′rt
is a tangent to the circle C centered in (0,0) with a
radius equal to W (H) +W (N) + ε. Let Tl and Tr be
the two points lying on C and defining tangents pass-
ing through Pr. Dl = Tl − (P(H)− P(N)) and Dr =
Tr− (P(H)−P(N)) with Dl .((SI − S(N))×R(π

2 )) > 0
and Dr.((SI − S(N))× R(π

2 )) < 0 defines the left and
right relative avoidance directions in which R(α) stands
for a rotation of angle α. The collision avoidance speed
SO is a solution of the following system, assuming that
D=Dl for a left avoidance and D=Dr for a right avoid-
ance: {

αD = SO−S(N)
α > 0 (1)

By using this system, we defined four modules: left
avoidance, right avoidance, accelerate and decelerate.
Each of those modules find a new speed and adds new
constraints:

∙ left and right avoidance: the constraint ∣∣SI ∣∣ =
∣∣SO∣∣ is added in order to maintain the norm of
the speed.

∙ deceleration module: the constraint SO = βSI with
0≤ β < 1 in order to maintain the speed direction.

∙ acceleration module: the constraint SO = βSI with
β > 1 in order to maintain the speed direction.

Once all collision reaction modules are described, they
can be used to define the navigation behaviour of an
entity. For special purposes, an acceptation module has
been defined in order to accept a given speed even if it
results in a collision.

As we use a local optimization algorithm to find the
best speed to adopt, each solution computed by a col-
lision reaction module has to be evaluated and rated.
If SI is the proposed speed resulting in a collision and
SO is the output speed avoiding this collision, following
formulas are used to rate the proposition:

cd(SO,SI ,β) = ((1+ SO+SI
∣∣SO∣∣×∣∣SI ∣∣

)∗0.5)β×2−1

cn(SO,SI ,β) = ( min(∣∣SO∣∣,∣∣SI ∣∣)
max(∣∣SO∣∣,∣∣SI ∣∣)

)β

n(SO,SI ,βd ,βn) = cd(SO,SI ,βd)∗ cn(SO,SI ,βn)

Those three functions compute a factor in the interval
[0;1] evaluating the quality of the speed SO relatively
to the speed SI . The function cd evaluates the direction
difference whereas the function cn evaluates the speed

Driving rule model.
rear front back static

RA n(I,O,1,1) n(I,O,1,1)
LA n(I,O,1,1) n(I,O,1,1)
D n(I,O,1,1) n(I,O,1,1)
A n(I,O,1,5) n(I,O,1,5)

AC X
Minimal adjustment model.

rear front back static
RA n(I,O,1,1) n(I,O,1,1) n(I,O,1,1)
LA n(I,O,1,1) n(I,O,1,1) n(I,O,1,1)
D n(I,O,1,1) n(I,O,1,1)
A n(I,O,1,5) n(I,O,1,5)

AC X

Figure 11: Different configurations of the navigation
model.

norm difference. Finally the function n evaluates the
overall quality of the computed speed SO. This function
accepts two parameters βd and βn allowing to penalize
high speed norm variations and/or high speed direction
variations.

Local optimization algorithm
The local optimization algorithm is configured with in-
stances of collision reaction modules. A list of collision
reaction modules with a partially instantiated evaluation
function n (only βd and βn are defined) is associated to
each collision type (rear, back, front and static). The
figure 11 presents different configurations of the navi-
gation model: the driving rule model and the minimal
adjustment model. In this figure, RA stands for right
avoidance, LA for left avoidance, D for decelerate, A
for accelerate and AC for acceptation.

Once the model is configured, this information is
used by the local optimization algorithm. Each module
is specialised for the computation of a speed avoiding a
collision with one entity. Thus the computed speed can
result in a new collision with an other neighbour. The
role of the algorithm is to find a combination of reac-
tions producing an "optimal" speed.

1. The algorithm uses a sorted list L containing data
of the form (q,s, t) sorted decreasingly in function
of q× t. (q,s, t) is a speed proposition in which
q stands of the quality of the speed s proposed in
reaction to a collision occurring at time t. This list
is initialised with (1,SI ,∞).

2. If L is empty, no solution have been found so the
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resulting speed SI is null. Otherwise, (q,v, t) is ex-
tracted from the head of L.

3. A collision prediction is computed using v as the
humanoid speed. This computation searches the
earliest occurring collision. Two cases can arise:

(a) A collision is predicted at time tc but tc ≥ t
or no collision is detected. The actual speed
v is selected because it is the best compro-
mise between the quality of reactions to col-
lisions and predicted time without collision.
The first condition tc ≥ t ensures the conver-
gence of the algorithm by assuming that this
predicted collision will be avoided later.

(b) A collision is detected and tc < t. The type of
the collision is determined (back, rear, front,
static) and each corresponding collision re-
action module is consulted. If one of those
modules is an acceptation module, the cur-
rent speed is selected. Otherwise, for each
module, its proposed speed v′ and the speed
quality q′ are computed and (q′,v′, tc) is in-
serted in L. The algorithm returns in step 2.

The resulting speed SO computed by this algorithm is
a compromise between the quality of the reactions and
the predicted time without collision.

Security module
As the speed computed by the local optimization algo-
rithm can not avoid all collisions, a security module as
been added. This module reduces the norm of the speed
SI in order to maintain a given reaction time (treact ) with
the next collision. The next collision is predicted with
direct neighbours and with obstacles (thanks to ray cast-
ing in the convex cell subdivision) using the speed S(H)
(and not SI) in order to take into account the inertia of
the pedestrian. Let tc be the moment of the predicted
collision. If tc < treact then SO = SI

tc
treact

. This speed
modification ensures wall collision avoidance and re-
duces the speed in case of possible collision with neigh-
bours.

The proposed architecture includes a wide variety of
pedestrian characteristics and is configurable. It en-
ables the reproduction of a large number of navigation
behaviours inspired by psychological studies without
leaving out real-time constraints as shown in the result
section. But when controlling animated characters us-
ing a combination of motion capture and inverse kine-
matic for legs motion, the algorithm can cause jerky

Figure 12: Path planning benchmark.

motions due to a noisy absolute position. This position
needs to be filtered in order to solve this problem.

5 Results
The performances of the path planning algorithm have
been tested on a database representing the center of
a city. The three dimensional model represents about
2600 buildings on a surface of 1.3×1.3km2. The result-
ing spatial subdivision is compounded of 8165 convex
cells containing 8005 constrained segments and 10439
free segments. The figure 12 presents a comparison be-
tween A∗ path planning in the full graph and path plan-
ning with A∗ in the abstract graph. This figure exhibits
a logarithmic gain on path planning time. In the worst
case, A∗ running on the full graph computes a path in
45ms whereas A∗ using our algorithm computes a path
in 2.5ms. Our system is thus able to plan a path in real-
time in large environments, enabling this feature in in-
teractive applications.

Thanks to the precise representation of the environ-
ment through the convex cell subdivision, humanoids
can navigate in indoor and outdoor environments (Cf.
fig. 13). The proposed architecture of navigation is rich.
It includes characteristics of pedestrian behaviour such
as visual trajectory optimisation and personal space
rule. Moreover, the collision avoidance algorithm en-
ables the description of a wide variety of pedestrian be-
haviour through the translation of social rules (driving
rules, minimal adjustments...). But it is also efficient.
The figure 14 presents some benchmarks (realised on an
athlon XP 1800+). This figure traduces the evolution of
the computation time (neighbourhood graph construc-
tion and reactive navigation algorithm) in function of
the number of pedestrians. Whereas the computation

10



Figure 13: Indoor and outdoor navigation.

Figure 14: Evolution of the computation time in func-
tion of the number of pedestrians (Athlon XP 1800+).

complexity of the Delaunay triangulation is O(n lnn),
the evolution looks linear. The algorithm is able to sim-
ulate about 2000 pedestrians at a frequency of 10Hz
with about 20-25% of computation time dedicated to
the computation of the neighbourhood graph. Other
tests have been made with pedestrians evolving inside
the 3D database of a city. We are able to simulate about
400 fully animated pedestrians on a XEON 3GHz with
a quadro FX graphics card.

6 Conclusion and future work
The approach presented in this paper enables the real-
time animation of several hundreds of pedestrians, pop-
ulating large and complex indoor and outdoor environ-
ments. An accurate hierarchical topological structure is
built from the geometric database of a virtual environ-
ment. Based on this structure an optimized path plan-
ning algorithm has been built. Moreover, it also han-
dles visibility computation between different entities.
The neighbourhood graph filtered with visibility, allows
to bound the complexity of collision detection to O(n)
while offering a rich topological information on crowds
through neighbourhood relationships. Moreover, this

structure, thanks to the underlying Delaunay triangula-
tion, automatically adapts to the density of the popula-
tion, allowing near collision avoidance in dense crowds
and far collision avoidance in sparse crowds with the
same computational cost. Finally, the proposed reactive
navigation architecture is configurable and inspired by
psychological studies on pedestrian behaviour without
leaving out real-time constraints.

Future work will focus on two points. The first one
concerns the extension of the hierarchical topological
structure of the environment to allow the automatic gen-
eration of informed and structured environments and
thus more complex behaviours. The second one is the
use of the neighbourhood graph for automatic group
detection as it contains sufficient information to allow
real time classification of entities. This classification
should improve the realism of the simulation by per-
forming group avoidance instead of pedestrian avoid-
ance and will allow to model both individual and group
behaviour and to combine them.
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