Variational approximation for a functional governing point-like singularities

Daniele Graziani, Gilles Aubert

To cite this version:

Daniele Graziani, Gilles Aubert. Variational approximation for a functional governing point-like singularities. [Research Report] RR-7095, INRIA. 2009, pp.35. inria-00403232v3

HAL Id: inria-00403232
https://hal.inria.fr/inria-00403232v3
Submitted on 16 Nov 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Variational approximation of a functional governing point-like singularities.

Daniele Graziani, Gilles Aubert

\qquad

- Abstract: The aim of this paper is to provide a rigorous variational formulation for the ${ }_{10}$ detection of points in 2-d images. To this purpose we introduce a new functional of the ${ }_{11}$ calculus of variation whose minimizers give the points we want to detect. Then we build an ${ }_{12}$ approximating sequence of functionals, for which we prove the Γ-convergence, with respect

14 Key-words: points detection, divergence-measure fields, p-capacity, Γ-convergence.

[^0]Unité de recherche INRIA Sophia Antipolis 2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33492387777-Télécopie : +33 492387765

Variational approximation of a functional governing point-like singularities.

Résumé : Nous proposons une nouvelle méthode variationelle pour isoler des points dans une image 2-D. Dans ce but nous introduisons une energie dont les points de minimum sont donnés par l'ensemble des points que on veut détecter. En suite on approche cette energie par une suite de fonctionelles plus régulières, pour laquelle on montre la Γ-convergence vers la fonctionelle initiale.

Mots-clés : détection de points, champs avec divergence mesure, p-capacité, Γ-convergence.
1 Introduction ii
2 Preliminaries v
2.1 Notation v
2.2 Distributional divergence and classical spaces v
2.3 p-capacity vi
3 The Variational Model vii
3.1 The variational framework ix
3.2 The Functional xi
4 -convergence: The intermediate approximation xii
4.1 Compactness xiii
4.2 Lower bound xv
4.3 Upper bound xvi
4.4 Variational property xvii
5 Approximation by smooth function xix
5.1 Compactness xx
5.2 Lower bound xxii
5.3 Upper bound xxiii
5.4 Variational property xxvi
6 De Giorgi's Conjecture xxvii
References xxix

44

1 Introduction

The issue of detecting fine structures, like points or curves in two or three dimensional biological images, is a crucial task in image processing. In particular a point may represent a viral particle whose visibility is compromised by the presence of other structures like cell membranes or some noise. Therefore one of the main goals is detecting the spots that the biologists wish to count. This operation is made harder by the presence of other singular structures.

In some biological images the image intensity is a function that takes the value 1 on points or other structures like sets with Hausdorff dimension $0 \leq \alpha<1$, and it is close to 0 outside. In image processing these concentration sets are called discontinuities without jump, meaning that there is no jump across the set and therefore the gradient of the image is 0 .

In the literature there are few variational methods dealing with this problem. In this direction one interesting approach has been proposed in [3]. In that paper the authors consider this kind of pathology as a k-codimension object, meaning that they should be regarded as a singularity of a map $U: \mathbb{R}^{k+m} \rightarrow \mathbb{R}^{k}$, with $k \geq 2$ and $m \geq 0$ (see [6] for a complete survey on this subject). In particular the detecting point case corresponds to the case $k=2$ and $m=0$.

This point of view makes possible a variational approach based on the theory of GinzburgLandau systems. In their work the isolated points in 2-D images are regarded as the topological singularities of a map $U: \mathbb{R}^{2} \rightarrow \mathbb{S}^{1}$, where \mathbb{S}^{1} is the unit sphere of \mathbb{R}^{2}. Starting from the initial image $I: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, this strategy makes crucial the construction of an initial vector field $U_{0}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{1}$ with a topological singularity of degree 1 . How to build such a vector field in a rigorous way, is a subject of a current investigation.

Our first purpose here is finding a most natural variational framework in which a rigorous definition of discontinuity without jump can be given. In our model the image I is a Radon measure. It is crucial for detecting points that this Radon measure be able of charging points. The preliminary step is finding a space whose elements are able of producing this kind of measures. This space is given by $\mathcal{D} \mathcal{M}^{p}(\Omega)$: the space of L^{p}-vector fields whose distributional divergence is a Radon measure, with $1<p<2$. The restriction on p is due to the fact that when $p \geq 2$ the distributional divergence $\operatorname{Div} U$ of U cannot be a measure concentrated on points (see Section 3.1 below). Then we have to construct, from the original image I, a data vector $U_{0} \in \mathcal{D} \mathcal{M}^{p}(\Omega)$. Clearly there are, at least in principle, many ways to do this. The one we propose here seems to be the most natural. We consider the classical elliptic problem with measure data I :

$$
\begin{cases}-\Delta u_{0}=I & \text { on } \Omega \\ u_{0}=0 & \text { on } \partial \Omega\end{cases}
$$

Then by setting $U_{0}=\nabla u_{0}$ we have $U_{0} \in \mathcal{D} \mathcal{M}^{p}(\Omega)$ with $\operatorname{Div} U_{0}=I$. However the support of the measure $\operatorname{Div} U_{0}$ is too large and could contains several structures like curves or fractals, while the singularities, we are interested in, are contained in the atomic part of the measure
$\operatorname{Div} U_{0}$ and therefore we have to isolate it. To do this the notion of p-capacity of a set plays a key role. Indeed when $p<2$ the p-capacity of a point in Ω is zero and one can say, in this sense, that it is a discontinuity with no jump. Besides every Radon measure can be decomposed (see [14]) in two mutually singular measures: the first one is absolutely continuous with respect to the p-capacity and the second one is singular with respect to the p-capacity, meaning that it is a measure concentrated on sets with $0 p$-capacity.

As it is known in dimension 2 , sets with 0 -capacity, and hence discontinuities without jump, can be isolated points, countable set of points or fractals with Hausdorff dimension $0 \leq \alpha<1$ (see Subsection 2.3 for the definiton of p-capacity and related properties).

Our goal here is keeping nothing else but points in the image. The achievement of such a purpose makes necessary the minimization of a suitable energy that must remove all the discontinuities which are not discontinuities without jump, and remove all the discontinuities without jump which are not isolated point.

From one hand we have to force the concentration set of the divergence measure of U to contain only the points we want to catch, and on the other hand we have to regularize the initial data U_{0} outside the points of singularities. To this end we introduce the auxiliary space $S \mathcal{D} \mathcal{M}^{p}(\Omega)$ of vector fields belonging to $\mathcal{D}^{p}(\Omega)$ whose divergence measure has no absolutely continuous part with respect to the p-capacity. Then, by taking into account that the initial vector field is a gradient of a Sobolev function, our goal is to minimize the following energy:

$$
\mathcal{F}(u)=\int_{\Omega}|\Delta u|^{2} d x+\lambda \int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x+\mu \mathcal{H}^{0}\left(\operatorname{supp}\left(\operatorname{div}^{s} \nabla u\right)_{0}\right)
$$

where $u \in W_{0}^{1, p}(\Omega)$ with $\nabla u \in S \mathcal{D M}^{p}(\Omega), 1<p<2$ and λ, μ are positive weights. The gradient of a minimizer of the energy \mathcal{F} is the vector field we are looking for, that is a vector field whose divergence measure can be decomposed in an absolutely continuous (with respect to the Lebesgue's measure) term plus an atomic measure concentrated on the points we want to isolate in the image.

Even if a pointwise characterization of discontinuity without jump is not available, thanks to our definition the singular set of points can be linked to the vector field ∇u, in the spirit of the classical SBV formulation of the Mumford-Shah's functional (we refer to [1] for a complete survey on the Mumford Shah's functional).

For future computational purposes, the next task is to provide an approximation in the sense of Γ-convergence introduced in $[16,17]$. Our approach is close in the spirit to the one used to approximate the Mumford Shah functional by a family of depending curvature functionals as in [9]. Indeed, as in their work (see also [8]), we replace the atomic measure \mathcal{H}^{0} by the term

$$
G_{\varepsilon}(D)=\frac{1}{4 \pi} \int_{\partial D}\left(\frac{1}{\varepsilon}+\varepsilon \kappa^{2}\right) d \mathcal{H}^{1}
$$

where D is a proper regular set containing the atomic set P, κ is the curvature of its boundary, and the constant $\frac{1}{4 \pi}$ is a normalization factor. Roughly speaking the minima of
these functionals are achieved on the union of balls of small radius, so that when $\varepsilon \rightarrow 0$ the sequence G_{ε} shrinks to the atomic measure $\mathcal{H}^{0}(P)$.

This leads to an intermediate approximation given by

$$
\begin{align*}
F_{\varepsilon}(u, D) & =\int_{\Omega}\left(1-\chi_{D}\right)|\Delta u|^{2} d x+\int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x \\
& +\frac{1}{4 \pi} \int_{\partial D}\left(\frac{1}{\varepsilon}+\varepsilon \kappa^{2}\right) d \mathcal{H}^{1} \tag{1}
\end{align*}
$$

This strategy permits to work with the perimeter measure $\mathcal{H}^{1}\lfloor\partial D$, that can be approximated, according to the Modica-Mortola's approach (see [21, 22]), by the measure:

$$
\mu_{\varepsilon}(w, \nabla w) d x=\left(\varepsilon|\nabla w|^{2}+\frac{W(w)}{\varepsilon}\right) d x
$$

where $W(w)=w^{2}(1-w)^{2}$ is a double well function.
Besides by using Sard's Theorem and coarea formula (see also [4] for a similar approach) one can formally replace the integral on ∂D by an integral computed over the level sets of w, whose curvature κ becomes $\operatorname{div} \frac{\nabla w}{|\nabla w|}$ and the integral is computed over the level sets of w. So that one can formally write the complete approximating sequence:

$$
\begin{aligned}
\mathcal{F}_{\varepsilon}(u, w) & =\int_{\Omega} w^{2}|\Delta u|^{2} d x+\mu \frac{1}{8 \pi C} \int_{\Omega \backslash\{\nabla w=0\}}\left(\frac{1}{\beta_{\varepsilon}}+\beta_{\varepsilon}\left(\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right)\right)^{2}\left(\varepsilon|\nabla w|^{2}+\frac{1}{\varepsilon} W(w)\right) d x\right. \\
& +\lambda \int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x+\frac{1}{\gamma_{\varepsilon}} \int_{\Omega}(1-w)^{2} d x
\end{aligned}
$$

where, as usual, $C=\int_{0}^{1} \sqrt{W(t)} d t, \beta_{\varepsilon}$ and γ_{ε} are infinitesimal as $\varepsilon \rightarrow 0$. The last integral is a penalization term that forces w to tend to 1 as $\varepsilon \rightarrow 0$.

The goal of the second part of this work is then to show that the family of energies $\mathcal{F}_{\varepsilon}$ Γ-converges to the functional \mathcal{F} when the parameters are related in a suitable way.

As in [9] we deal with a suitable convergence of functions involving the Hausdorff convergence of a sub-level sets. This strategy requires a careful statement of the Γ-convergence definitions and results, in order to have that sequences asymptotically minimizing $\mathcal{F}_{\varepsilon}$ converges to a minimum of \mathcal{F}.

Despite this approach is inspired by some ideas contained in [8, 9], we point out that in our case the regularization term involves a second order differential operator, due to the fact that our goal is to detect points and not segment curves. This deep difference requires a non trivial adaptation of the arguments used in those papers.

The paper is organized as follows. Section 2 is devoted to notations, preliminary definitions and results. In Section 3 we illustrate the new variational model and we present the functional we deal with. Section 4 and 5 are devoted to the Γ-convergence result. Finally in the last Section we conclude the paper by comparing this approach with the celebrated conjecture by De Giorgi, concerning the approximation of the curvature depending functionals.

We do not give here experimental result illustrating our approach. We refer the reader for that to [19].

Definition 2.2. For $U \in L^{p}\left(\Omega ; \mathbb{R}^{2}\right), 1 \leq p \leq+\infty$, set

$$
|\operatorname{Div} U|(\Omega):=\sup \left\{\langle U, \nabla \varphi\rangle: \varphi \in C_{0}^{\infty}(\Omega),|\varphi| \leq 1\right\}
$$

We say that U is an L^{p}-divergence measure field, i.e. $U \in \mathcal{D M}^{p}(\Omega)$, if

$$
\|U\|_{\mathcal{D M}^{p}(\Omega)}:=\|U\|_{L^{p}\left(\Omega ; \mathbb{R}^{2}\right)}+|\operatorname{Div} U|(\Omega)<+\infty .
$$

142 Let us recall the following classical result (see [13] Proposition 3.1).

$$
\begin{equation*}
U_{k} \rightharpoonup U \quad \text { in } L^{p}\left(\Omega ; \mathbb{R}^{2}\right), \text { as } k \rightarrow+\infty \text { for } 1 \leq p<+\infty \tag{2}
\end{equation*}
$$

Then

$$
\|U\|_{L^{p}\left(\Omega ; \mathbb{R}^{2}\right)} \leq \liminf _{k \rightarrow+\infty}\left\|U_{k}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{2}\right)}, \quad|\operatorname{Div} U|(\Omega) \leq \liminf _{k \rightarrow+\infty}\left|\operatorname{Div} U_{k}\right|(\Omega)
$$

$2.3 p$-capacity

The p-capacity will be crucial to find a convenient functional framework to deal with. If $K \subset \mathbb{R}^{2}$ is a compact set and χ_{K} denotes its characteristic function, we define:

$$
C \operatorname{Cap}_{p}(K, \Omega)=\inf \left\{\int_{\Omega}|\nabla f|^{p} d x, f \in C_{0}^{\infty}(\Omega), f \geq \chi_{k}\right\}
$$

If $U \subset \Omega$ is an open set, the p-capacity is given by

$$
\operatorname{Cap}_{p}(U, \Omega)=\sup _{K \subset U} \operatorname{Cap}_{p}(K, \Omega)
$$

Finally if $A \subset \Omega$ is a Borel set

$$
\operatorname{Cap}_{p}(A, \Omega)=\inf _{A \subset U \subset \Omega} \operatorname{Cap}_{p}(U, \Omega)
$$

We recall the following result (see for instance [20], Theorem 2.27) that explains the relationship between p-capacity and Hausdorff measures. Such a result is crucial to have geometric informations on null p-capacity sets.
Theorem 2.2. Assume $1<p<2$. If $\mathcal{H}^{2-p}(A)<\infty$ then $\operatorname{Cap}_{p}(A, \Omega)=0$.
Another useful tool to manage sets of p-capacity 0 is provided by the following characterization.

Theorem 2.3. Let E be a compact subset of Ω. Then $\operatorname{Cap}_{p}(E, \Omega)=0$ if and only if there exists a sequence $\left\{\phi_{k}\right\}_{k} \subset C_{0}^{\infty}(\Omega)$, converging to 0 strongly in $W_{0}^{1, p}(\Omega)$, such that $0 \leq \phi_{k} \leq 1$ and $\phi_{k}=1$ on E for every k.

For a general survey we refer the reader to [18, 20, 25].

3 The Variational Model

In this section we set the functional framework and the functional to be minimized.
Roughly speaking in biological images the image is a function that could be very high on points or other structures like sets with Hausdorff dimension $0 \leq \alpha<1$, and it is close to 0 outside. From a mathematical point of view it seems to be much more appropriate to think of the image as a Radon measure, that is $I=\mu \in\left(C_{0}(\Omega)\right)^{*}$. The next step is finding a space whose elements are able of producing this kind of discontinuities: the space $\mathcal{D} \mathcal{M}^{p}(\Omega)$, with $1<p<2$. The restriction on p is due to the fact that when $p \geq 2$ the distributional divergence of U cannot be a measure concentrated on points. Set $p \geq 2$, according to the definition, we have

$$
\langle\operatorname{Div} U, \varphi\rangle=-\int_{\Omega} U \cdot \nabla \varphi d x \quad \text { for all } \varphi \in C_{0}^{\infty}(\Omega)
$$

Since $p \geq 2$ this distribution is well-defined for any test $\varphi \in W_{0}^{1, p^{\prime}}(\Omega)$, where $p^{\prime} \leq 2$ is the dual exponent of p. In particular Div U belongs to the dual space $W^{-1, p^{\prime}}(\Omega)$ of the Sobolev space $W_{0}^{1, p}(\Omega)$. Then in this case, the distributional divergence of U cannot be an atomic measure, since $\delta_{0} \notin W^{-1, p^{\prime}}(\Omega)$. To see this, one can consider as Ω the disk $B_{1}(0)$ and the function $\tilde{\varphi}(x)=\log (\log (1+|x|))-\log (\log (2))$. This function is in the space $W_{0}^{1, p^{\prime}}(\Omega)$ for every $p^{\prime} \leq 2$ and therefore it is an admissible test function, however it easy to check that $\left\langle\delta_{0}, \varphi\right\rangle=+\infty$.

When $1<p<2$ we have that $\operatorname{Div} U \in W^{-1, p^{\prime}}(\Omega)$, but in this case since $p<2$, we have $p^{\prime}>2$ and hence the function $\tilde{\varphi}$ is no longer an admissible test function. One can check that the distribution $\operatorname{Div} U$ is an element of $\left(C_{0}(\Omega)\right)^{*}$ able of charging the points. Take for instance the map $U(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$.

The next step is to transform the initial image I as the divergence measure of a suitable vector field. We consider the elliptic problem with measure data I :

$$
\begin{cases}-\Delta u=I & \text { on } \Omega \tag{3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Classical results (see [24]) ensures the existence of a unique weak solution $u \in W_{0}^{1, p}(\Omega)$ with $p<2$. Then it easy to see that the distributional divergence of ∇u is given by I. In particular by setting $U=\nabla u$, we have $U \in \mathcal{D M}^{p}(\Omega)$. According to the Radon-Nikodym decomposition of the measure $\operatorname{Div} U$ we have

$$
\operatorname{Div} \mathrm{U}=\operatorname{div} U+\operatorname{div}^{s} U
$$

where $\operatorname{div} U \in L^{1}(\Omega)$ and $\operatorname{div}^{s} U$ is a singular measure with respect to \mathcal{L}^{2}. For our purpose the support of the singular measure $\operatorname{div}^{s} U$ is too large. In particular the measure $\operatorname{div}^{s} U$ could charge sets with Hausdorff dimension $0 \leq \alpha<2$. So that in order to isolate the singularities we are interested in, we need a further decomposition of the measure DivU.

$$
\begin{equation*}
\mu=\mu_{a}+\mu_{0} \tag{4}
\end{equation*}
$$

where the measure μ_{a} is absolutely continuous with respect to the p-capacity and μ_{0} is singular with respect to the p-capacity, that is concentrated on sets with $0 p$-capacity. Besides it is also known (see [14]) that every measure which is absolutely continuous with respect to the p-capacity can be characterized as an element of $L^{1}+W^{-1, p^{\prime}}$, leading to the finer decomposition:

$$
\begin{equation*}
\mu=f-\operatorname{DivG}+\mu_{0} \tag{5}
\end{equation*}
$$

where $G \in L^{p^{\prime}}\left(\Omega ; \mathbb{R}^{2}\right)$ with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $f \in L^{1}(\Omega)$.
By applying this decompositon to the measure $\operatorname{div}^{s} U$ we obtain the following decomposition of the measure DivU

$$
\begin{equation*}
\operatorname{Div} \mathrm{U}=\operatorname{div} U+f-\operatorname{Div} G+\left(\operatorname{div}^{s} U\right)_{0} \tag{6}
\end{equation*}
$$

with $G \in L^{p^{\prime}}\left(\Omega ; \mathbb{R}^{2}\right), f \in L^{1}(\Omega), \operatorname{div} U \in L^{1}(\Omega)$, and $\left(\operatorname{div}^{s} U\right)_{0}$ is a measure concentrated on a set with 0 p-capacity.

According to this decomposition and taking into account Theorem 2.3 we give the definition of discontinuity without and with jump.

Definition 3.1. We say that a point $x \in \Omega \subset \mathbb{R}^{2}$ is a point of discontinuity without jump of U if $x \in \overline{\operatorname{supp}\left(\operatorname{div}^{s} U\right)_{0}}$.

Remark 3.1. The other singularities, where there is a jump, are contained in the second term of decomposition (6). Indeed the space $W^{-1, p^{\prime}}(\Omega)$ contains Hausdorff measures restricted to sub-manifolds of dimension greater than or equal to 1. (We refer to [25] Section 4.7 for a detailed discussion on the space $W^{-1, p^{\prime}}(\Omega)$), like for instance Hausdorff measures concentrated on regular closed curves, which are classical examples of discontinuities with jump. More precisely a contour of a regular set D is the jump set of the characteristic function of D and its p-capacity is strictly positive. This is of course in agreement with Theorem 2.3. Indeed if there were a sequence $\left\{\phi_{k}\right\}_{k} \subset C_{0}^{\infty}(\Omega)$, converging to 0 strongly in $W_{0}^{1, p}(\Omega)$, such that $0 \leq \phi_{k} \leq 1$ and $\phi_{k}=1$ on ∂D for every k, it would be possible to define the sequence

$$
\tilde{\phi}_{k}= \begin{cases}\phi_{k} & \text { on } D \\ 1 & \text { on } \Omega \backslash D\end{cases}
$$ mated by regular functions in the $W^{1, p}$-norm.

Definition 3.2. We say that a point $x \in \Omega \subset \mathbb{R}^{2}$ is a point of discontinuity with jump of U if $x \in \overline{\operatorname{supp}(f-\operatorname{Div} G)}$.

3.1 The variational framework

We shall build an energy whose minimizers will be vector fields whose divergence measure's singular part will be given by nothing else but points.

Each minimizer must be an L^{p} (with $p<2$) vector field with the following properties:

1. It must be close to the initial data U_{0} which is, in general, an L^{p} vector field U_{0} with $1<p<2$.
2. The absolutely continuous part with respect to the Lebesgue measure of $\operatorname{Div} U$ is an L^{2} function.
3. The support of the measure $\left(\text { dive }{ }^{s} U\right)_{0}$ must be given by set of points P_{U} with $\mathcal{H}^{0}\left(P_{U}\right)<$ $+\infty$.

According to these considerations it is natural to introduce the space

$$
\begin{equation*}
S \mathcal{D} \mathcal{M}^{p}(\Omega):=\left\{U \in \mathcal{D M}^{p}(\Omega), \quad f-\operatorname{Div} G=0\right\} \tag{7}
\end{equation*}
$$

so that, as a consequence, decomposition (6) yields for any $U \in S \mathcal{D} \mathcal{M}^{p}(\Omega)$

$$
\begin{equation*}
\operatorname{DivU}=\operatorname{div} U+\left(\operatorname{div}^{s} U\right)_{0} \tag{8}
\end{equation*}
$$

For our purposes the following result concerning the features of elements of the space $S \mathcal{D} \mathcal{M}^{p}(\Omega)$ will play a crucial role.

Proposition 3.1. Let $u \in W_{0}^{1, p, 2}(\operatorname{div} ; \Omega \backslash P)$, with $1<p<2$. Let $P \subset \Omega$ be a set of finite number of points. Then $\nabla u \in S \mathcal{D} \mathcal{M}^{p}(\Omega)$, with $\left(\operatorname{div}^{s} \nabla u\right)_{0}=P$.

Proof. We set $P=\left\{x_{1}, \ldots, x_{n}\right\}$. Let $\rho(h) \rightarrow 0$ as $h \rightarrow+\infty$ be such that $B_{\rho_{h}}\left(x_{i}\right) \cap B_{\rho_{h}}\left(x_{j}\right)=$ \emptyset for h large enough and $i \neq j$. We set $\Omega_{h}=\bigcup_{i=1}^{n} B_{\rho_{h}}\left(x_{i}\right)$ and we define the following sequence $\left\{U_{h}\right\} \subset L^{p}\left(\Omega ; \mathbb{R}^{2}\right)$.

$$
\begin{cases}U_{h}=\nabla u & \text { on } \Omega \backslash \Omega_{h} \tag{9}\\ 0 & \text { on } \Omega_{h}\end{cases}
$$

Since $\Delta u \in L^{2}(\Omega \backslash P)$, by standard elliptic regularity we deduce that $u \in W_{l o c}^{2, p}(\Omega \backslash P)$. In particular the exterior trace $\gamma_{0}^{e x t}(u) \in W^{\frac{3}{2}, p}\left(\partial \Omega_{h}\right)$. Therefore we infer that $u \in W^{2, p}\left(\Omega \backslash \Omega_{h}\right)$. For every $i=1, . . n$ and h small enough we can find an open set A_{i} such that $B_{\rho_{h}}\left(x_{i}\right) \subset$ $A_{i} \subset \Omega \backslash \bigcup_{j \neq i} B_{\rho_{h}}\left(x_{j}\right)$ and A_{i} does not depend on h. Let θ_{i} be a cutoff function associated to A_{i} such that

$$
\begin{cases}\theta_{i}=1 & \text { on } B_{\rho_{h}}\left(x_{i}\right) \text { for any } i=1, \ldots, n, \tag{10}\\ 0 \leq \theta_{i} \leq 1 & \text { for any } i=1, \ldots, n \\ \theta_{i}=0 & \text { on } \Omega \backslash A_{i} \text { for any } i=1, \ldots, n \\ \left\|\nabla \theta_{h}\right\|_{\infty} \leq \frac{M_{i}}{d\left(\partial A_{i}, \partial B_{\rho_{h}}\left(x_{i}\right)\right)} & \text { for any } i=1, \ldots, n\end{cases}
$$

RR n 7095

Then, if $\varphi \in C_{0}^{1}(\Omega)$ with $|\varphi| \leq 1$, by applying Gauss-Green's formula we obtain:

$$
\begin{align*}
\int_{\Omega} U_{h} \cdot \nabla \varphi d x & =\int_{\Omega \backslash \Omega_{h}} \nabla u \cdot \nabla \varphi d x=-\int_{\Omega \backslash \Omega_{h}} \Delta u \varphi d x+\int_{\partial\left(\Omega \backslash \Omega_{h}\right)} \nabla u \cdot \nu \varphi d \mathcal{H}^{1} \\
& =-\int_{\Omega \backslash \Omega_{h}} \Delta u \varphi d x+\sum_{i=1}^{n} \int_{\partial\left(\Omega \backslash B_{\rho_{h}}\left(x_{i}\right)\right)} \nabla u \cdot \nu\left(\varphi-\theta_{i} \varphi\left(x_{i}\right)\right) d \mathcal{H}^{1} \\
& +\sum_{i=1}^{n} \varphi\left(x_{i}\right) \int_{\partial\left(\Omega \backslash B_{\rho_{h}}\left(x_{i}\right)\right)} \theta_{i} \nabla u \cdot \nu d \mathcal{H}^{1} \\
& =-\int_{\Omega \backslash \Omega_{h}} \Delta u \varphi d x+\sum_{i=1}^{n} \int_{\partial \Omega} \nabla u \cdot \nu\left(\varphi-\theta_{i} \varphi\left(x_{i}\right)\right) \\
& +\sum_{i=1}^{n} \int_{\partial B_{\rho_{h}}\left(x_{i}\right)} \nabla u \cdot \nu\left(\varphi-\varphi\left(x_{i}\right)\right) d \mathcal{H}^{1} \\
& +\sum_{i=1}^{n}\left\{\varphi\left(x_{i}\right) \int_{A_{i} \backslash B_{\rho_{h}}\left(x_{i}\right)} \Delta u \theta_{i} d x+\int_{A_{i} \backslash B_{\rho_{h}}\left(x_{i}\right)} \nabla u \nabla \theta_{i} d x\right\} . \tag{11}
\end{align*}
$$

Now for every i we have that $\left\{\partial B_{\rho_{h}}\left(x_{i}\right)\right\}$ converges in the Hausdorff metric to the singleton $\left\{x_{i}\right\}$. Then, since the support of the function $\psi=\varphi-\varphi\left(x_{i}\right)$ is contained in $\Omega \backslash\left\{x_{i}\right\}$, we have that supp $\psi \cap \partial\left\{B_{h}\left(x_{i}\right)\right\}=\emptyset$ for h large enough, by standard properties of the Hausdorff convergence. Therefore the third term in (11) is equal to 0 . Moreover for h large enough we can find a proper open regular set A, that does not depend on h, such that $u \in W^{2, p}(\Omega \backslash A)$. Hence we infer $\frac{\partial u}{\partial \nu} \in W^{\frac{1}{2}, p}(\partial \Omega)$. Therefore, from (11) it follows that

$$
\begin{aligned}
\left|\operatorname{Div} U_{h}\right|(\Omega) & \leq \sup _{0 \leq \varphi \leq 1} \int_{\Omega}|\nabla u \cdot \nabla \varphi| d x \leq(n+1) C_{1}(\Omega)\|\Delta u\|_{L^{2}(\Omega \backslash P)}+2 n\left\|\frac{\partial u}{\partial \nu}\right\|_{W^{\frac{1}{2}, p}(\partial \Omega)} \\
& +\|\nabla u\|_{L^{p}\left(\Omega ; \mathbb{R}^{2}\right)} \sum_{i=1}^{n} \frac{M_{i}}{d\left(\partial A_{i}, \partial B_{\rho_{h}}\left(x_{i}\right)\right)}:=C(n, \Omega)
\end{aligned}
$$

for h large enough. Since $U_{h} \rightharpoonup \nabla u$ in $L^{p}\left(\Omega ; \mathbb{R}^{2}\right)$, by Theorem 2.1

$$
|\operatorname{Div} \nabla u|(\Omega) \leq \liminf _{h \rightarrow \infty}\left|\operatorname{Div} \nabla u_{h}\right| \leq C
$$

where in the last equality we have applied again the Gauss-Green's formula and the definition of θ_{i}.

Therefore $\nabla u \in \mathcal{D}^{p}(\Omega)$. Finally we know that $u \in W^{1, p, 2}$ (div; $\Omega \backslash P$) and thus the support of the measure $\operatorname{div}^{s} \nabla u$ is given by the set P. Since $\operatorname{Cap}_{p}(P, \Omega)=0$, according to decomposition (6) the measure f - DivG vanishes on sets with $0 p$-capacity, and we deduce $f-\operatorname{DivG}=0$, that is $\nabla u \in S \mathcal{D} \mathcal{M}^{p}(\Omega)$, with $\left(\operatorname{div}^{s} \nabla u\right)_{0}=P$.

3.2 The Functional

According to our purpose the natural energy to deal with is the following $F: S \mathcal{D M}^{p}(\Omega) \rightarrow$ $[0, \infty], 1<p<2$, given by

$$
F(U)=\int_{\Omega}|\operatorname{div} U|^{2} d x+\lambda \int_{\Omega}\left|U-U_{0}\right|^{p} d x+\mu \mathcal{H}^{0}\left(\operatorname{supp}\left(\operatorname{div}^{s} U\right)_{0}\right)
$$

From now on we assume without loosing generality that the weights λ and μ are equal to 1 .
We note that, if $\operatorname{Div} U_{0} \neq 0$ in the sense of distributions, then $\inf F(U)>0$ on $S \mathcal{D} \mathcal{M}^{p}(\Omega)$. Indeed if we had $\inf _{S \mathcal{D} \mathcal{M}^{p}(\Omega)} F(U)=0$ then, it would be possible exhibiting a minimizing sequence $\left\{U_{n}\right\}$, such that $F\left(U_{n}\right) \rightarrow 0$. This would imply $U_{n} \rightarrow U_{0}$ in L^{p} and $\operatorname{Div} U_{n} \rightarrow 0$ in $\mathcal{D}^{\prime}(\Omega)$. On the other hand, the L^{p}-distance between U_{n} and U_{0} can be arbitrary small only if $\operatorname{Div} U_{0}=0$ as well, because the constraint $\operatorname{Div} U=0$ is stable under L^{p}-convergence.

4 -convergence: The intermediate approximation

By analogy with the construction of U_{0} we restrict ourselves to vector fields U which are the gradient of a function $u \in W_{0}^{1, p}(\Omega)$.

Thus the functional \mathcal{F} is finite on the class of functions whose support of the measure $\left(\operatorname{div}^{s} \nabla u\right)_{0}$ is given by a finite set. Consequently it is convenient to introduce the following spaces:

$$
\begin{equation*}
\Delta \mathcal{M}^{p}(\Omega):=\left\{u \in W_{0}^{1, p}(\Omega), \quad \nabla u \in S \mathcal{D M}^{p}(\Omega)\right\} \tag{12}
\end{equation*}
$$

and
$\Delta \mathcal{A M}^{p, 2}(\Omega)=\left\{u \in \Delta \mathcal{M}^{p}(\Omega): \Delta u \in L^{2}(\Omega), \operatorname{supp}\left(\operatorname{div}^{s} \nabla u\right)_{0}=P_{\nabla u}\right.$ with $\left.\mathcal{H}^{0}\left(P_{\nabla u}\right)<+\infty\right\}$.
So that the target-limit energy $\mathcal{F}: \Delta \mathcal{A M}^{p, 2}(\Omega) \rightarrow(0, \infty)$ is given by

$$
\begin{equation*}
\mathcal{F}(u)=\int_{\Omega}|\Delta u|^{2} d x+\int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x+\mathcal{H}^{0}\left(P_{\nabla u}\right) . \tag{14}
\end{equation*}
$$

In the spirit [9] we introduce an intermediate variational approximation of the functional \mathcal{F}. We define a sequence of functionals where the counting measure $\mathcal{H}^{0}\left(P_{\nabla u}\right)$ is replaced by a functional defined on regular sets D and which involves the curvature of the boundary ∂D. The approximating sequence is given by:

$$
\begin{aligned}
F_{\varepsilon}(u, D) & =\int_{\Omega}\left(1-\chi_{D}\right)|\Delta u|^{2} d x+\int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x \\
& +\frac{1}{4 \pi} \int_{\partial D}\left(\frac{1}{\varepsilon}+\varepsilon \kappa^{2}\right) d \mathcal{H}^{1}
\end{aligned}
$$

Where $u \in W_{0}^{1, p, 2}(\operatorname{div} ; \Omega), D$ is a regular set, and κ denotes the curvature of its boundary.
In order to guarantee that the measure of the sets D is small we define a new functional still denoted by $F_{\varepsilon}(u, D)$ given by
$F_{\varepsilon}(u, D)=\int_{\Omega}\left(1-\chi_{D}\right)|\Delta u|^{2} d x+\int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x+\frac{1}{4 \pi} \int_{\partial D}\left(\frac{1}{\varepsilon}+\varepsilon \kappa^{2}\right) d \mathcal{H}^{1}+\frac{1}{\varepsilon} \mathcal{L}^{2}(D) \quad$ on $Y(\Omega)$,
where $Y(\Omega)=\left\{(u, D) u \in W_{0}^{1, p, 2}(\operatorname{div} ; \Omega), D \in R(\Omega)\right\}$. We endow the set $Y(\Omega)$ with the following convergence.

Definition 4.1. Let $h \in \mathbb{N}$ go to $+\infty$. We say that a sequence $\left\{\left(u_{h}, D_{h}\right)\right\}_{h} \subset Y(\Omega) H$ converges to $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$ if the following conditions hold

1. $\mathcal{L}^{2}\left(D_{h}\right) \rightarrow 0$;
2. $\left\{\partial D_{h}\right\}_{h} \rightarrow P \subset \Omega$ in the Hausdorff metric, where P is a finite set of points;
3. $u_{h} \rightarrow u$ in $L^{p}(\Omega)$ and $P_{\nabla u} \subseteq P$.

Theorem 4.1. Let $h \in \mathbb{N}$ go to $+\infty$ and $\varepsilon_{h} \rightarrow 0$ such that

$$
\begin{equation*}
F_{\varepsilon_{h}}\left(u_{h}, D_{h}\right) \leq M, \tag{16}
\end{equation*}
$$

We point out that with this approach, the fundamental theorem of the Γ-convergence cannot be applied directly, since we do not deal with a metric space (for a complete survey on Γ-convergence we refer to $[7,10]$). However it is still possible to prove that a sequence $\left\{\left(u_{h}, D_{h}\right)\right\}_{h}$ asymptotically minimizing $F_{\varepsilon}(u, D)$ admits a subsequence H -converging to a minimizer of $\mathcal{F}(u)$. Indeed we will show at the end of the Section (see Theorem 4.4) that the convergence of the minimum problems can still obtained as a consequence of compactness of the minimizing sequence of $F_{\varepsilon}, \Gamma-\lim \inf$ inequality (1) and $\Gamma-\lim$ sup inequality (2).

4.1 Compactness

We state and prove the following compactness result.
then there exist a subsequence $\left\{\left(u_{h_{k}}, D_{h_{k}}\right)\right\}_{k} \subset Y(\Omega)$, a function $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$ and a set $P \subset \bar{\Omega}$ of finite number of points, such that $\left\{\left(u_{h_{k}}, D_{h_{k}}\right)\right\}_{k} H$-converges to u.

As in [9] we adopte the following ad hoc definition of Γ-convergence.
Definition 4.2. Let $h \in \mathbb{N}$ go to $+\infty$. We say that $F_{\varepsilon} \Gamma$-converges to \mathcal{F} if for every sequence of positive numbers $\left\{\varepsilon_{h}\right\} \rightarrow 0$ and for every $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$ we have:

1. for every sequence $\left\{\left(u_{h}, D_{h}\right)\right\}_{h} \subset Y(\Omega) H$-converging to $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$

$$
\liminf _{h \rightarrow+\infty} F_{\varepsilon_{h}}\left(u_{h}, D_{h}\right) \geq \mathcal{F}(u) ;
$$

2. there exists a sequence $\left\{\left(u_{h}, D_{h}\right)\right\}_{h} \subset Y(\Omega) H$-converging to u such that

$$
\limsup _{h \rightarrow+\infty} F_{\varepsilon_{h}}\left(u_{h}, D_{h}\right) \leq F(u) .
$$

Proof. We adapt an argument of [9]. From (16) we have immediately $\left\{D_{h}\right\} \subset R(\Omega)$ with $\mathcal{L}^{2}\left(D_{h}\right) \rightarrow 0$. Then we can parametrize every $C_{h}=\partial D_{h}$ by a finite and disjoint union of Jordan curves. Let us set for every $h, C_{h}=\bigcup_{i=1}^{m(h)} \gamma^{i}$. Then we have according to the 2-dimensional version of Gauss-Bonnet's Theorem and Young's inequality

$$
M \geq \frac{1}{4 \pi} \int_{\partial D_{h}}\left(\frac{1}{\varepsilon_{h}}+\varepsilon_{h} \kappa_{h}^{2}\right) d \mathcal{H}^{1} \geq \frac{1}{4 \pi} \int_{\partial D_{h}} 2 \kappa_{h} d \mathcal{H}^{1}=\frac{1}{4 \pi} \int_{\bigcup_{h} C_{h}} 2 \kappa_{h} d \mathcal{H}^{1}=m(h) .
$$

Note that the number $m(h) \leq M$, with $M \geq 0$, is independent of h. Then it is possible to extract a subsequence $C_{h_{k}}$ with the number of curves in $C_{h_{k}}$ equal to some n for every k. Then we set $C_{h_{k}}=\left\{\gamma_{h_{k}}^{1}, \ldots, \gamma_{h_{k}}^{n}\right\}$ for any k. From (16) we also have for any $\gamma \in C_{h_{k}}$ that
$\mathcal{H}^{1}(\gamma) \leq 4 \pi M \varepsilon_{h_{k}}$ and consequently $\max \left\{\mathcal{H}^{1}(\gamma): \gamma \in C_{h_{k}}\right\} \rightarrow 0$. Then there exists a finite set of point $P=\left\{x_{1}, \ldots, x_{n}\right\} \subset \bar{\Omega}$ such that for any radius ρ there is an index k_{ρ} with

$$
\gamma_{h_{k}}^{i} \subset B_{\rho}\left(x_{i}\right) \text { for all } k>k_{\rho} \text { and } i \in\{1, \ldots, n\}
$$

so that if we set $\partial D_{h_{k}}=\bigcup_{i=1}^{n} \gamma_{h_{k}}^{i} \subset \bigcup_{i=1}^{n} B_{\rho}\left(x_{i}\right)$, then the Hausdorff distance $d_{H}\left(\partial D_{h_{k}}, P\right) \rightarrow$ 0 since $\mathcal{L}^{2}\left(D_{h_{k}}\right) \rightarrow 0$ and therefore $\rho \rightarrow 0$ as well.

Now we prove the compactness property for u_{h}. First of all from the estimate

$$
\begin{equation*}
\left\|\nabla u_{h}\right\|_{L^{p}(\Omega)}^{p} \leq 2^{p}\left(\left\|\nabla u_{h}-U_{0}\right\|_{L^{p}(\Omega)}^{p}+\left\|U_{0}\right\|_{L^{p}(\Omega)}^{p}\right) \tag{17}
\end{equation*}
$$

267 and (16), we may extract a subsequence $\left\{u_{h_{k}}\right\} \subset W_{0}^{1, p}(\Omega)$ weakly convergent to $u \in W_{0}^{1, p}(\Omega)$.
Let Ω_{j} be a sequence of open sets $\Omega_{j} \subset \subset \Omega \backslash P$ invading $\Omega \backslash P$. We claim that it is possible to extract a sequence of $D_{h_{k}}$ such that $\Omega_{j} \cap \partial D_{h_{k}}=\emptyset$. Indeed since the distance between Ω_{j} and P is positive for any j there exists η_{j} such that $\Omega_{j} \cap\left(\bigcup_{i}^{n} B_{\eta_{j}}\left(x^{i}\right)\right)=\emptyset$. On the other hand we know that for every ρ we can find k_{ρ} such that $\partial D_{h_{k}}=\bigcup_{i=1}^{n} \gamma_{h_{k}}^{i} \subset \bigcup_{i=1}^{n} B_{\rho}\left(x_{i}\right)$. Then in particular if $\rho=\eta_{j}$ there exists k_{j} such that for all $k \geq k_{j}$

$$
\Omega_{j} \cap \partial D_{h_{k}}=\emptyset
$$

Therefore for any $x \in \Omega_{j}$ there exists $\delta>0$ such that either $B_{\delta}(x) \subset D_{h_{k}}$ or $B_{\delta}(x) \subset \Omega \backslash D_{h_{k}}$. Finally by taking into account that $\mathcal{L}^{2}\left(D_{h_{k}}\right) \rightarrow 0$ we conclude $\Omega_{j} \cap \partial D_{h_{k}}=\emptyset$ for $k \geq k_{j}$.

Then for every $k \geq k_{j}$ we have that $u_{h_{k}} \in W^{1, p, 2}\left(\operatorname{div} ; \Omega_{j}\right)$ and by (16) we get

$$
\begin{equation*}
\int_{\Omega_{j}}\left|\Delta u_{h}\right|^{2} d x \leq \int_{\Omega \backslash D_{h_{k}}}\left|\Delta u_{h_{k}}\right|^{2} d x \leq M \tag{18}
\end{equation*}
$$

Then we can extract a further subsequence still denoted by $\left\{u_{h_{k}}\right\} \subset W^{1, p, 2}\left(\operatorname{div} ; \Omega_{j}\right)$ such that

$$
\begin{cases}u_{h_{k}} \rightarrow u & \text { in } L^{p}\left(\Omega_{j} ; \mathbb{R}^{2}\right) \text { and a.e. } \\ \nabla u_{h_{k}} \rightharpoonup \nabla u & \text { in } L^{p}\left(\Omega_{j} ; \mathbb{R}^{2}\right) \\ \Delta u_{h_{k}} \rightharpoonup \Delta u & \text { in } L^{2}\left(\Omega_{j}\right)\end{cases}
$$

Let now $x \in \Omega^{\prime} \subset \subset \Omega \backslash P$. Then there exists a sequence $x_{j} \rightarrow x$ with $j \in \mathbb{N}$. By applying the diagonal argument to the sequence $u_{h_{k_{l}}}\left(x_{j}\right)$ we obtain a subsequence $u_{l}=u_{h_{k l}}\left(x_{l}\right)$ such that Δu_{l} converges weakly in $L^{2}\left(\Omega^{\prime}\right)$ to Δu for any $\Omega^{\prime} \subset \subset \Omega$. Then by the semicontinuity of the L^{2}-norm we have

$$
\sup _{j} \int_{\Omega_{j}}|\Delta u|^{2} d x \leq \sup _{j} \liminf _{l \rightarrow+\infty} \int_{\Omega_{j}}\left|\Delta u_{l}\right|^{2} d x \leq M
$$

If we set $\tilde{P}=P \backslash \partial \Omega$, then we deduce $u \in W_{0}^{1, p, 2}(\operatorname{div} ; \Omega \backslash \tilde{P})$ and therefore $\nabla u \in S \mathcal{D} \mathcal{M}^{p}(\Omega)$ with $P_{\nabla u} \subseteq P$, by Proposition 3.1. So we conclude that $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$.

2774.2 Lower bound

${ }_{278}$ We provide the lower bound (1) in Definition 4.2.
Theorem 4.2. Let $h \in \mathbb{N}$ go to $+\infty$. Let $\left\{\varepsilon_{h}\right\}_{h}$ be a sequence of positive numbers converging to zero. For every sequence $\left\{\left(u_{h}, D_{h}\right)\right\}_{h} \subset Y(\Omega)$, H-converging to $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$, we have

$$
\liminf _{h \rightarrow \infty} F_{\varepsilon_{h}}\left(u_{h}, D_{h}\right) \geq \mathcal{F}(u) .
$$

Proof. Up to a subsequence we may assume that the liminf is a actually a limit. As in the proof of Theorem 4.1, by setting for every $h, C_{h}=\bigcup_{i=1}^{m(h)} \gamma^{i}$, we get

$$
M \geq \frac{1}{4 \pi} \int_{\partial D_{h}}\left(\frac{1}{\varepsilon_{h}}+\varepsilon_{h} k^{2}\right) d \mathcal{H}^{1}=m(h) .
$$

Up to subsequences we have $m(h)=n$ for some natural number n. Hence there exists a set P_{1} of n points such that ∂D_{h} converges in the Hausdorff metric to P_{1}. On the other hand we have that ∂D_{h} converges in the Hausdorff metric to P with $P_{\nabla u} \subseteq P$. Then, since the limit is unique, we have $P=P_{1}$.

Let now $\left\{\Omega_{j}\right\}_{j}$ be a sequence of open sets $\Omega_{j} \subset \subset \Omega \backslash P_{1}$ invading $\Omega \backslash P_{1}$. As in the proof of Theorem 4.1 we may assume up to a subsequence, that $\Delta u_{h} \rightharpoonup \Delta u$ in $L^{2}\left(\Omega_{j}\right)$. Furthermore, since in this case all the sequence D_{h} converges to the set P_{1} we have, by the same argument used in the proof of Theorem $4.1, \Omega_{j} \subset \Omega \backslash D_{h}$ for h large and for any j. Consequently

$$
\liminf _{h \rightarrow+\infty} \int_{\Omega \backslash D_{h}}\left|\Delta u_{h}\right|^{2} d x \geq \liminf _{h \rightarrow+\infty} \int_{\Omega_{j}}\left|\Delta u_{h}\right|^{2} d x \geq \int_{\Omega_{j}}|\Delta u|^{2} d x
$$

On the other hand, arguing as in Theorem 4.1, we infer that the limit u of the subsequence u_{h} belongs to $\Delta \mathcal{A} \mathcal{M}^{p, 2}(\Omega)$, with $\Delta u \in L^{2}\left(\Omega \backslash P_{1}\right)$ and $P_{\nabla u} \subseteq P_{1}$. So that by monotone convergence

$$
\begin{equation*}
\liminf _{h \rightarrow+\infty} \int_{\Omega \backslash D_{h}}\left|\Delta u_{h}\right|^{2} d x \geq \int_{\Omega \backslash P_{1}}|\Delta u|^{2} d x=\int_{\Omega}|\Delta u|^{2} d x \tag{19}
\end{equation*}
$$

As in the proof of Theorem 4.1, inequality (17) holds. Then we easily get

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \int_{\Omega}\left|\nabla u_{h}-U_{0}\right|^{p} d x \geq \int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x \tag{20}
\end{equation*}
$$

287
Finally we have

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{\partial D_{h}}\left(\frac{1}{\varepsilon_{h}}+\varepsilon_{h} k^{2}\right) d \mathcal{H}^{1} \geq n=\mathcal{H}^{0}\left(P_{1}\right) \geq \mathcal{H}^{0}\left(P_{\nabla u}\right) \tag{21}
\end{equation*}
$$

288 Eventually by (19),(20) (21) and by the superlinearity property of the liminf operator we

4.3 Upper bound

In [9] for the construction of the optimal sequence it is crucial to use a result due to Chambolle and Doveri (see [11]). This result states that it is possible to approximate, in the H^{1}-norm, a function $u \in W^{1,2}(\Omega \backslash C)$ (where C is a closed set), by means of a sequence of functions $u_{h} \in W^{1,2}\left(\Omega \backslash C_{h}\right)$ with C_{h} convergent to C in the Hausdorff metric. In our case this argument does not apply due to presence of a second order differential operator. Nevertheless since we work only with set of points it is possible to build an optimal sequence in a more direct way.

Theorem 4.3. Let $h \in \mathbb{N}$ go to $+\infty$. Let ε_{h} be a sequence of positive converging to 0 . For every $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$ there exists a sequence $\left\{\left(u_{h}, D_{h}\right)\right\}_{h} \subset Y(\Omega) H$-converging to u such that

$$
\begin{equation*}
\limsup _{h \rightarrow+\infty} F_{\varepsilon_{h}}\left(u_{h}, D_{h}\right) \leq \mathcal{F}(u) \tag{22}
\end{equation*}
$$

Proof. We start by the construction of the sequence D_{h}. Let n be the number of points x_{i} in $P_{\nabla u}$. Then we take $D_{h}=\bigcup_{i=1}^{n} B_{\varepsilon_{h}}\left(x_{i}\right)$. So that $\mathcal{L}^{2}\left(D_{h}\right) \rightarrow 0, \frac{1}{\varepsilon_{h}} \mathcal{L}^{2}\left(D_{h}\right) \rightarrow 0$ and ∂D_{h} converges with respect to the Hausdorff distance to $P_{\nabla u}$. Moreover for h large enough we may assume $B_{\varepsilon_{h}}\left(x_{i}\right) \cap B_{\varepsilon_{h}}\left(x_{j}\right)=\emptyset$ for $i \neq j$. Now we build u_{h}. Let $\left\{\rho_{h}\right\} \subset \mathbb{R}$ be such that $\rho_{h} \geq 0$ and $\rho_{h} \rightarrow 0$ when $h \rightarrow \infty$. Let $\theta_{h} \in C^{\infty}(\Omega)$ with the following property:

$$
\begin{cases}\theta_{h}=1 & \text { on } B_{\frac{\rho_{h}}{2}}\left(x_{i}\right) \text { for any } i=1, \ldots, n \tag{23}\\ 0 \leq \theta_{h} \leq 1 & \text { on } B_{\rho_{h}}\left(x_{i}\right) \backslash B_{\frac{\rho_{h}}{2}}^{2}\left(x_{i}\right) \text { for any } i=1, \ldots, n \\ \theta=0 & \text { on } \Omega \backslash B_{\rho_{h}}\left(x_{i}\right) \text { for any } i=1, \ldots, n \\ \left\|\nabla \theta_{h}\right\|_{\infty} \leq \frac{1}{\rho_{h}} . & \end{cases}
$$

We set $u_{h}=\left(1-\theta_{h}\right) u$. It is not difficult to check that $\left\{\left(u_{h}, D_{h}\right)\right\}_{h} \subset Y(\Omega)$ and H-converges to u. We claim that the pair $\left(u_{h}, D_{h}\right)$ realizes the inequality (22) for a suitable choice of the sequence ρ_{h}. By making the computation we have

$$
\nabla u_{h}=\left(1-\theta_{h}\right) \nabla u-u \nabla \theta_{h} .
$$

Then

$$
\int_{\Omega}\left|\nabla u_{h}-U_{0}\right|^{p} d x=\int_{\Omega}\left|\nabla u-U_{0}-\theta_{h} \nabla u-u \nabla \theta_{h}\right|^{p} d x
$$

306

$$
\begin{equation*}
\limsup _{h \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{h}-U_{0}\right|^{p} d x \leq \limsup _{h \rightarrow+\infty}\left(\left(\int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{\Omega}\left|\theta_{h} \nabla u\right|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{\Omega}\left|\nabla \theta_{h} u\right|^{p} d x\right)^{\frac{1}{p}}\right)^{p} . \tag{24}
\end{equation*}
$$

Since $|\nabla u|^{p} \in L^{1}(\Omega)$, we have by applying the dominated convergence theorem $\int_{\Omega}\left|\theta_{h} \nabla u\right|^{p} d x \rightarrow$ 0 . Let us focus on the term $\int_{\Omega}\left|\nabla \theta_{h} u\right|^{p}$. By the Sobolev embedding we have $u \in L^{p^{*}}(\Omega)$ with $p^{*}=\frac{2 p}{2-p}$ and hence $|u|^{p} \in L^{\frac{p^{*}}{p}}(\Omega)$, with $\frac{p^{*}}{p}=\frac{2}{2-p}$.

By (23), using Holder's inequality with dual exponents $\frac{2}{2-p}$ and $\frac{2}{p}$, and taking into account that $p<2$

$$
\begin{align*}
\int_{\Omega}\left|\nabla \theta_{h} u\right|^{p} d x & \leq \sum_{i=1}^{n} \int_{B_{\rho_{h}}\left(x_{i}\right) \backslash B_{\frac{\rho_{h}}{2}}\left(x_{i}\right)}\left|\nabla \theta_{h} u\right|^{p} d x=\sum_{i=1}^{n}\left(\int_{B_{\rho_{h}}\left(x_{i}\right)}\left|\nabla \theta_{h} u\right|^{p} d x-\int_{B_{\frac{\rho_{h}}{2}}\left(x_{i}\right)}\left|\nabla \theta_{h} u\right|^{p} d x\right) \\
& \leq \sum_{i=1}^{n}\left(\int_{B_{\rho_{h}\left(x_{i}\right)}}\left|\nabla \theta_{h}\right|^{2} d x\right)^{\frac{p}{2}}\|u\|_{L^{\frac{2}{2-p}}(\Omega)} \leq \sum_{i=1}^{n}\|u\|_{L^{p^{*}(\Omega)}}\left(\frac{\pi^{2} \rho_{h}^{2}}{\rho_{h}^{p}}\right) \rightarrow 0 \tag{25}
\end{align*}
$$

From (24) it follows that

$$
\begin{align*}
\limsup _{h \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{h}-U_{0}\right|^{p} d x & \leq \lim _{h \rightarrow+\infty}\left(\left(\int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x\right)^{\frac{1}{p}} \left\lvert\,+\left(\int_{\Omega}\left|\theta_{h} \nabla u\right|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{\Omega}\left|\nabla \theta_{h} u\right|^{p} d x\right)^{\frac{1}{p}}\right.\right)^{p} \\
& =\left(\left(\int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x\right)^{\frac{1}{p}}\right)^{p}=\int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x \tag{26}
\end{align*}
$$

Now we compute Δu_{h}. The identity $\operatorname{div}(f A)=f \operatorname{div} A+\nabla f \cdot A$ yields

$$
\Delta u_{h}=\left(1-\theta_{h}\right) \Delta u-2 \nabla \theta_{h} \nabla u-\Delta \theta_{h} u .
$$

Then by choosing ρ_{h} small enough we have from (23)

$$
\begin{equation*}
\limsup _{h \rightarrow+\infty} \int_{\Omega \backslash D_{h}}\left|\Delta u_{h}\right|^{2} d x \leq \lim _{h \rightarrow+\infty} \int_{\Omega \backslash D_{h}}|\Delta u|^{2} d x \rightarrow \int_{\Omega}|\Delta u|^{2} d x \tag{27}
\end{equation*}
$$

311
Finally since for h large we have $B_{\varepsilon_{h}}\left(x_{i}\right) \cap B_{\varepsilon_{h}}\left(x_{j}\right)=\emptyset$ for $i \neq j$ we get

$$
\begin{equation*}
\lim _{h} \frac{1}{4 \pi} \int_{\partial D_{h}}\left(\frac{1}{\varepsilon_{h}}+\varepsilon_{h} k^{2}\right) d \mathcal{H}^{1}=\lim _{h} \sum_{i=1}^{n} \frac{1}{4 \pi} \int_{\partial B_{\varepsilon_{h}}}\left(\varepsilon_{h} \frac{1}{\varepsilon_{h}} k^{2}\right) d \mathcal{H}^{1}=n=\mathcal{H}^{0}\left(P_{\nabla u}\right) \tag{28}
\end{equation*}
$$

312
313

By recalling that the limsup is sublinear operation and by $(26),(27),(28)$, we achieve the result.

4.4 Variational property

We conclude this section by properly stating and proving the particular version of fundamental Theorem, which is, in this case, a direct consequence of Theorems 4.1, 4.2, 4.3. The proof can be achieved by a classical argument (see [7], Section 1.5). However we prefer to give the proof in order to make clear that the classical variational setting is not directly available, and therefore the variational property has to be proven.

Theorem 4.4. Let $h \in \mathbb{N}$ go to $+\infty$. Let F_{ε} and \mathcal{F} be given respectively by (15) and (14). If $\left\{\varepsilon_{h}\right\}$ is a sequence of positive numbers converging to zero and $\left\{\left(u_{h}, D_{h}\right)\right\} \subset Y(\Omega)$ such that

$$
\lim _{h \rightarrow+\infty}\left(F_{\varepsilon_{h}}\left(u_{h}, D_{h}\right)-\inf _{Y(\Omega)} F_{\varepsilon_{h}}(u, D)\right)=0
$$

${ }^{320}$ then there exists a subsequence $\left\{\left(u_{h_{k}}, D_{h_{k}}\right)\right\} \subset Y(\Omega)$ and a minimizer \bar{u} of $\mathcal{F}(u)$ with $\bar{u} \in$
${ }^{321} \Delta \mathcal{A M}^{p, 2}(\Omega)$, such that $\left\{\left(u_{h_{k}}, D_{h_{k}}\right)\right\} H$-converges to \bar{u}.
Proof. We know from Theorems 4.2 and 4.3 that $F_{\varepsilon} \Gamma$-converges to \mathcal{F}. Let $u \in \Delta \mathcal{A} \mathcal{M}^{p, 2}(\Omega)$ be such that

$$
\mathcal{F}(u) \leq \inf _{\Delta \mathcal{A} \mathcal{M}^{p, 2}(\Omega)} \mathcal{F}(u)+\delta
$$

From Theorem 4.3 there exists a sequence $\left\{\left(\S \tilde{u_{h}}, \tilde{D_{h}}\right)\right\} \subset Y(\Omega)$, such that

$$
\inf _{\Delta \mathcal{A} \mathcal{M}^{p, 2}(\Omega)} \mathcal{F}+\delta \geq \mathcal{F}(u) \geq \limsup _{h \rightarrow+\infty} F_{\varepsilon_{h}}\left(\tilde{u_{h}}, \tilde{D_{h}}\right)
$$

${ }_{322}$ Then since δ is arbitrary it follows that

$$
\begin{equation*}
\limsup _{h \rightarrow+\infty} \inf _{Y(\Omega)} F_{\varepsilon_{h}} \leq \limsup _{h \rightarrow+\infty} F_{\varepsilon_{h}}\left(\tilde{u_{h}}, \tilde{D_{h}}\right) \leq \inf _{\Delta \mathcal{A} \mathcal{M}^{p, 2}(\Omega)} \mathcal{F} \tag{29}
\end{equation*}
$$

Let now $\left\{\left(u_{h}, D_{h}\right)\right\} \subset Y(\Omega)$ be such that $\lim _{h \rightarrow+\infty}\left(F_{\varepsilon_{h}}\left(u_{h}, D_{h}\right)-\inf _{Y(\Omega)} F_{\varepsilon_{h}}(u, D)\right)=0$. Then from Theorem 4.1, up to subsequences, the sequence $\left\{\left(u_{h}, D_{h}\right)\right\}_{h} \mathrm{H}$-converges to some $\bar{u} \in \Delta \mathcal{A} \mathcal{M}^{p, 2}(\Omega)$. Then by Theorem 4.2 and taking into account (29) we deduce

$$
\inf _{\Delta \mathcal{A} \mathcal{M}^{p, 2}(\Omega)} \mathcal{F} \leq \mathcal{F}(\bar{u}) \leq \liminf _{h \rightarrow+\infty} \inf _{Y(\Omega)} F_{\varepsilon_{h}} \leq \limsup _{h \rightarrow+\infty} \inf _{Y(\Omega)} F_{\varepsilon_{h}} \leq \inf _{\Delta \mathcal{A} \mathcal{M}^{p, 2}(\Omega)} \mathcal{F}
$$

${ }_{323}$ Then we easily get the thesis.

5 Approximation by smooth function

By following the Braides-March's approach in [9] we approximate the measure $\mathcal{H}^{1}\lfloor\partial D$ by the Modica-Mortola's energy density given by $\left(\varepsilon|\nabla w|^{2}+\frac{1}{\varepsilon} W(w)\right) d x$ where $W(w)=w^{2}(1-w)^{2}$ and $w \in C^{\infty}(\Omega)$. The next step is to replace the regular set D with the level set of w. Let us set $Z=\{\nabla w(x)=0\}$. By Sard's Lemma we have that $\mathcal{L}^{1}(w(Z))=0$. In particular, if w takes values into the interval $[0,1]$, we infer that for almost every $t \in(0,1)$ the set $Z \cap w^{-1}(t)$ is empty. Consequently for almost every $t \in(0,1)$ the t-level set $\{w<t\}$ is a regular set with boundary $\{w=t\}$. Now, since we want to replace the set D, we need that $\{w<t\} \subset \subset \Omega$. Then we require $1-w \in C_{0}^{\infty}(\Omega ;[0,1])$. Furthermore for almost every t, we have $k(\{w=t\})=\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right)$. From all of this we are led to define the following space:

$$
\begin{equation*}
S(\Omega)=\left\{(u, w) ; u \in W_{0}^{1, p, 2}(\operatorname{div} ; \Omega) ; 1-w \in C_{0}^{\infty}(\Omega ;[0,1])\right\} \tag{30}
\end{equation*}
$$

and having in mind the coarea formula, the following sequence of functionals defined on $S(\Omega)$

$$
\begin{align*}
\mathcal{G}_{\varepsilon}(u, w) & =\int_{\Omega} w^{2}|\Delta u|^{2} d x+\frac{1}{8 \pi C} \int_{\Omega \backslash\{\nabla w=0\}}\left(\frac{1}{\beta_{\varepsilon}}+\beta_{\varepsilon}\left(\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right)\right)^{2}\left(\varepsilon|\nabla w|^{2}+\frac{1}{\varepsilon} W(w)\right) d x\right. \\
& +\int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x+\frac{1}{\gamma_{\varepsilon}} \int_{\Omega}(1-w)^{2} d x \tag{31}
\end{align*}
$$

with $C=\int_{0}^{1} \sqrt{W(t)} d t$. The last term forces w_{ε} be 1 almost everywhere in the limit. From now on the parameters $\varepsilon, \beta_{\varepsilon}, \gamma_{\varepsilon}$ will be related as follows

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\beta_{\varepsilon}}{\gamma_{\varepsilon}}=0 \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\varepsilon|\log (\varepsilon)|}{\beta_{\varepsilon}}=0 \tag{33}
\end{equation*}
$$

The convergence that plays the role of the H -convergence is the following. With a slight abuse of notation this convergence will be still denoted by H .

Definition 5.1. Let $h \in \mathbb{N}$ goto $+\infty$ and $\left\{\left(u_{h}, w_{h}\right)\right\}_{h}$ be a sequence $S(\Omega)$. Set $D_{h}^{t}=\left\{w_{h}<\right.$ $t\}$. We say that $\left\{\left(u_{h}, w_{h}\right)\right\}_{h} H$-converges to $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$, if for every $t \in(0,1)$ the sequence $\left\{\left(u_{h}, D_{h}^{t}\right)\right\}_{h}$ in $Y(\Omega) H$-converges to u.

As in the previous Section, we adopte the ad hoc definition of Γ-convergence with respect to the convergence above.

Definition 5.2. Let $h \in \mathbb{N}$ go to $+\infty$. We say that $\mathcal{G}_{\varepsilon} \Gamma$-converges to \mathcal{F} if, for every sequence of positive numbers $\varepsilon_{h} \rightarrow 0$ and for every $u \in \Delta \mathcal{A} \mathcal{M}^{p, 2}(\Omega)$, we have:

1. for every sequence $\left\{\left(u_{h}, w_{h}\right)\right\}_{h} \subset S(\Omega) H$-converging to u

$$
\liminf _{h \rightarrow+\infty} \mathcal{G}_{\varepsilon_{h}}\left(u_{h}, w_{h}\right) \geq \mathcal{F}(u)
$$

2. there exists a sequence $\left\{\left(u_{h}, w_{h}\right)\right\}_{h} \subset S(\Omega) H$-converging to u such that

$$
\limsup _{h \rightarrow+\infty} \mathcal{G}_{\varepsilon_{h}}\left(u_{h}, w_{h}\right) \leq F(u)
$$

51 Theorem 5.1. Let $h \in \mathbb{N}$ goes to $+\infty$ and $\varepsilon_{h} \rightarrow 0$ such that

$$
\begin{equation*}
F_{\varepsilon_{h}}\left(u_{h}, w_{h}\right) \leq M . \tag{34}
\end{equation*}
$$

Proof. The first part of proof is as in [9]. For the convenience of the reader we give the complete proof.

By Young's inequality and by (34) we get

$$
M \geq 2 \int_{\Omega \backslash\left\{\left|\nabla w_{h}\right|=0\right\}}\left|\nabla w_{h}\right| \sqrt{W\left(w_{h}\right)}\left(\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}}\left(\operatorname{div}\left(\frac{\nabla w_{h}}{\left|\nabla w_{h}\right|}\right)\right)^{2}\right) d x\right.
$$

356 Now by coarea formula, we obtain

$$
\begin{equation*}
M \geq 2 \int_{0}^{1} \sqrt{W(t)} \int_{\left\{w_{h}=t\right\} \cap\left\{\left|\nabla w_{h}\right| \neq 0\right\}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}}\left(\operatorname{div}\left(\frac{\nabla w_{h}}{\left|\nabla w_{h}\right|}\right)\right)^{2}\right) d \mathcal{H}^{1} d t . \tag{35}
\end{equation*}
$$

Thanks to Sard's Lemma, for any h there exists a \mathcal{L}^{1}-negligible set $\mathcal{N}_{w_{h}} \subseteq(0,1)$ such that

$$
\left\{w_{h}=t\right\}=\partial\left\{w_{h}<t\right\},\left\{w_{h}<t\right\} \in R(\Omega), \text { for } t \in(0,1) \backslash \mathcal{N}_{w_{h}}
$$

On $\left\{w_{h}=t\right\}$ for $t \in(0,1) \backslash \mathcal{N}_{w_{h}}$ we have

$$
\left|\nabla w_{h}\right| \neq 0 \text { and } \kappa\left(\left\{w_{h}=t\right\}\right)=\operatorname{div}\left(\frac{\nabla w_{h}}{\left|\nabla w_{h}\right|}\right)
$$

Now since the union $\bigcup_{h} \mathcal{N}_{w_{h} h}$ of the sets $\mathcal{N}_{w_{h}}$ is \mathcal{L}^{2}-negligible (almost countable) from (35) we have

$$
M \geq 2 \int_{(0,1) \backslash \bigcup_{h} \mathcal{N}_{w_{h}}} \sqrt{W(t)} \int_{\partial\left\{w_{h}<t\right\}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}} \kappa^{2}\right) d \mathcal{H}^{1} d t
$$

where the constant M_{t} does not depend on h.
Then for every $t \in(0,1) \backslash Q$ we can extract a sequence $\left\{w_{h}^{t}\right\}_{h}$ such that $\partial\left\{w_{h}^{t}<t\right\}$ converges with respect to the Hausdorff metric to a set $P^{t} \subset \bar{\Omega}$. Let $\mathcal{N}=\left\{t_{i}\right\}$ in $(0,1)$ be a dense countable set. Up to a diagonal argument we can find a subsequence $\left\{w_{h_{k}}\right\}_{k}$ such that, for every $t_{i} \in \mathcal{N}, \partial\left\{w_{h_{k}}<t_{i}\right\}$ converges to $P^{t_{i}}$. Let $t_{i} \in \mathcal{N}$ such that $t_{i}>t$ and consequently $\left\{w_{h_{k}}<t\right\} \subseteq\left\{w_{h_{k}}<t_{i}\right\}$. From the definition of Hausdorff convergence it follows that for every $\rho>0$ there exists $k_{0}(\rho)$ such that for any $k>k_{0}$ we have $\left\{w_{h_{k}}<t_{i}\right\} \cap B_{\rho}(x) \neq \emptyset$ for every $x \in P^{t_{i}}$. Since the t--level set is open for every ρ and for every $x \in P^{t_{i}}$ such that $\left\{w_{h_{k}}<t\right\} \cap B_{\rho}(x) \neq \emptyset$, we may choose $t_{n} \in \mathcal{N}$ with $t_{n}<t$ and so obtain for k large enough $\left\{w_{h_{k}}<t_{n}\right\} \cap B_{\rho}(x) \neq \emptyset$. By choosing $t_{\max }=\max _{x \in P^{t_{i}}} t_{n}(x)$ for every $x \in P^{t_{i}}$, the inclusion $\left\{w_{h_{k}}<t_{\max }\right\} \subset\left\{w_{h_{k}}<t\right\}$ gives

$$
\left\{w_{h_{k}}<t_{\max }\right\} \cap B_{\rho}(x) \subseteq\left\{w_{h_{k}}<t\right\} \cap B_{\rho}(x) \subseteq\left\{w_{h_{k}}<t_{n}\right\} \cap B_{\rho}(x)
$$

with $t_{\max }, t_{i} \in \mathcal{N}$. Then by taking the limit $\rho \rightarrow 0^{+}$we infer $\partial\left\{w_{h_{k}}<t\right\}$ converges with respect to the Hausdorff metric to a set $P^{t} \subset \bar{\Omega}$ for every $t \in(0,1)$.

Finally for any $t \in(0,1)$ since $0 \leq w_{h} \leq 1$, we have $\mathcal{L}^{2}\left(\left\{w_{h}<t\right\}\right)=\mathcal{L}^{2}\left(\left\{1-w_{h}>\right.\right.$ $1-t\}) \leq \mathcal{L}^{2}\left(\left\{1-w_{h}>(1-t)^{2}\right\}\right)$, then by Chebyshev's inequality and by (34)

$$
\begin{equation*}
\mathcal{L}^{2}\left(\left\{w_{h}<t\right\}\right) \leq \frac{M \gamma_{\varepsilon_{h}}}{(1-t)^{2}} \tag{38}
\end{equation*}
$$

By applying Fatou's Lemma and taking into account that the set $\bigcup_{h} \mathcal{N}_{w_{h}}$ does not depend on h we get

$$
\begin{equation*}
M \geq 2 \int_{(0,1) \backslash \bigcup_{h} \mathcal{N}_{w_{h}}} \sqrt{W(t)} \liminf _{h \rightarrow+\infty} \int_{\partial\left\{w_{h}<t\right\}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}} \kappa^{2}\right) d \mathcal{H}^{1} d t \tag{36}
\end{equation*}
$$

Hence we deduce the existence of a \mathcal{L}^{2}-negligible set Q, with $\bigcup_{h} \mathcal{N}_{w_{h}} \subseteq Q$, such that

$$
\begin{equation*}
\liminf _{h \rightarrow+\infty} \int_{\partial\left\{w_{h}<t\right\}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}} \kappa^{2}\right) d \mathcal{H}^{1} \leq M_{t} \tag{37}
\end{equation*}
$$

Therefore, as in the proof of Theorem 4.1, we can extract a subsequence $\left\{u_{h_{k}}\right\}_{k}$ which converges strongly in $L^{p}(\Omega)$ to a function $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$ with $P_{\nabla u} \subseteq P^{t}$ for every $t \in$ $(0,1)$. Hence we have that for every $t \in(0,1)$ the sequence $\left\{\left(u_{h_{k}}, D_{h_{k}}^{t}\right)\right\}_{k} \mathrm{H}$-converges to u and the proof is achieved.

5.2 Lower bound

We give the proof of the lower bound (1) in Definition 5.2. In the proof it will be crucial having the convergence of the t-level set for every $t \in(0,1)$.
Theorem 5.2. Let $h \in \mathbb{N}$ go to $+\infty$. Let $\left\{\varepsilon_{h}\right\}_{h}$ be a sequence of positive numbers converging to zero. For every sequence $\left\{\left(u_{h}, w_{h}\right)\right\}_{h} \subset S(\Omega) H$-converging to $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$, we have

$$
\liminf _{h \rightarrow+\infty} F_{\varepsilon_{h}}\left(u_{h}, w_{h}\right) \geq \mathcal{F}(u)
$$

Proof. Without loss of generality we assume, up to subsequences,

$$
+\infty>\liminf _{h \rightarrow+\infty} \mathcal{F}_{\varepsilon_{h}}=\lim _{h \rightarrow+\infty} \mathcal{F}_{\varepsilon_{h}}
$$

$$
\begin{equation*}
\int_{\Omega} w_{h}^{2}\left|\Delta u_{h}\right|^{2} d x=\int_{\left\{w_{h}<t\right\}} w_{h}^{2}\left|\Delta u_{h}\right|^{2} d x+\int_{\left\{w_{h} \geq t\right\}} w_{h}^{2}\left|\Delta u_{h}\right|^{2} d x \geq t^{2} \int_{\Omega}\left(1-\chi_{\left\{w_{h}<t\right\}}\right)\left|\Delta u_{h}\right|^{2} d x \tag{39}
\end{equation*}
$$

${ }_{375}$ Let $\left\{\Omega_{j}\right\}_{j}$ be a sequence of open sets $\Omega_{j} \subset \subset \Omega \backslash P^{t}$ invading $\Omega \backslash P^{t}$. Then we may assume
${ }_{376}$ that $u_{h} \rightharpoonup$ weakly in $W_{0}^{1, p}(\Omega)$ and Δu_{h} converges weakly in $L^{2}\left(\Omega_{j}\right)$ to Δu. Therefore as in ${ }_{377}$ the proof of Theorem 4.2 we get

$$
\begin{equation*}
\lim _{h \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{h}-U_{0}\right|^{p} d x \geq \int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x \tag{40}
\end{equation*}
$$

and

$$
\liminf _{h \rightarrow+\infty} t^{2} \int_{\Omega}\left(1-\chi_{\left\{w_{h}<t\right\}}\right)\left|\Delta u_{h}\right|^{2} d x \geq t^{2} \int_{\Omega_{j}}|\Delta u|^{2} d x
$$

378 for any j.
Then by (39) and, by taking into account that $|\Delta u|$ is in $L^{2}\left(\Omega \backslash P^{t}\right)$ with $P_{\nabla u} \subseteq P_{t}$, it follows that

$$
\liminf _{h \rightarrow+\infty} \int_{\Omega} w_{h}^{2}\left|\Delta u_{h}\right|^{2} d x \geq t^{2} \int_{\Omega}|\Delta u|^{2} d x
$$

379
And eventually by taking the limit $t \rightarrow 1$

$$
\begin{equation*}
\liminf _{h \rightarrow+\infty} \int_{\Omega} w_{h}^{2}\left|\Delta u_{h}\right|^{2} d x \geq \int_{\Omega}|\Delta u|^{2} d x \tag{41}
\end{equation*}
$$

380
Finally, as in the proof of Theorem 4.2 (inequality 21) we have

$$
\begin{equation*}
\liminf _{h \rightarrow+\infty} \frac{1}{4 \pi} \int_{\partial\left\{w_{h}<t\right\}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}} k^{2}\right) d \mathcal{H}^{1} \geq \mathcal{H}^{0}\left(P^{t}\right) \geq \mathcal{H}^{0}\left(P_{\nabla u}\right) \tag{42}
\end{equation*}
$$

Now arguing as in the proof of Theorem 5.1 and by taking into account（42），we get

$$
\begin{align*}
& \liminf _{h \rightarrow+\infty} \int_{\Omega \backslash\left\{\nabla w_{h}=0\right\}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}}\left(\operatorname{div}\left(\frac{\nabla w_{h}}{\left|\nabla w_{h}\right|}\right)\right)^{2}\left(\varepsilon_{h}\left|\nabla w_{h}\right|^{2}+\frac{1}{\varepsilon_{h}} W\left(w_{h}\right)\right) d x\right. \\
\geq & 2 \liminf _{h \rightarrow+\infty} \int_{(0,1) \backslash \cup_{h} \mathcal{N}_{w_{h}}} \sqrt{W(t)} \liminf _{h \rightarrow+\infty} \int_{\partial\left\{w_{h}<t\right\}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}} k^{2}\right) d \mathcal{H}^{1} d t \\
\geq & 2 \int_{(0,1)} \mathcal{H}^{0}\left(P^{t}\right) \sqrt{W(t)} d t \geq 8 \pi C \mathcal{H}^{0}\left(P_{\nabla u}\right) . \tag{43}
\end{align*}
$$

By collecting（40）（41）and（43）we achieve the thesis．

5．3 Upper bound

As in［9］to build w_{h} we use the construction given in［4］，while the optimal sequence u_{k} is chosen as in Theorem 4．3．

Theorem 5．3．Let $h \in \mathbb{N}$ go to $+\infty$ ．Let ε_{h} be a sequence of positive numbers with $\varepsilon_{h} \rightarrow 0$ ． For every $u \in \Delta \mathcal{A} \mathcal{M}^{p, 2}$ there exists a sequence $\left\{\left(u_{h}, w_{h}\right)\right\}_{h} \subset S(\Omega)$ ，H－converging to u ，such that

$$
\begin{equation*}
\limsup _{h \rightarrow \infty} F_{\varepsilon_{h}}\left(u_{h}, w_{h}\right) \leq \mathcal{F}(u) \tag{44}
\end{equation*}
$$

Proof．If $A \subset \mathbb{R}^{2}$ we set

$$
\delta_{A}(x)=d(x, A)-d\left(x, \mathbb{R}^{2} \backslash A\right)
$$

Since D_{h} is a regular set by taking into account the condition（33）for h large enough we have

$$
\begin{equation*}
\left\{x \in \Omega: d\left(x, D_{h}\right)<2 \varepsilon_{h}\left|\log \varepsilon_{h}\right|\right\} \subset \subset \Omega . \tag{45}
\end{equation*}
$$

Let η be the optimal profile for Modica－Mortola＇s energy，that is the solution of the ODE

$$
\left\{\begin{array}{l}
\eta^{\prime}(t)=\sqrt{W(t)} \quad \text { on } \mathbb{R} \\
\eta(-\infty)=0 \\
\eta(+\infty)=1
\end{array}\right.
$$

${ }_{391}$ given by $\eta(t)=\frac{1}{2}\left(1+\tanh \frac{t}{2}\right)$.

For every h let $\psi_{h}:[0,+\infty) \rightarrow[0,1]$ be a C^{∞}-function such that

As in [4] and in [9] we define

$$
\eta_{h}(t)= \begin{cases}\eta\left(\frac{t}{\varepsilon_{h}}\right) \psi\left(\frac{t}{\varepsilon_{h}}\right)+1-\psi\left(\frac{t}{\varepsilon_{h}}\right) & \text { if } t \geq 0 \\ \psi\left(\frac{t}{\varepsilon_{h}}\right)-\eta\left(\frac{t}{\varepsilon_{h}}\right) \psi\left(\frac{t}{\varepsilon_{h}}\right) & \text { if } t<0\end{cases}
$$

Then we set $w_{h}(x)=\eta_{h}\left(\delta_{D_{h}}(x)\right)$. We claim that $1-w_{h}(x) \in C_{0}^{\infty}(\Omega ;[0,1])$ for h large enough. Indeed for any $x \in \Omega \backslash D_{h}$ we have $\delta_{D_{h}}(x) \geq 0$, hence

$$
1-w_{h}(x)=\psi_{h}\left(\frac{\delta_{D_{h}}(x)}{\varepsilon_{h}}\right)\left(1-\eta\left(\frac{\delta_{D_{h}}(x)}{\varepsilon_{h}}\right)\right) .
$$

$$
\begin{equation*}
\left\{w_{h}=t\right\}=\left(\left\{w_{h}=t\right\} \cap D_{h}\right) \cup\left(\left\{w_{h}=t\right\} \cap \Omega \backslash D_{h}\right) \tag{46}
\end{equation*}
$$

Hence, since $w_{h}(x) \rightarrow 1$ for $x \in \Omega \backslash D_{h}$, for any $t \in(0,1)$ there exists $h(t)$ such that $\left\{w_{h}=t\right\} \cap \Omega \backslash D_{h}=\emptyset$ for every $h \geq h(t)$. So that from (46) it follows that for every $t \in(0,1),\left\{w_{h}=t\right\} \rightarrow P_{\nabla u}$ when $h \rightarrow+\infty$. So we can conclude that $\left(u_{h}, w_{h}\right)$ H-converges to u.

As in [4] we set
$D_{h}^{1}=\left\{x \in \Omega:\left|\delta_{D_{h}}(x)\right|<\varepsilon_{h}\left|\log \varepsilon_{h}\right|\right\}, D_{h}^{2}=\left\{x \in \Omega: \varepsilon_{h}\left|\log \varepsilon_{h}\right|<\left|\delta_{D_{h}}(x)\right|<2\left|\varepsilon_{h}\right| \log \varepsilon_{h} \mid\right\}$.
Therefore we can write

$$
\begin{array}{r}
\int_{\Omega \backslash\left\{\nabla w_{h}=0\right\}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}}\left(\operatorname{div}\left(\frac{\nabla w_{h}}{\left|\nabla w_{h}\right|}\right)\right)^{2}\left(\varepsilon_{h}\left|\nabla w_{h}\right|^{2}+\frac{1}{\varepsilon_{h}} W\left(w_{h}\right)\right) d x\right. \\
=\int_{D_{h}^{1}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}}\left(\operatorname{div}\left(\frac{\nabla w_{h}}{\left|\nabla w_{h}\right|}\right)\right)^{2}\left(\varepsilon_{h}\left|\nabla w_{h}\right|^{2}+\frac{1}{\varepsilon_{h}} W\left(w_{h}\right)\right) d x+\right. \\
\int_{D_{h}^{2}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}}\left(\operatorname{div}\left(\frac{\nabla w_{h}}{\left|\nabla w_{h}\right|}\right)\right)^{2}\left(\varepsilon_{h}\left|\nabla w_{h}\right|^{2}+\frac{1}{\varepsilon_{h}} W\left(w_{h}\right)\right) d x=\right. \\
=I_{h}+I I_{h} \tag{47}
\end{array}
$$

For $x \in D_{h}^{1}$, we have $\frac{\left|\delta_{D_{h}}\right|}{\varepsilon_{h}}<\log \varepsilon_{h}$ therefore $w_{h}(x)=\eta\left(\frac{\left|\delta_{D_{h}}\right|}{\varepsilon_{h}}\right)$. By taking into account the definition of η we have $\frac{\varepsilon_{h}}{1+\varepsilon_{h}} \leq w_{h} \leq \frac{1}{1+\varepsilon_{h}}$. Moreover it easy to check that

$$
\eta_{h}^{\prime}(t)=\frac{1}{\varepsilon_{h}} \eta^{\prime}(t)=\frac{1}{\varepsilon_{h}} \sqrt{W(t)} ; \quad\left|\nabla w_{h}\right|=\left|\eta_{k}^{\prime}\left(\delta_{D_{h}}\right)\right| .
$$

This, together with the coarea formula yields

$$
I_{h}=2 \int_{\frac{\varepsilon_{h}}{1+\varepsilon_{h}}}^{\frac{1}{1+\varepsilon_{h}}} \sqrt{W(t)} \int_{\left\{w_{h}=t\right\}}\left(\frac{1}{\beta_{h}}+\beta_{h} k^{2}\right) d \mathcal{H}^{1} d t
$$

Now we have that $\partial D_{h}=\left\{w_{h}=\frac{1}{2}\right\}$ then

$$
I_{h}=2 \int_{\frac{\varepsilon_{h}}{1+\varepsilon_{h}}}^{\frac{1}{1+\varepsilon_{h}}} \sqrt{W(t)} \int_{\partial D_{h}}\left(\frac{1}{\beta_{h}}+\beta_{h} k^{2}\right) d \mathcal{H}^{1} d t+O\left(\varepsilon_{h} \log \left(\varepsilon_{h}\right)\right) \int_{\frac{\varepsilon_{h}}{1+\varepsilon_{h}}}^{\frac{1}{1+\varepsilon_{h}}} \sqrt{W(t)} d t .
$$

404
Then

$$
\begin{equation*}
\lim _{h \rightarrow+\infty} I_{h}=8 \pi \mathcal{H}^{0}\left(P_{\nabla u}\right) \int_{0}^{1} \sqrt{W(t)} d t \tag{48}
\end{equation*}
$$

Moreover with the same argument and by using the definition of w_{h} one can check that

$$
\begin{equation*}
\lim _{h \rightarrow \infty} I I_{h}=0 \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{1}{8 \pi C} \int_{\Omega \backslash\left\{\nabla w_{h}=0\right\}}\left(\frac{1}{\beta_{\varepsilon_{h}}}+\beta_{\varepsilon_{h}}\left(\operatorname{div}\left(\frac{\nabla w_{h}}{\left|\nabla w_{h}\right|}\right)\right)^{2}\left(\varepsilon_{h}\left|\nabla w_{\varepsilon_{h}}\right|^{2}+\frac{1}{\varepsilon_{h}} W\left(w_{\varepsilon_{h}}\right)\right) d x=\mathcal{H}^{0}\left(P_{\nabla u}\right)\right. \tag{50}
\end{equation*}
$$

${ }_{408}$ Now let us examine the terms involving u_{h}. As in the proof of Theorem 4.3 we have

$$
\begin{equation*}
\limsup _{h \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{h}-U_{0}\right|^{p} d x \leq \int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x \tag{51}
\end{equation*}
$$

Furthermore, by taking into account that $w_{h}(x)=1$ if $\delta_{D_{h}}(x) \geq 2 \varepsilon_{h}\left|\log \left(\varepsilon_{h}\right)\right|$ and $w_{h}(x)=0$ if $\delta_{D_{h}}(x)<-2 \varepsilon_{h}\left|\log \left(\varepsilon_{h}\right)\right|$, we have

$$
\int_{\Omega} w_{h}^{2}\left|\Delta u_{h}\right|^{2} d x=\int_{\Omega \backslash D_{h}^{0}}\left|\Delta u_{h}\right|^{2} d x
$$

where $D_{h}^{0}=\left\{x \in \Omega: \delta_{D_{h}}(x)<-2 \varepsilon_{h}\left|\log \left(\varepsilon_{h}\right)\right|\right\}$. By choosing ρ_{h} in such a way that ${ }_{410} \quad \rho_{h} \leq 2 \varepsilon_{h}\left|\log \left(\varepsilon_{h}\right)\right|$, we obtain

$$
\begin{equation*}
\limsup _{h \rightarrow+\infty} \int_{\Omega} w_{h}^{2}\left|\Delta u_{h}\right|^{2} d x=\lim _{h \rightarrow+\infty} \int_{\Omega \backslash D_{h}^{0}}|\Delta u|^{2} d x=\int_{\Omega \backslash P_{\nabla u}}|\Delta u|^{2} d x=\int_{\Omega}|\Delta u|^{2} d x \tag{52}
\end{equation*}
$$

Finally from the definition of w_{h}, it follows that $w_{h}=1$ outside the disk $\left(D_{h}\right)_{2 \log \varepsilon_{h}}$ and ${ }_{412}$ hence thanks to (32) and (33)

$$
\begin{equation*}
\limsup _{h \rightarrow+\infty} \frac{1}{\gamma_{h}} \int_{\Omega}\left(1-w_{h}\right)^{2} d x \leq \lim _{h \rightarrow+\infty} \mathcal{L}\left(D_{h 2 \log \varepsilon_{h}}\right) \frac{1}{\gamma_{h}}=0 . \tag{53}
\end{equation*}
$$

${ }_{413}$ The thesis follows by collecting (50), (51), (52) and (53)

414

415
416 convergence of the minimum problems. The proof is as in Theorem 4.4.

Theorem 5.4. Let $h \in \mathbb{N}$ go to $+\infty$. Let $\mathcal{G}_{\varepsilon}$ and \mathcal{F} be given respectively by (31) and (14). If $\left\{\varepsilon_{h}\right\}$ is a sequence of positive numbers converging to zero and $\left\{\left(u_{h}, w_{h}\right)\right\} \subset S(\Omega)$ such that

$$
\lim _{h \rightarrow+\infty}\left(\mathcal{G}_{\varepsilon_{h}}\left(u_{\varepsilon_{h}}, w_{\varepsilon_{h}}\right)-\inf _{S(\Omega)} \mathcal{F}_{\varepsilon_{h}}(u, w)\right)=0
$$

${ }_{417}$ then there exists a subsequence $\left\{\left(u_{h_{k}}, w_{h_{k}}\right)\right\} \subset S(\Omega)$ and a minimizer \bar{u} of $\mathcal{F}(u)$, with
${ }_{418} \bar{u} \in \Delta \mathcal{A M}^{p, 2}(\Omega)$, such that $\left\{\left(u_{h_{k}}, w_{h_{k}}\right)\right\}_{k} H$-converges to \bar{u}.

The aim of De Giorgi was finding a variational approximation of a curvature depending functional of the type:

$$
F^{2}(D)=\int_{\partial D}\left(1+\kappa^{2}\right) d \mathcal{H}^{1}
$$

Inspired by the De Giorgi's conjecture (see [15] for the original statement) it appears natural to investigate, in the spirit of [9], the possibility of approximating the functional \mathcal{F} by means of a sequence $\mathcal{F}_{\varepsilon}$ much more convenient from a numerical point view (see [19]):

$$
\begin{aligned}
\mathcal{F}_{\varepsilon}(u, w) & =\int_{\Omega} w^{2}|\Delta u|^{2} d x+\frac{1}{8 \pi C}\left(\frac{\beta_{\varepsilon}}{2 \varepsilon} \int_{\Omega}\left(2 \varepsilon \Delta w-\frac{W^{\prime}(w)}{\varepsilon}\right)^{2} d x+\frac{1}{\beta_{\varepsilon}} \int_{\Omega}\left(\varepsilon|\nabla w|^{2}+\frac{1}{\varepsilon} W(w)\right) d x\right) \\
& +\int_{\Omega}\left|\nabla u-U_{0}\right|^{p} d x+\int_{\Omega} \frac{1}{\gamma_{\varepsilon}}\left(1-w^{2}\right) d x
\end{aligned}
$$

The presence of the term $\frac{1}{2 \varepsilon}$ will be clear in the proof. By the way we are able to prove only the Γ-limsup inequality.

Theorem 6.1. Let $h \in \mathbb{N}$ go to $+\infty$. Let ε_{h} be a sequence of positive numbers with $\varepsilon_{h} \rightarrow 0$. For every $u \in \Delta \mathcal{A M}^{p, 2}(\Omega)$, there exists a sequence $\left\{\left(u_{h}, w_{h}\right)\right\}_{h} \subset S(\Omega) H$-converging to u such that

$$
\begin{equation*}
\limsup _{\rightarrow+\infty} \mathcal{F}_{\varepsilon_{h}}\left(u_{h}, w_{h}\right) \leq \mathcal{F}(u) \tag{54}
\end{equation*}
$$

Proof. Let $\left\{\left(u_{h}, w_{h}\right)\right\}_{h}$ be the optimal sequence of Theorem 5.3. It is not difficult to see that for every $x \in D_{h}^{1}$ the function $\delta_{h}(x)$ is regular and using the definition of w_{h} and taking into account that $\eta^{\prime}=\sqrt{W(\eta)}$ the following identity holds

$$
2 \varepsilon_{h} \Delta w_{h}-\frac{W^{\prime}\left(w_{h}\right)}{\varepsilon_{h}}=2 \varepsilon_{h} \eta_{h}^{\prime} \Delta \delta_{D_{h}}(x)+2 \varepsilon \eta_{h}^{\prime \prime}-\frac{W^{\prime}\left(w_{h}\right)}{\varepsilon_{h}}=2 \varepsilon_{h} \eta_{h}^{\prime}\left(\delta_{D_{h}}(x)\right)
$$

For h large enough we also have $\Delta \delta_{D_{h}}(x)=\kappa\left(\left\{\delta_{D_{h}}(x)=t\right\}\right)$. Besides on D_{h}^{1} we have $w_{h}(x)=\eta\left(\frac{\delta_{D_{h}}(x)}{\varepsilon_{h}}\right)$ and hence the level set $\left\{\delta_{D_{h}}(x)=t\right\}$ corresponds to the level set $\left\{w_{h}(x)=\right.$ $\eta\left(\frac{t}{\varepsilon_{h}}\right\}$ with $0 \leq \eta \leq 1$, so that we infer

$$
\kappa\left(\left\{\delta_{D_{h}}(x)=t\right\}\right)=\operatorname{div}\left(\frac{\nabla w_{h}}{\left|\nabla w_{h}\right|}\right)
$$

By proceeding as in the proof of Theorem 5.3 and taking into account the equality $2 \varepsilon_{h}\left|\eta_{h}^{\prime}\left(\delta_{D_{h}}(x)\right)\right|=$ $2 \varepsilon_{h}\left|\nabla w_{h}\right|$ we have

$$
\begin{aligned}
I_{h} & =\int_{D_{h}^{1}} \frac{\beta_{\varepsilon_{h}}}{2 \varepsilon_{h}}\left(2 \varepsilon_{h} \Delta w_{h}-\frac{W^{\prime}\left(w_{h}\right.}{\varepsilon_{h}}\right)^{2}+\frac{1}{\beta_{\varepsilon_{h}}}\left(\varepsilon_{h}\left|\nabla w_{h}\right|^{2}+\frac{1}{\varepsilon_{h}} W\left(w_{h}\right)\right) d x \\
& =2 \int_{D_{h}^{1}}\left(\beta_{\varepsilon}\left(\operatorname{div}\left(\frac{\nabla w_{h}}{\left|\nabla w_{h}\right|}\right)^{2}+\frac{1}{\beta_{\varepsilon_{h}}}\right) \sqrt{W\left(w_{h}\right)}\left|\nabla w_{h}\right| d x .\right.
\end{aligned}
$$

Then as in the proof of Theorem 5.3 we conclude

$$
\lim _{h \rightarrow+\infty} I_{h}=8 \pi \mathcal{H}^{0}\left(P_{\nabla u}\right) \int_{0}^{1} \sqrt{W(t)} d t
$$

By the same calculation on D_{h}^{2} one can check that the integral over D_{h}^{2} vanishes as in the proof of Theorem 5.3.

The other terms can be estimated exactly as in the proof of Theorem 5.3 and therefore the thesis is achieved.

References

[1] L.Ambrosio, N.Fusco, D.Pallara. Functions of bounded variation and free discontinuity problems. Oxford University Press (2000).
[2] G.Anzellotti. Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983), 293-318.
[3] G.Aubert, J. Aujol, L.Blanc-Feraud. Detecting Codimension-Two Objects in an image with Ginzurbg-Landau Models. International Journal of Computer Vision 65 (2005), 2942.
[4] G.Bellettini. Variational approximation of functionals with curvatures and related properties. J.Conv. Anal. 4 (1997)., 91-108.
[5] G.Bellettini, M.Paolini. Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell'Università di Bologna, 1993.
[6] F.Bethuel, H.Brezis and F.Hélein. Ginzburg-Landau Vortices. Birkäuser, Boston (1994).
[7] A.Braides. Γ-convergence for beginners. Oxford University Press, New york (2000).
[8] A.Braides, A.Malchiodi. Curvature Theory of Boundary phases: the two dimensional case. Interfaces Free. Bound. 4 (2002), 345-370.
[9] A.Braides, R.March. Approximation by Γ-convergence of a curvature-depending functional in Visual Reconstruction. Comm. Pure Appl. Math. 59 (2006), 71-121.
[10] G.Dal Maso. Introduction to Γ-convergence. Birkhäuser, Boston(1993).
[11] A.Chambolle, F.Doveri. Continuity of Neumann linear elliptic problems on varying twodimensionals bounded open sets. Comm.Partial Diff.Eq. 22 (1997), 811-840.
[12] G.Q.Chen, H.Fried Divergence-measure fields and conservation laws. Arch. Rational Mech. Anal. 147 (1999), 35-51.
[13] G.Q.Chen, H.Fried. On the theory of divergence-measure fields and its applications.. Bol. Soc. Bras. Math. 32 (2001), 1-33.
[14] G.Dal Maso, F.Murat, L.Orsina, A.Prignet. Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci, 28 (1999), 741-808.
[15] E.De Giorgi. Some Remarks on Γ-convergence and least square methods, in Composite Media and Homogenization Theory (G. Dal Maso and G.F.Dell'Antonio eds.), Birkhauser, Boston, 1991, 135-142.
[16] E.De Giorgi, T.Franzoni. Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. 58 (1975), 842-850.
[17] E.De Giorgi, T.Franzoni. Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979), 63-101.
[18] L.C.Evans, R.F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press (1992).
[19] D.Graziani, L.Blanc-Feraud, G.Aubert. A formal Γ-convergence approach for the detection of points in 2-D images. Research report Inria (2008).
[20] J.Heinonen, T.Kilpeläinen, O.Martio. Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, (1993).
[21] L.Modica, S.Mortola. Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. 14-B(1977), $285-299$.
[22] L.Modica. The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987), 123-142.
[23] M.Röger, R.Shätzle. On a modified conjecture of De Giorgi. Math. Zeitschrift. 254 (2006), 675-714
[24] G.Stampacchia. Le problème de Dirichlet pour les equations elliptiques du seconde ordre \grave{a} coefficients discontinuous. Ann. Inst. Fourier (Grenoble), 15 (1965), 180-258.
[25] W.Ziemer. Weakly Differentiable Functions. Springer-Verlag, New york (1989).

Unité de recherche INRIA Sophia Antipolis 2004, route des Lucioles - BP 93-06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique 615, rue du Jardin Botanique - BP 101-54602 Villers-lès-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105-78153 Le Chesnay Cedex (France)

[^0]: * ARIANA Project-team, CNRS/INRIA/UNSA, 2004 Route des lucioles-BP93, 06902 Sophia-Antipolis Cedex, France
 \dagger LABORATOIRE J.A. DIEUDONNÉ Université de Nice SOPHIA ANTIPOLIS, parc valrose 06108 Nice CEDEX 2, FRANCE.

