
HAL Id: inria-00432380
https://hal.inria.fr/inria-00432380

Submitted on 16 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Early-stopping Protocol for Computing Aggregate
Functions in Sensor Networks

Antonio Fernández Anta, Miguel Mosteiro, Christopher Thraves-Caro

To cite this version:
Antonio Fernández Anta, Miguel Mosteiro, Christopher Thraves-Caro. An Early-stopping Protocol
for Computing Aggregate Functions in Sensor Networks. Pacific Rim International Symposium on
Dependable Computing, Nov 2009, Shanghai, China. �inria-00432380�

https://hal.inria.fr/inria-00432380
https://hal.archives-ouvertes.fr


An Early-stopping Protocol for Computing Aggregate Functions in Sensor Networks

Antonio Fernández Anta

LADyR, GSyC

Universidad Rey Juan Carlos

28933 Móstoles, Madrid, Spain

anto@gsyc.es

Miguel A. Mosteiro

Computer Science Dept., Rutgers University

Piscataway, NJ 08854, USA

mosteiro@cs.rutgers.edu

LADyR, GSyC, Univ. Rey Juan Carlos

28933 Móstoles, Madrid, Spain

miguel.mosteiro@urjc.es

Christopher Thraves

ASAP Project team

IRISA/INRIA Rennes

Campus Univ. de Beaulieu

35043 Rennes Cedex, France

christopher.thraves-caro@irisa.fr

Abstract—In this paper, we study algebraic aggregate com-
putations in Sensor Networks. The main contribution is the
presentation of an early-stopping protocol that computes the
average function under a harsh model of the conditions under
which sensor nodes operate. This protocol is shown to be
time-optimal in presence of unfrequent failures. The approach
followed saves time and energy by relying the computation
on a small network of delegate nodes that can be rebuilt fast
in case of node failures and communicate using a collision-
free schedule. Delegate nodes run simultaneously two protocols,
namely, a collection/dissemination tree-based algorithm, which
is shown to be optimal, and a mass-distribution algorithm. Both
algorithms are analyzed under a model where the frequency
of failures is a parameter. Other aggregate computation algo-
rithms can be easily derived from this protocol. To the best of
our knowledge, this is the first optimal early-stopping algorithm
for aggregate computations in Sensor Networks.

Keywords-Sensor networks, Aggregate computation, Early-
stopping algorithm, Failure model, Average computing.

I. INTRODUCTION

A Sensor Network is a simplified abstraction of a large

monitoring infrastructure, formed of sensor nodes (or sen-

sors) that create a radio communication network from

scratch. Each sensor node is equipped with communication,

processing, and sensing capabilities. Nodes can collaborate

to process the sensed data but, due to unreliability, a monitor-

ing strategy can not rely on individual sensors data. Instead,

the network should use aggregated information from groups

of sensor nodes [2], [4], [16]. Popular examples of relevant

aggregate functions are the computation of the maximum or

the average of some variable sensed by the nodes in some

area. Nevertheless, any algebraic aggregate function of the

sensed input-values is also of interest.

Typically, in Sensor Networks, the aggregated information

is collected by a small number of distinguished nodes

This research was supported in part by Comunidad de Madrid grant
S-0505/TIC/0285; MICINN TIN2008-06735-C02-01 and MEC PR2008-
0015; EU Marie Curie European Reintegration Grant IRG 210021; NSF
grants CCF0621425, CCF 05414009, CCF 0632838; and French ANR
Masse de Donnèes project ALPAGE.

The first author worked partially while on leave at Bell labs.

called sinks. Given that the information has to be collected

to be of any use, a sink node is generally assumed to be

failure-free, and to have access to more resources than a

regular sensor node. For some applications, it might be

useful to compute aggregations restricted to specific areas of

the network, and to route the result of those computations to

the sink nodes. However, lack of position information and

limitations on storage space prevents area delimitation and

routing. Hence, for the most restrictive and general scenario,

only aggregation among all nodes is feasible. Additionally,

the result must be propagated to all nodes in the network to

guarantee that sink nodes receive it.

Algebraic aggregate functions are well defined. However,

the implementation of such computations in practice, and

specially in the harsh Sensor Networksetting, has to deal

with various issues that make even the definition of the

problem difficult. First, the input-values at each node might

change over time. Therefore, it is necessary to fix to which

time step those input-values correspond. This fact implies

that any protocol has to achieve some form of global

synchronization. Second, the multi-hop nature of Sensor

Networks makes impossible to completely aggregate these

values in one single time step. Hence, arbitrary node failures

make the design of protocols challenging. Furthermore, it

has been shown [1] that the problem of computing an

aggregate function among all nodes in a network where

some nodes join and leave the network arbitrarily in time

is intractable. The only limit on adversarial failures that

is customarily used in the Sensor Networks literature is a

guarantee on connectivity among active nodes in each time

step. An active node at time t is a node that is up and running

at time t. However, for any Sensor Network, it is easy to

give a node-failure schedule that maintains such connectivity

but partitions the network.

The topic of this paper is the efficient computation of

aggregate functions on a Sensor Network. The efficiency

is measured here in two dimensions: time and energy. The

energy efficiency is evaluated in terms of number of trans-

missions, as customary in the Sensor Networks literature.

These efficiency metrics are strongly influenced by colli-



sions, especially because no collision detection mechanisms

are available in this setting. The response of the algorithm

to sensor failures is also an important characteristic of any

protocol. Some algorithms have to restart in presence of

failures, while others simply compute an aggregated value

that may be only an approximation.

Hierarchical aggregate computations where the few com-

pute for the many have been studied. The most frequent

hierarchical approach is to construct a tree that spans all

nodes in the network [17], [18]. The spanning tree is used

to collect and gradually aggregate the input-values at each

level of the tree, relying the partial results to the root.

Then, the root computes the overall aggregate result and

distributes it down the tree. Due to memory size limitations,

it might not be possible to implement these techniques unless

the degree of each node in the tree is bounded. Another

drawback of this approach comes from its rigid structure.

If an internal node of the tree fails during the computation,

the tree is partitioned, and the result, if computed, may not

consider the input-values of an unbounded number of nodes.

Furthermore, these nodes may never obtain the result.

Non-hierarchical computations have also been studied [2],

[4], [16]. The approach of choice is to aggregate the infor-

mation at every node of the network in a mass-distribution

fashion as in load balancing algorithms [12], [20]. In this

manner, all nodes arrive at the final result concurrently. A

potential shortcoming is the energy consumption overhead

of having all nodes transmitting and computing. Further-

more, the fact that all nodes communicate with other nodes

during all the algorithm greatly increase collisions with the

consequent time and energy cost. On the other hand, non-

hierarchical approaches are more resilient to failures.

These arguments indicate that both pure approaches, hi-

erarchical and non-hierarchical, may have advantages and

shortcomings. The algorithm presented in this paper benefits

from the good properties of both approaches interleaving

them. If failures are not too frequent, the tree-based al-

gorithm provides a result with low time and energy com-

plexity. If the frequency of failures prevents the tree-based

computation from finishing, the mass-distribution algorithm

will compute an approximation of the result. Hence, the

combined algorithm is early stopping.

In order to reduce collisions and energy consumption, a

two-level hierarchy of nodes is used. The actual computation

is done by a small set of nodes, called delegate nodes,

that collect the sensed input-values from the non-computing

nodes, called slug nodes.

Model. Sensor nodes are expected to be deployed at random

in large quantities over an area of interest. Hence, we model

the connectivity of nodes with the Geometric Graph Model,

noted as Gn,r, where n nodes are deployed at random in

R
2 in a unit area, and an edge between two nodes exists

if and only if they are located at an Euclidean distance of

at most a parameter r. We further characterize the area of

deployment assuming that, if expanded in all directions by

a distance of r, the new area would not be asymptotically

bigger. As customary in the Sensor Networks literature,

we assume that nodes are deployed densely enough to

ensure network connectivity and sensing coverage even

under failures. Nevertheless, we do not restrict ourselves

to an specific spatial distribution. Given that we will use

a radius of transmission reduced by a constant factor in

some algorithms, we further assume that such density is

adjusted accordingly by a constant factor to still accomplish

connectivity and coverage using the reduced radius. This

assumption does not change the asymptotic cost. A straight-

forward application of the bound in [14] for uniform node-

distribution gives a bound of r ∈ Ω(
√

log n/n) to achieve

connectivity with high probability (w.h.p.)1, even with non-

uniform node-distribution, since the radius cannot be smaller

if some areas have smaller density of nodes.

Regarding models of sensor node constraints, we use

the following model, a relaxation (regarding failures) of

the Weak Sensor Model [6]. The communication among

neighboring nodes is through broadcast on a shared channel.

Time is assumed to be slotted, and each transmission occurs

in a given slot (or step). The length of a slot is the

time to transmit one message. All nodes have the same

clock frequency, but no global synchronizing mechanism

is assumed. A node receives a message in a slot if and

only if exactly one of its neighbors transmits in the slot.

There is no collision detection mechanism available and

the channel is assumed to have only two states: single

transmission and silence/collision. A sensor node can not

receive and transmit in the same slot. Nodes are woken up

by an adversary, perhaps at different times. Sensor nodes

may store only a constant number of O(log n) bit words2.

We assume that sensor nodes can adjust their power of

transmission to only a constant number of levels. Nodes

are assumed to have limited life cycle. Other restrictions

include: short transmission range (r << 1), only one shared

channel of communication, and lack of position information.

As pointed out before, the problem can not be solved

under arbitrary adversarial failures. We consider a scenario

where, upon starting the algorithm, some nodes fail due to

lack of power supply or any other event such that, as a

consequence, the node stops participating in the algorithm

and all the information stored in its memory is lost. A

node may recover from a failure later (for instance, after

replenishing its battery) but no information was kept in its

memory. Thus, we assume that a node that recovers after

a failure has to start the protocol from scratch. The rate or

time at which failures occur is modeled as follows. Given

two parameters f ≥ 0 and T > 0, it is assumed that the

1A parameterized event Ep occurs w.h.p. if, for any constant γ > 0,
there exists a valid value p such that Pr{Ep} ≥ 1 − n−γ .

2Throughout this paper, log means log
2

unless otherwise stated.



number of failures is bounded by f and the time between

any pair of consecutive failures is at least T time steps.

Regarding the assignment of input-values, it is assumed

to be adversarial, i.e., we do not assume any specific

distribution of input-values among nodes but just a worst-

case scenario. Without loss of generality, we assume those

values to be positive. We also assume that nodes are assigned

a unique ID of O(log n) bits also adversarially and they start

“knowing” only the total number of nodes n. However, the

deployment of nodes is not an uncontrolled experiment. So,

information about the resultant topology can be introduced

at a sink node after deployment. The presence of one

distinguished node called sink is assumed. The sink does

not fail and “knows” tight bounds on the maximum degree

∆ and on the maximum diameter during the whole execution

of the algorithm D.

Related Work. There is a large body of literature on ag-

gregate computations in sensor networks that includes both,

theoretical and experimental work. Many of these results are

obtained under models that do not include important restric-

tions such as, limited memory size [17], lack of position

information [13] and limited range of transmission [16].

A hierarchical approach to aggregate information is pre-

sented in [13]. The solution proposed defines a tree structure

that requires node location information to carry out the

aggregation at a cost of O(n log2 n) messages in O(log2 n)
rounds. Contention resolution and other communication is-

sues are assumed to be resolved by an underlying protocol.

Non-hierarchical gossip-based protocols for average com-

putations in arbitrary networks were studied [2], [16]. All

gossip-based algorithms are characterized in [2] with a

matrix that models how the algorithm evolves sharing values

in pairs iteratively. It is shown there that, given a value ǫ > 0,

and an arbitrary network of n nodes, where each node i
holds a value νi and all nodes start synchronously; then,

with probability at least 1 − ǫ, in O(log n + log(n/ǫ)/(1 −
λmax((~I + ~P )1/2))) rounds, each node i running a gossip-

based algorithm characterized by the matrix ~P , computes

a value ν′
i such that

∑

i(ν
′
i − ν)2/

∑

i ν2
i ≤ ǫ2, where ν

is the average
∑

i νi/n and λmax(·) is the second largest

eigenvalue. Additionally, an algorithm that takes advantage

of the broadcast nature of radio networks is included in [16]

giving similar bounds. In these papers no details about col-

lision resolution are included, and the algorithms presented

require ω(1) memory size.

Another mass-distribution algorithm was presented in [4],

although relying on a different randomly chosen local

leader in each round to perform such distribution. It is

shown that, given a value ǫ > 0, and a Sensor Net-

workof n nodes with underlying graph G with algebraic

connectivity a(G)3, where each node i holds a value νi

3A characterization of the deployment topology by the second smallest
eigenvalue of the Laplacian matrix of G.

and all nodes start synchronously, with probability at least

1 − ǫ2/
∑

i(νi − ν)2, in O(∆3 log(
∑

i(νi − ν)2/ǫ2)/a(G))
rounds, each node i running the algorithm computes a

value ν′
i such that |ν′

i − ν| ≤ ǫ ∀i, where ν is the

average
∑

i νi/n. If the deployment topology is known

in advance, a parameter probability p can be tuned to

improve that bound to O(∆ log(
∑

i(νi − ν)2/ǫ2)/pa(G))
rounds. The expected number of transmissions is bounded

by O(n∆2 log((
∑

i(νi − ν)2)/ǫ2)/a(G)), again, aside from

communication and synchronization overhead. This result

was extended recently [3] to networks with a time-varying

connection graph.

Results. An early-stopping protocol that computes the av-

erage function in Sensor Networks under a harsh model

of sensor restrictions is presented in this paper. Although

this protocol builds incrementally over known techniques,

the careful combination of them in the restricted Sensor

Networksetting is not trivial. It is shown here that, in

presence of f non-frequent failures, w.h.p., the protocol

returns a value and terminates in O(∆+D+f log2 n) steps

which, given that D and ∆ cannot be both asymptotically

smaller than a polynomial, is optimal if f ∈ o(nc) for any

c ∈ O(1); and that the overall number of transmissions is

in O(n((f + 1) log n + ∆/ log n + log ∆)) in expectation.

In presence of frequent failures, nodes running the protocol

still converge to some result, whose accuracy with respect

to the average depends on the failure model and the distri-

bution of input-values. The aim in this case is to obtain a

result that does not diverge significantly from one node to

another. More precisely, it is shown that, w.h.p., the protocol

takes O(∆+D +(f +log(1/ε)+ log(νmax/νmin))/Φ2
min)

time steps and O(n(log n + ∆/ log n + log ∆ + (f +
log(1/ε) + log(νmax/νmin)))/Φ2

min log n) expected trans-

missions, where ε > 0 is the maximum relative error (i.e.,

the maximum relative difference between two results), Φmin

is the minimum conductance [15] of the network underlying

the Markov chain characterizing the algorithm, and νmax

and νmin are the maximum and minimum input-values

respectively.

A time-optimal protocol to compute the maximum func-

tion can be easily derived from the average protocol by

flooding the delegates network with the maximum input-

value seen so far. Other aggregate functions such as the sum,

quantiles, or count, can be computed using a protocol for

average without extra cost as described in [4], [16].

To the best of our knowledge, this is the first optimal

early-stopping algorithm for aggregate computations in Sen-

sor Network.

II. LOWER BOUND

A lower bound on the time steps needed to compute an

aggregate function in a Sensor Networkis established in the

theorem below. For the sake of brevity, the details of the

proof that uses the adversarial assignment of input-values



and the topology, is left to the full version of this paper [11].

Let F : R
n → R, n ∈ N be an algebraic aggregate function

over n real numbers. We say that F is one-node sensitive

if, for any choice of values ~ν1 ∈ R
n, there exists another

choice of values ~ν2 ∈ R
n such that ~ν1 and ~ν2 differ only in

one value, and F(~ν1) 6= F(~ν2). Given a Sensor Networkof

n nodes, where each node is assigned an input-value, we

say that a protocol to compute an aggregate function over

these values is assignment oblivious if it is independent of

the specific assignment of input-values.

Theorem 1. Given a Sensor Networkof n nodes, where D
is the diameter of the network and ∆ the maximum degree,

under the model described in Section I, and independently

of randomization and failures, Ω(D + ∆) time steps are

needed in order to compute a one-node-sensitive algebraic

aggregate function using an assignment-oblivious protocol.

III. UPPER BOUNDS

The computation of aggregate functions is carried out by a

protocol following a template called Aggregate Computation

Scheme. A key factor of our approach is the inclusion of a

preprocessing phase that defines a delegate-slug hierarchy

and a schedule of transmissions to avoid collisions. Such

preprocessing is asynchronous and uses time slots that are

not used in the Aggregate Computation Scheme. Hence,

it is also used as a maintenance algorithm in case of

node failures because nodes running it do not collide with

nodes running the main part. For the sake of clarity, both

parts, preprocessing and the main procedure, are described

separately omitting these details.

A. Preprocessing and Maintenance

The preprocessing/maintenance algorithm includes two

phases. Due to the memory size limitations, in the first

phase delegate nodes are defined so that each delegate node

is within range of Θ(1) delegates. Additionally, a second

phase establishes schedules of transmissions so that each

group delegate-slugs can communicate without colliding

with neighboring groups. The first and second preprocessing

phases can be implemented as in [8]. Further details can be

found in the full version of this paper [11]. The following

upper bound on the number of delegate nodes can be

proved using that the hexagonal lattice is the densest of

all possible plane packings [9], that the radius lower bound

to achieve connectivity w.h.p. under uniform distribution

of nodes is r ∈ Ω(
√

log n/n) [14], the assumption of

complete coverage, and the assumption regarding the area

of deployment.

Remark 2. Given a Sensor Networkof n nodes deployed

at random to ensure connectivity and coverage over a unit

area such that, if expanded in all directions by r, the

expanded area is still in O(1), after running the first phase of

preprocessing as described, there are O(n/ log n) delegate

nodes.

The following lemma establishes formally the efficiency

of these phases. Further details can be found in [6]–[8] and

the references therein.

Lemma 3. (a) For any node i running the first phase of

preprocessing, for any 0 < α ≤ 1, at least one node within

distance αr of i becomes a delegate within O(log2 n) time

steps and no two delegate nodes are within distance αr of

each other w.h.p. The expected number of transmissions of

i during this phase is in O(log n) w.h.p. (b) For any node i
running the second phase of preprocessing, if i is a delegate

node, after O(log n) time steps i reserves a block of b ∈
O(1) steps every γ ∈ O(1) steps for local use, i.e., this block

does not overlap with the block of any other delegate node

separated by a distance at most r, w.h.p. During this phase,

if i is a delegate node the expected number of transmissions

of i is in O(log n) w.h.p., and if i is a slug node it does not

transmit.

B. The Aggregate Computation Scheme

After preprocessing, local synchronism, collision detec-

tion among slugs and their delegates, and non-colliding

transmission schedules among delegates are available, be-

cause nodes use only reserved time slots. We omit in the

analysis this constant factor overhead for clarity. In the

Aggregate Computation Scheme, a slug node uses a radius of

transmission αr, whereas a delegate node uses βr. Also for

clarity, the scheme is described assuming that nodes do not

fail and later this assumption is removed. In order to obtain

worst-case bounds, we assume that all nodes are active.

Let the set of delegate nodes and the set of slug nodes

defined in preprocessing be M and S respectively. For each

slug node i, denote the set of its delegates as M(i). For

each delegate node j, denote the subset of delegate nodes

located at one-hop of j as N(j). Each node j ∈ M keeps

track of its delegate-neighborhood N(j). Furthermore, node

j updates N(j) online by keeping track of the beacon

messages of its delegate-neighbors. This bookkeeping can

be done by storing the IDs of the neighboring delegates,

because |N(j)| ∈ Θ(1). For each node k in the network,

denote the input-value as νk.

The Aggregate Computation Scheme includes the fol-

lowing four phases. TRIGGER: the sink node broadcasts

(τ1, D,∆), where τ1 is the time slot to measure the input-

values, D is the diameter of the network and ∆ the max-

imum degree, thus, synchronizing the computation; COL-

LECTION: delegate nodes aggregate slugs input; COMPUTA-

TION: delegate nodes compute the aggregate function; and

DISSEMINATION: delegate nodes distribute the result. The

details of the implementation of each of these phases follow.

Trigger Phase. The TRIGGER phase can be implemented

as follows. Upon receiving the message, delegates flood the



network of delegates with the message using only reserved

slots. Each delegate node forwards the message broadcasted,

including the ID of the node from which it has received the

message first. In this manner, a BFS spanning tree among

the delegate nodes is obtained at the same time that the

trigger signal is disseminated in preparation for our tree-

based algorithm. Due to the broadcast nature of a Sensor

Network, while passing the message among delegates, slug

nodes receive also τ1. Since only reserved slots are used,

the total time taken by this phase is in O(D) and using the

Remark 2 the total number of transmissions in this phase

is in O(n/ log n). Hence, τ1 is tuned to ensure that active

nodes receive this message on time to start the COLLECTION

phase. For nodes becoming active late, upon becoming

active, nodes run the preprocessing phase, which includes

an initial waiting period. Nodes in this period that hear

that the computation has already started do not join the

computation, although they do complete the preprocessing

phase in preparation for future queries. The following lemma

establishes formally the bounds of this phase.

Lemma 4. After the sink node starts disseminating the trig-

ger message, all delegate nodes have received the message

within O(D) steps and the overall number of transmissions

is O(n/ log n).

Collection Phase. At time τ1, nodes start running the

COLLECTION phase using the input-values at that time step.

Slug nodes communicate in this phase using the following

procedure. In each round, slug nodes choose uniformly

at random a slot within a window of slots to transmit

their messages. Starting with a window of size c1∆, the

window size is repeatedly halved in each round down to

c2 log n, where c1 > 0 and c2 > 0 are constants chosen

appropriately. After that, a final round of c3 log2 n steps

where nodes repeatedly transmit with probability c4/ log n
is included. Again, c3 > 0 and c4 > 0 are constants chosen

appropriately [8]. We refer to this protocol as the windowed

protocol. Further details can be found in the full version of

this paper [11].

Each slug node i ∈ S begins the COLLECTION phase

choosing one of its delegates to pass its input-value, to

ensure that each input-value is used exactly once in the

computation. Using the windowed protocol, each slug node

transmits a message to the delegate chosen. The message

transmitted contains νi and the ID of the delegate chosen.

Given the availability of delegate acknowledgements, a

delegate receives exactly one input-value per slug node.

Each delegate node j ∈ M running the COLLECTION

phase maintains two magnitudes that we call sum σj and

weight ωj . Each delegate node j initializes the sum σj =
νj and the weight ωj = 1. Upon receptions, delegates

update these values appropriately. Sum and weight values

are polynomially upper bounded so memory restrictions are

not violated. The following lemma establishes formally the

correctness and efficiency of the COLLECTION phase. The

proof uses well-known techniques and the details are left to

the full version of this paper [11] for brevity.

Lemma 5. Let V be the set of n nodes in a Sensor Network,

νi be the input-value of node i ∈ V , and let M be the set

of delegate nodes. There exists a τ2 ∈ O(∆ + log2 n) such

that, after running the COLLECTION phase with that τ2, the

following holds. (i) V has been partitioned in |M | disjoint

subsets {V1, V2, . . . , V|M |} and each node j ∈ M holds

two values σj and ωj such that, ∀k ∈ {1, . . . , |M |};∀j ∈
M : j ∈ Vk ⇒ (σj =

∑

i∈Vk
νi ∧ ωj = |Vk|), w.h.p.

(ii) The time taken by the algorithm is in O(∆ + log2 n).
(iii) The number of transmissions of delegate nodes during

this phase is in O(n(∆/ log n + log n)), and the expected

number of transmissions of slug nodes during this phase is

in O(n(log n + log ∆)).

Computation and Dissemination Phases. Upon completion

of the COLLECTION phase, slug nodes standby waiting for

the delegates to compute in the COMPUTATION phase and

send back to them the result in the DISSEMINATION phase.

In the following sections, the two approaches used – tree-

based and mass-distribution – are described separately for

clarity, although they are run simultaneously in two different

slots reserved to communicate among delegates. If the

result of the tree-based computation is obtained, the mass-

distribution-based computation is just stopped. Otherwise,

the mass-distribution algorithm continues until some result

is returned.

Before moving to the details of the analysis of both

algorithms, recall that thanks to the delegate/slug hierarchy,

a failure of a slug node after passing its input-value does

not impact the protocol neither in time nor in correctness.

On the other hand, if a unique copy of an input-value is lost

before being passed to other nodes that value is inevitably

lost. Furthermore, given the shared nature of the channel, no

algorithm can guarantee that all input-values are passed to

some other node in less than ∆ time steps under adversarial

failures. Hence, we consider from now on slug failures only

during the COLLECTION phase.

If a delegate node fails early enough before the time slot

in which input-values are obtained, the lack of its beacon

triggers the execution of the preprocessing phase by its slug

nodes and this failure does not impact the protocol. On the

other hand, if the failure occurs at a time slot such that its

slug nodes do not have enough time to elect new delegates

and receive the synchronization message of the TRIGGER

phase, its slug nodes do nothing. Given that most of the

slug nodes have more than one delegate, this failure does not

impact the protocol except in some marginal cases (boundary

nodes or multiple neighboring delegates failure). Given that

a delegate failure during the COLLECTION phase has the

same impact as a failure of a delegate during the first round

of the COMPUTATION phase. Thus, we consider from now



on only delegate failures during the COMPUTATION phase.

Tree-based Algorithm. For the sake of clarity, we describe

first the algorithm assuming that nodes are activated early

enough to receive the trigger, stay active long enough to

receive the result of the computation, and do not fail.

The slug and delegate failures described in Section III-B

are considered afterwards. The tree-based algorithm is well

known and simple to describe. Once a rooted tree is built,

it includes three steps: the root broadcasts a query to all

nodes in the tree, then nodes convergecast the aggregated

input-values to the root and finally the root computes the

function and broadcasts back the result to all nodes in the

tree. The details follow.

While broadcasting the time slot τ1 of the input-values

that have to be used in the computation, in the TRIGGER

phase, a BFS rooted tree of constant degree is built among

delegate nodes by making each delegate node keep track of

its tree neighbors. The root of such a tree is either the sink

node (if delegate) or a delegate node at one hop of the sink

node (if slug). Without loss of generality we assume it is the

sink node. At τ1, all nodes run the COLLECTION phase using

the windowed protocol as described. Then, at time τ1 + τ2,

the COMPUTATION phase starts. In this phase, each delegate

node i aggregates the input-values by passing to its parent

in the tree the average and weight of the subtree rooted at

i. Thus, the root of the tree receives the average and weight

of the subtrees rooted at its children and computes the total

average. Finally, in the DISSEMINATION phase, the root node

floods the network of delegates with the result which in turn

is disseminated to the slug nodes by each delegate node upon

receiving it.

In order to handle failures, the tree-based algorithm is

enhanced as follows. Upon defining the tree, each delegate

node broadcasts to its slugs its view of the tree topology, i.e.,

its parents and children, and the slugs store that information.

Since the tree has constant degree, such a bookkeeping

is feasible. Slug nodes detect the failure of their chosen

delegate due to the lack of beacon. In presence of such

a failure, slug nodes compete to replace the missing del-

egate running the preprocessing phase at a O(log2 n) cost

(Lemma 3). Given the assumption of coverage even under

failures, there must exist enough slug nodes to replace the

failed delegate. Due to the geometry, more than one of them

may become delegate but only a constant number. Upon be-

coming delegates and using the view of the tree broadcasted

by the failed delegate, the new delegates repair the structure

locally at a O(1) cost and continue with the computation

appropriately. The details are omitted for brevity. Then, if

the time between failures is large enough, this procedure

repairs the structure successfully. The following theorem

shows the overall efficiency of the Aggregate Computation

Scheme when the tree-based algorithm is used.

Theorem 6. Given a Sensor Networkwith a set of nodes V

running the Aggregate Computation Scheme as described,

where ∆ is a tight upper bound on the maximum number

of neighbors of any node, D is a tight upper bound of

the diameter of the network during all the execution of the

algorithm, and τ1 is the time slot at which the input-values

are assigned. Under the model described in Section I, if

the number of node failures after τ1 is bounded by f ≥ 0,

and T is the minimum time between any pair of consecutive

failures. There exist positive constants κ1, κ2 such that, if

V ′ ⊆ V is the set of nodes awake in all the interval

[τ1 − κ1(D + log2 n), τ1], νi is the input-value assigned

to node i ∈ V ′ at time τ1, νmax = maxi∈V ′ νi, νmin =
mini∈V ′ νi, and ν =

∑

i∈V ′ νi/|V ′|, the following holds. If

T ≥ κ2 log2 n, w.h.p., within O(∆+D+f log2 n) time steps

after τ1 − κ1(D + log2 n), all nodes running the algorithm

receive (or hold) the same value, that value is in the range

[(ν|V ′| − fνmin)/(|V ′| − f), (ν|V ′| − fνmax)/(|V ′| − f)]
and the expected number of transmissions is in O(n((f +
1) log n + ∆/ log n + log ∆)) w.h.p.

Proof: As explained before, the failure of a slug node

i only impacts the computation if i is running the COLLEC-

TION phase and did not pass its input-value to its delegate

yet. Due to the assumption of coverage, even under failures,

delegate nodes that fail during the COLLECTION and COM-

PUTATION phases are replaced in the tree-based algorithm by

one or more of its slugs, introducing a O(log2 n) overhead

for each failure as shown in Lemma 3. Thus, the claimed

range of the result follows. Regarding the running time,

given that broadcast and convergecast is run in reserved slots

the time taken by the last two phases is O(D + f log2 n),
using Lemmas 3, 4, and 5, given that D and ∆ can not be

in o(log3 n) simultaneously, and given that the number of

failures is at most f the claim follows. The claimed number

of transmissions is a direct consequence of Lemmas 3,

4, 5, Remark 2 and including the worst-case overhead of

replacing the failed delegates.

Mass-distribution Algorithm. For clarity, let us assume

first that nodes do not fail. In the mass-distribution pro-

tocol used in this paper, after aggregating input-values in

the COLLECTION phase, delegate nodes share a fraction

with each delegate neighbor. More precisely, recall that

maxi∈M{|N(i)|} ≤ 3⌈2β/α
√

3⌉(⌈2β/α
√

3⌉+1) as shown

in Section III. Then, fix δ = 1 + 3⌈2β/α
√

3⌉(⌈2β/α
√

3⌉+
1). Upon termination of the COLLECTION phase, each dele-

gate node i ∈ M computes a local average νi = σi/ωi. From

there on, the computation progresses as if all nodes in the

network (slugs and delegates) were participating in it using

this initial local-average value, although delegate nodes take

on the task for the slug nodes. More precisely, in each round,

each delegate node passes its weight and a fraction 1/2δ∆
of its weighted average to each neighboring delegate node,

keeping the rest of the weighted average for itself. Then,

delegate nodes update their average values appropriately



using the shares and weights received, and repeat. After

sufficient number of iterations, all average values converge to

the average sought. We call this protocol Mass Distribution.

Given that the shares are the same for all neighbors and

δ and ∆ are known4, delegate nodes do not need to specify

the destination and simply transmit the average and weight.

After enough number of rounds of Mass Distribution, each

delegate node i obtains the average with the accuracy de-

sired. Furthermore, the DISSEMINATION phase is integrated

in the COMPUTATION phase by default given that, although

averages and weights are transmitted to neighboring delegate

nodes, all neighboring nodes receive those transmissions be-

cause they are produced in reserved slots. Notice that Mass

Distributiondoes not violate the memory restrictions since

only a constant number of values are received in each round

and the average and weight values are still polynomially

upper bounded. Of course, precision limitations due to real

number computations are still in order.

In presence of the slug and delegate failures described

in Section III-B, slug nodes do nothing and delegate nodes

adjust their delegate neighborhood appropriately. If a del-

egate node fails before broadcasting its values, the failure

has the same impact on the computation as if it fails at

the beginning of the round. If, on the other hand, the node

fails after broadcasting its values, the failure has the same

impact in the computation as if it fails at the end of the

round. Therefore, without loss of generality, to analyze the

convergence of Mass Distributionwe assume that delegate-

node failures occur between rounds.

We analyze now Mass Distribution5. Assume first that

nodes do not fail. Given that the fraction shared in Mass

Distributionis round independent, the algorithm can be char-

acterized by a matrix of shares as follows. Let ~ν
(t)

=

(ν
(t)
1 . . . ν

(t)
n ), i ∈ V be the vectors6 of averages held by

nodes after round t. (Let the average held by a slug node

be the average held by its chosen delegate.) Let ~P = (pij)
be a matrix in R

n×n such that pij = 1/2δ∆ if i and j have

chosen delegates r and s respectively such that r ∈ N(s),
pij = 1 − (

∑

s∈N(r) ωs)/2δ∆ if j = i and i has chosen

delegate r, and pij = 0 otherwise. Then, ~ν
(t)

= ~ν
(0) ~P t is

the vector of averages in round t. Given that ~P is stochastic,

this characterization can be also seen as a Markov chain

X = {Xt} where the state space is V and the transition

matrix is ~P .

Mass-distribution algorithms only converge to the result.

Hence, a metric of such an approximation has to be defined.

In this paper, we use the relative point-wise distance, which

is defined as maxi |νi−ν|/ν. The correctness of the average

4δ is a constant that can be stored before deployment. ∆ is broadcasted
in the TRIGGER phase.

5We assume familiarity with Markov chains and spectral graph theories.
For an introduction refer to [5], [10].

6Throughout the paper, we use row vectors for clarity.

computation implemented with mass distribution algorithms

is a well-known fact that can be proved using the fundamen-

tal theorem of Markov chains [19]. We establish formally

the correctness of the average computation in the following

lemma. For the sake of brevity, the proof is left to the full

version of this paper [11].

Lemma 7. (Correctness) Let V be the set of n nodes in a

Sensor Network, νi be the input-value of node i ∈ V , and

ν =
∑

i∈V νi/n their average. Let ν
(t)
i be the average held

by the delegate node chosen by node i ∈ V obtained t rounds

after the COLLECTION phase of the Aggregate Computation

Scheme. Then, if delegate nodes do not fail, implementing the

COMPUTATION phase using Mass Distribution, there exists

a τ3 ≥ 0 such that, for all t ≥ τ3, |ν − ν
(t)
i |/ν ≤ ε, for all

i ∈ V and for a given parameter ε > 0.

In presence of node failures, the fraction of average shared

in Mass Distributionis not round independent. Therefore,

instead, we characterize the computation carried out by

Mass Distributionunder failures as a sequence of matrices
~P0, ~P1, ~P2, . . . such that ~Pk, k ≥ 0, is the matrix of shares

characterizing the algorithm between failures k and k + 1.

Given that these matrices are stochastic, each of these

characterizations can be also seen as a Markov chain Xk

where the state space is Vk, the set of nodes whose delegate

is active between failures k and k + 1, and the transition

matrix is ~Pk.

To analyze the efficiency of Mass Distribution, we lever-

age the vast body of research work on bounding the mixing

time of Markov chains. We bound the mixing time using

the conductance as in [21]. The conductance is a natural

notion for Markov chains with underlying graphs with

geometric properties. To show the overall efficiency of Mass

Distribution, we bound the convergence time of each of the

Markov chains and combine the effect of all of them in

Lemma 8. For the sake of brevity, the details of the proof

are left to the full version of this paper [11].

Lemma 8. Given a Sensor Networkwith a set of nodes

V , where νmax = maxi∈V νi and νmin = mini∈V νi are

the maximum and minimum input-values assigned to nodes

respectively, nodes are running the Aggregate Computation

Scheme as described, and the COMPUTATION phase is imple-

mented using Mass Distributionas described, after O((f +
log(1/ε)+ log(νmax/νmin))/Φ2

min) rounds, where f is the

number of node failures and Φmin = mink∈{0,1,...,f} Φk

where Φk is the conductance of the underlying graph after

the kth failure, all nodes have converged to a value with

relative error 0 < ε < 1.

The following theorem shows the overall efficiency of the

Aggregate Computation Scheme when the mass-distribution

algorithm is used.

Theorem 9. Given a Sensor Networkwith a set of nodes V



running the Aggregate Computation Scheme as described,

where ∆ is a tight upper bound on the maximum number

of neighbors of any node, D is a tight upper bound of

the diameter of the network during all the execution of

the algorithm, and τ1 is the time slot at which the input-

values are assigned. Under the model described in Section I,

if the number of node failures after τ1 is bounded by

f ≥ 0, and T is the minimum time between any pair of

consecutive failures. There exist positive constants κ1, κ2

such that, if V ′ ⊆ V is the set of nodes awake in all

the interval [τ1 − κ1(D + log2 n), τ1], νi is the input-value

assigned to node i ∈ V ′ at time τ1, νmax = maxi∈V ′ νi,

νmin = mini∈V ′ νi, and ν =
∑

i∈V ′ νi/|V ′|, the following

holds. If T < κ2 log2 n, within O(∆+D +(f +log(1/ε)+
log(νmax/νmin))/Φ2

min) time steps of τ1−κ1(D+log2 n),
where Φmin = mink∈{0,1,...,f} Φk where Φk is the con-

ductance of the underlying graph after the kth failure,

all nodes running the algorithm have converged to the

same result in the range [νmax, νmin], with relative error

0 < ε < 1 w.h.p., and the expected number of transmissions

is in O(n(log n + ∆/ log n + log ∆ + (f + log(1/ε) +
log(νmax/νmin)))/Φ2

min log n) w.h.p.

Proof: The running time is a direct consequence of

Lemmas 3, 4, 5 and, given that each round takes O(1) time

steps, Lemma 8, and using that D and ∆ can not be in

o(log3 n) simultaneously. The claimed number of transmis-

sions follows from Lemmas 3, 4, 5, 8, and Remark 2.

REFERENCES

[1] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani.
Estimating aggregates on a peer-to-peer network. Technical
report, Stanford University, Database group, 2003.

[2] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat
Shah. Randomized gossip algorithms. IEEE/ACM Transac-
tions on Networking, 14(SI):2508–2530, 2006.

[3] Jen-Yeu Chen and Jianghai Hu. Analysis of distributed
random grouping for aggregate computation on wireless sen-
sor networks with randomly changing graphs. IEEE Trans.
Parallel Distr. Syst., 19(8):1136–1149, 2008.

[4] Jen-Yeu Chen, Gopal Pandurangan, and Dongyan Xu. Ro-
bust computation of aggregates in wireless sensor networks:
distributed randomized algorithms and analysis. IEEE Trans.
Parallel Distr. Syst., 17(9):987–1000, 2006.

[5] Fan Chung. Spectral graph theory.
http://www.math.ucsd.edu/ fan/research/revised.html, 2006.

[6] M. Farach-Colton, R. J. Fernandes, and M. A. Mosteiro.
Bootstrapping a hop-optimal network in the weak sensor
model. ACM Transactions on Algorithms, 2008. In press.

[7] M. Farach-Colton and M. A. Mosteiro. Initializing sensor
networks of non-uniform density in the weak sensor model. In
Proc. of 10th Intl. Workshop on Algorithms and Data Struc-
tures, volume 4619 of Lecture Notes in Computer Science,
pages 565–576. Springer-Verlag, Berlin, 2007.

[8] M. Farach-Colton and M. A. Mosteiro. Sensor network
gossiping or how to break the broadcast lower bound. In
Proc. of the 18th Intl. Symp. on Algorithms and Computation,
volume 4835 of Lecture Notes in Computer Science, pages
232–243. Springer-Verlag, Berlin, 2007.

[9] L. Fejes-Tóth. über einen geometrischen satz. Mathematische
Zeitschrift, 46(1):83–85, 1940.

[10] W. Feller. An Introduction to Probability Theory and Its
Applications, volume I. John Wiley & Sons, Inc., New York,
NY, USA, 3rd edition, 1968.

[11] Antonio Fernández Anta, Miguel A. Mosteiro, and Christo-
pher Thraves. An early-stopping protocol for computing
aggregate functions in sensor networks. Technical Report
RoSaC-2008-3, GSyC, LADyR, Universidad Rey Juan Car-
los, 2008.

[12] B. Ghosh and S. Muthukrishnan. Dynamic load balancing
by random matchings. Journal of Computer and System
Sciences, 53(3):357–370, 1996.

[13] Indranil Gupta, Robbert van Renesse, and Kenneth P. Birman.
Scalable fault-tolerant aggregation in large process groups. In
DSN, pages 433–442. IEEE Computer Society, 2001.

[14] P. Gupta and P. R. Kumar. Critical power for asymptotic
connectivity in wireless networks. In Stochastic Analysis,
Control, Optimization and Applications: A Volume in Honor
of W. H. Fleming., pages 547–566. Birkhauser, Boston, 1998.

[15] Mark Jerrum and Alistair Sinclair. Conductance and the rapid
mixing property for markov chains: the approximation of
permanent resolved. In Proc. of the 20th Ann. ACM Symp.
on Theory of Computing, pages 235–244, 1988.

[16] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computa-
tion of aggregate information. In Proc. of the 44th IEEE Ann.
Symp. on Foundations of Computer Science, pages 482–491,
2003.

[17] G. Kollios, J. W. Byers, J. Considine, M. Hadjieleftheriou,
and F. Li. Robust aggregation in sensor networks. IEEE
Data Engineering Bulletin, 28(1):26–32, 2005.

[18] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein,
and Wei Hong. Tag: a tiny aggregation service for ad-hoc
sensor networks. In Proc. of the 5th Symp. on Operating
Systems Design and Implementation, pages 131–146, 2002.

[19] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[20] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of
markov chains and the analysis of iterative load-balancing
schemes. In Proc. of the 39th IEEE Ann. Symp. on Founda-
tions of Computer Science, pages 694–703, 1998.

[21] Alistair Sinclair and Mark Jerrum. Approximate counting,
uniform generation and rapidly mixing markov chains. Infor-
mation and Computation, 82(1):93–133, 1989.


