
HAL Id: inria-00432540
https://hal.inria.fr/inria-00432540

Submitted on 16 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending FeatherTrait Java with Interfaces
Luigi Liquori, Arnaud Spiwack

To cite this version:
Luigi Liquori, Arnaud Spiwack. Extending FeatherTrait Java with Interfaces. Theoreti-
cal Computer Science, Elsevier, 2010, Theoretical Computer Science, 30 (1-3), pp.243-260.
�10.1016/j.tcs.2008.01.051�. �inria-00432540�

https://hal.inria.fr/inria-00432540
https://hal.archives-ouvertes.fr

Extending FeatherTrait Java with Interfaces

Dedicated to Mario Coppo, Mariangiola Dezani-Ciancaglini, and
Simona Ronchi della Rocca on the occasion of their 60th birthday

Luigi Liquori a and Arnaud Spiwack b

aINRIA, France
bENS Cachan, France

Abstract

In the context of Featherweight Java by Igarashi, Pierce, and Wadler, and its recent
extension FeatherTrait Java (FTJ) by the authors, we investigate classes that can be
extended with trait composition. A trait is a collection of methods, i.e., behaviors
without state; it can be viewed as an “incomplete stateless class” i.e., an interface
with some already written behavior. Traits can be composed in any order, but
only make sense when “imported” by a class that provides state variables and
additional methods to disambiguate conflicting names arising between the imported
traits. We introduce FeatherTrait Java with Interfaces (iFTJ), where traits need to
be typechecked only once, which is necessary for compiling them in isolation, and
considering them as regular types, like Java-interfaces with a behavioral content.

Key words: Object-oriented language design, inheritance, types.

1 Introduction

Untyped Traits, introduced by Schärli, Ducasse, Nierstrasz, Wuyts, and
Black [5, 13, 16, 17], have recently emerged as a novel technique for building
composable units of behavior in a dynamically-typed language à la Smalltalk.
Intuitively, a trait is just a collection of methods, i.e., behavior without state.
Derived traits can be built from an unordered list of parent traits, together
with new method declarations. Thus, traits are (incomplete) classes without
state. Traits can be composed in any order. A trait makes sense only when
“imported” by a class that provides state variables and possibly additional
methods to disambiguate conflicting names arising among the imported traits.
The order for importing traits in classes is irrelevant.

Historically, traits, intended as a collection of state and behavior, have been
originally employed in the pure object-based languages Self [20], or in the
language Obliq [4], or for the encoding of classes as records-of-premethods in
the Abadi-Cardelli’s Object Calculus [1].

Preprint submitted to Elsevier June 4, 2007

Typed traits, intended as pure behavior without state à la Schärli et al.
[5,16,17], have been introduced by Fisher and Reppy in an object-based core
calculus for the Moby language (of the ML [11] family) [7,12]. Then, traits have
been immerged in Igarashi, Pierce, and Wadler Featherweight Java by Liquori
and Spiwack [10], studied by Smith and Drossopoulou in a Java setting [18],
and implemented by Odersky et al. in the class-based language Scala [15],
and in the new language Fortress by Allen, Chase, Luchangco, Maessen, Ryu,
Steele, and Tobin-Hochstadt [2].

Contributions. The starting point of this paper is the FeatherTrait Java

(FTJ) calculus, by Liquori and Spiwack [10], that conservatively extends the
simple calculus of Featherweight Java (FJ) by Igarashi, Pierce, and Wadler [9]
with statically typed traits. The main aim of FTJ was to introduce a typed
trait-based inheritance in a class-based calculus à la Java. Because of the
simplicity of the FTJ calculus, traits could be typechecked only inside a class,
thus they needed to be typechecked once for every class. This behavior is not
compatible with the idea of compiling traits in isolation. In iFTJ, the traits
need only be typechecked once and for all.

(1) We define the FeatherTrait Java with Interfaces calculus (iFTJ), a variation
of FTJ and a conservative extension of FJ, which allows traits to be
typechecked only once. Traits in iFTJ look like Java-interfaces with some
partial behavior inside. An example of what traits can look like is
trait TA {String p(){return this.r()+this.s()+this.q();}

String s(){return ‘‘Java’’;};
String r()

String q()}
trait TB {String r(){return ‘‘Hallo World, my name is’’;}

String s(){return ‘‘FeatherTrait Java’’;};}

Traits TA and TB are typechecked only once, thus could be compiled in
isolation; trait TA “defines” method s, and method p which “requires”
methods r and q (declared as interfaces). They can be both imported in
a class declaration as follows
class Presentation extends Object imports TA TB

{;Presentation(){super();}
String ciao(){return this.p();}
String s(){return ‘‘FeatherTrait Java with Interfaces,’’;}
String q(){return ‘‘I hope you will like me’’;}}

Multiple traits can be imported by one class, and conflicts between
common methods, defined in two or more inherited traits, must be
resolved explicitly by the user, either by aliasing or excluding method
names in traits, or by overriding the conflicted methods in the class
that imports those traits or in the trait itself. As such, the evaluation
of (new Presentation()).ciao() will produce “Hallo World, my name

is FeatherTrait Java with Interfaces, I hope you will like me”.

2

(2) We define a type system for iFTJ that typechecks traits only once, in order
to be compatible with compilation in isolation. In a nutshell, every trait
is typechecked using a judgment which lists the signatures of methods
that are required in order to complete the missing behavior of the trait
itself.

Outline of the paper. The paper is structured as follows. In Section 2, we
quickly review the trait inheritance model adopted in iFTJ. In Section 3, we
present the syntax, the operational semantics, and the type system of iFTJ.
Section 4 shows the type soundness of iFTJ. Section 5 presents an example of
using traits in iFTJ. Section 6 discusses related work and concludes. Appendix
A sums up the operational semantics and the type system of iFTJ. Appendix
B contains the detailed soundness proof for iFTJ. Because of a lack of space
in this volume, a longer version can be found on the authors’ web pages.

2 Trait Inheritance

One useful feature of trait-based inheritance is that when a conflict arises
between traits included in the same class (e.g., a method defined in two
different traits), then the conflict is signaled and it is up to the user to
explicitly and manually resolve the conflict. Three simple rules can be easily
implemented in the method-lookup algorithm for that purpose

(1) Methods defined in a class take precedence over methods defined in the
traits imported by the class.

(2) Methods defined in a composite trait take precedence over methods
defined in the imported traits.

(3) Methods defined in traits (imported by a class) take precedence over
methods defined in its parent class.

The above rules are the simple recipe of the trait-based inheritance model.
They greatly increase the flexibility of the calculus that uses traits. Traits
syntactically require the methods which are necessary to “complete” their
behavior. They can also import other traits, from which they gain both
implemented and required methods.

Conflict Resolution. When dealing with trait inheritance, conflicts may
arise; a class C might import two traits T1 and T2 defining the same method p

with different behavior. Conflicts between traits must be resolved manually,
i.e., there is no special or rigid discipline to learn how to use traits. Once a
conflict is detected, there are essentially three ways to resolve the conflict

(1) Overriding a new method p inside the class. A new method p is
redefined inside the class with a new behavior. The (trait-based) lookup

3

algorithm will hide the conflict in the traits in favor of the overridden
method defined in the class.
class C extends Object imports T1 T2 T1 and T2 both define p

{... D p(...){...}} new behavior for p

(2) Aliasing the method p in traits and redefining the method in
the class. The method p is aliased with new different names. A new
behavior for p can now be given in the class C (possibly re-using the
aliased methods p of T1 and p of T2 which are no longer conflicting).
class C extends Object imports

T1 with {p@p of T1} aliases p with p of T1

T2 with {p@p of T2} aliases p with p of T2

{... D p(...){...}} new behavior for p, it may use p of T1/2

(3) Excluding the method p in one of the traits. One method p in trait
T1 or T2 is excluded. This solves the conflict in favor of one trait.
class C extends Object imports

T1 (T2 minus {p}) {...} method p is hidden from T2

3 FeatherTrait Java with Interfaces

In iFTJ, a program consists of a collection of class and trait declarations, and
an expression to be evaluated. We adopt the same notational conventions and
hygiene conditions as the FJ paper [9], with the metavariables S and I, ranging
over signatures and types, respectively, and the metavariables M⊥, S⊥, (x, e)⊥
ranging over methods (resp. signatures and method bodies) and the special
failure value fail.

CL ::= class C extends C [imports TA]{I f; K M} Class Declarations

TL ::= trait T [imports TA] {M; S} Trait Declarations

I ::= C | T Types

TA ::= T | TA with {m@m} | TA minus {m} Trait Alterations

K ::= C(I f){super(f); this.f = f; } Constructors

M ::= I m(I x){return e; } Methods

S ::= I m(I x) Signatures

e ::= x | e.f | e.m(e) | new C(e) | (I)e Expressions

Figure 1. Syntax of iFTJ

3.1 Syntax and Operational Semantics

The syntax of iFTJ, presented in Figure 1, extends the syntax of FJ. An iFTJ

program is a triple (CT, TT, e) of a class and a trait table, and an expression.

4

A class class C extends C imports1 TA {I f; K M} in iFTJ is composed of field
declarations I f, a constructor K, some new or redefined methods M, plus a
list of imported, possibly altered, traits TA. A trait trait T imports TA {M; S}

is composed of a list of methods M, some other, possibly altered, traits TA im-
ported by the trait itself, and a list of abstract method signatures S, which
are the methods that aren’t implemented in the trait but are yet required
by it. The conflicts are handled by typechecking: all the conflicts must be
resolved manually by the program. If any is found during typechecking, then
the program is rejected. The well-known Snyder’s “diamond problem” [19] is
not considered as a conflict, i.e. if two traits T1, T2 inherit a method m from
the same trait T0, and a trait imports both T1 and T2, then the method m

from T1 and the method m from T2 will not be considered as conflicting as
they are both exactly the same. Expressions are the usual ones of FJ. The
subtyping rules are essentially the same as those of FJ plus the two rules:

TA ∈ TA
trait T imports TA {. . .}

T <: head(TA)
(Sub·Tr)

TA ∈ TA
class C extends D imports TA {. . .}

C <: head(TA)
(Sub·Cla·Tr)

The subtyping relation does not only compare classes but also traits. To give
an intuition about the above rules, we will remind that Java typing and sub-
typing is name-based (a type is the name of a class or an interface). We intend
to stick to this policy in iFTJ. The function head returns the name of the
trait which is the head of the trait alteration. The rationale is that the alter-
ations do indeed alter the behavioral content of traits, but they do not change
their interface 2 ; another point of view is that alterations transform imple-
mented methods into required methods, both being identified at type level.
For instance, an object which inhabits class C imports (T minus {m}){. . .} does
qualify as being also of type T. The other subtyping rules, the simple definition
of head and the other standard definition of the operational semantics of iFTJ

are collected in Appendix A.

3.2 A Virtual Tour Through the Auxiliary Functions

The Functions meth and sig. The function meth has two purposes. The
first one, simpler, is to extract the names from either a method declaration
(with a body), or a method signature (without a body); it is used in the rules
to convert sets of declaration into sets of names. The second purpose is to
compute the set of all methods in a class or a trait or a trait alteration which
has an available, real implementation, not simply a typed interface. Note that
the required methods of a trait or trait alteration are not considered by this
function. The function sig simply extract the set of the signatures of every
method (both implemented and required ones) of a trait or a trait alteration.
Both functions are presented in Appendix A.

1 The keyword imports was preferred to the keyword implements (à la Java)
because traits already implements some methods.
2 The rigid type discipline makes iFTJ a proper extension of FJ but not of FTJ.

5

The Functions altlook and tlook. The function altlook looks up a trait al-
teration for the complete implementation of a method m (or fails if it has none,
even if there is a declared signature). altlook is not a function but it becomes a
function for well-typed programs. The function tlook is the extension of altlook

to a set of trait alterations; these two “functions” are mutually recursive. tlook

is used to find a method in a set of trait alterations; it has no specific strategy
to select among multiply defined methods, this is why it is not a function (and
subsequently why altlook is not a function either). However, typing prevents
conflicts, turning both into functions. The most significant rules of altlook are

TT(T) = trait T imports TA {M; S} m 6∈ meth(M) tlook(m, TA) = M⊥

altlook(m, T) = M⊥

(ATr·Inh)

altlook(n, TA) = I n(I x){return e; }

altlook(m, TA with {n@m}) = I m(I x){return e; }
(ATr·Ali1)

(ATr·Inh) If the method m is not provided in the unaltered trait definition,
then we look in the imported traits.

(ATr·Ali1) When looking up a method m in a trait alteration where n is aliased
to m, we look up for the method with the former name n, and then we rename
it if it exists, or the lookup fails.

The Function msig. The function msig looks up a trait alteration (similarly
to altlook) for a method signature S, or fails (in the case where no signature
is found, or the method has an available body). When a method m is required
by the trait alteration TA, then msig(m, TA) returns the signature with which
m should be (later) implemented in a class. Note that msig is not a function
in general, but gets to be one in the case of well-typed programs. The most
significant rules of msig are

TT(T) = trait T imports TA {M; S} m 6∈ meth(T)

∃ TA ∈ TA. msig(m, TA) = S m 6∈ meth(S)

msig(m, T) = S
(MSig·Inh)

TT(T) = trait T imports TA {M; S} m 6∈ meth(T)

∀ TA ∈ TA. msig(m, TA) = fail m 6∈ meth(S)

msig(m, T) = fail
(MSig·End)

m 6= n altlook(m, TA) = I m(I x){return e; }

msig(m, TA with {m@n}) = I m(I x)
(MSig·Ali3)

(MSig·Inh) & (MSig·End) When looking up a required method signature in
an unaltered trait, if the method is not spoken of in the trait, then we look in
the imported traits. If none of them requires it, then the lookup fails. Note
that we ensure that the method is not implemented in any of the imported
traits.

(MSig·Ali3) Those rules apply when looking up a required method m signature
in a trait alteration where m is aliased to n. We look whether or not m exists in

6

the head trait alteration with an implementation. If it does, then it becomes
required (we do not change the type interface of the trait alteration even
through alterations), otherwise the lookup fails.

The Function mtype. As above, mtype is a function only for well-typed
programs. It fetches in a class or in a trait alteration the type of m which
can be either implemented or required. It is used in the typing expressions
like e.m(. . .). Whether m is required or implemented does not matter. Concrete
objects (new . . .) are instances of a class; type soundness ensures that classes
implement all methods required by the traits they import. As far as the typing
of expressions is concerned, traits are like interfaces. The most significant rules
of mtype are

CT(C) = class C extends D imports TA {J f; K M}

m 6∈ meth(M) ∃TA ∈ TA. mtype(m, TA) = I → I

mtype(m, C) = I → I
(MTyp·Tr)

CT(C) = class C extends D imports TA {J f; K M}

m 6∈ meth(M) ∀TA ∈ TA. mtype(m, TA) = fail mtype(m, D) = I → I

mtype(m, C) = I → I
(MTyp·Super)

altlook(m, TA) = fail msig(m, TA) = I m(I x)

mtype(m, TA) = I → I
(MTyp·Virt)

(MTyp·Tr) If a class has not declared a method explicitly, then we first lookup
the method type inside the imported traits.

(MTyp·Super) If the method is not declared in the imported traits (either
implemented or required), then we lookup inside the superclass.

(MTyp·Virt) This rule applies when looking up for a method type in a trait
alteration. If the method is not implemented in the trait alteration, then we
look whether it is required by the trait alteration, giving the appropriate
type. Thus, traits behave more like interfaces than classes.

The Functions fields and mbody. Those functions are almost unmodi-
fied since FJ. The function fields simply computes the set of the fields of a
class (this includes those of the superclass) together with their types. mbody

is a function only for well-typed programs. The function mbody performs the
method body lookup: given a method m and a class C, it browses the inheri-
tance tree of C until it finds the body of m. The most significant rules of mbody

are

CT(C) = class C extends D imports TA {I f; K M}

m 6∈ meth(M) tlook(m, TA) = I m(I x){return e; }

mbody(m, C) = (x, e)
(MBdy·Tr)

CT(C) = class C extends D imports T {I f; K M}

m 6∈ meth(M) tlook(m, TA) = fail mbody(m, D) = (x, e)⊥

mbody(m, C) = (x, e)⊥
(MBdy·SCla)

7

(MBdy·Tr) If the method is not declared in the class, then we first look it up
in the imported traits.

(MBdy·SCla) If the method is not in any of the imported traits, then we look
it up in the superclass.

Method Path relation P. This relation is related to “diamond” (or “fork-
join”) conflicts arising when a class/trait, that inherits from two classes/traits,
would ostensibly have two distinct definitions for one method [19]. The set ∩TA
denotes methods defined in more than one trait; it is used to detect conflicts
when importing traits. The set ⋄TA denotes methods that potentially determine
a diamond when dealing with trait inheritance; such methods are expected to
be “non-conflicting”, hence accepted by the type system. More precisely: the
set ∩TA detects every conflict in TA, while the set ⋄TA detects every diamond. A
class declaration is well-formed only if the imported trait alterations imported
by the class C satisfy the constraint ∩TA \ ⋄TA ⊆ meth(M), ensuring that every
conflict is resolved, i.e., every new-born conflict (∩TA) which is not a diamond
(⋄TA) is being overridden.

∩TA
def

= {m | ∃ TA1 6= TA2 ∈ TA. m ∈ meth(TA1) ∩ meth(TA2)}

⋄TA
def

= {m | ∃ n, TA1. ∀ TA2 ∈ TA. m ∈ meth(TA2) =⇒ m in TA2 P n in TA1}

To compute ⋄TA, we need a judgment of the form m in TA1 P n in TA2 (read
“ m of TA1 behaves exactly as n of TA2”). The meaning is as follows: m is a
method provided by trait TA1, whose implementation is inherited from that
of a method n provided by TA2 through any number of trait declarations or
alteration steps (paths). The most significant rules are

TT(T)=trait T imports TA {M; S}

TA ∈ TA m ∈ meth(TA) \ meth(M)

m in T P m in TA
(Path·Inh)

p in TA1 P n in TA2

m in TA1 with {p@m} P n in TA2

(Path·Ali1)

m in TA1 P n in TA2 m 6= p m 6= q

m in TA1 with {p@q} P n in TA2

(Path·Ali2)
m in TA1 P n in TA2 m 6= p

m in TA1 minus {p} P n in TA2

(Path·Exl)

• (Path·Inh) If a trait T inherits a method m directly from a trait alteration
TA and does not override it, then m of T behaves exactly as m of TA.

• (Path·Ali1) If p of TA1 behaves exactly as n of TA2, then m of TA1 with {p@m}

behaves exactly as n of TA2.
• (Path·Ali2) If m 6= p and m 6= q, and m of TA1 behaves exactly as n of TA2, then

m of TA1 with {p@q} behaves exactly as n of TA2.
• (Path·Exl) If m 6= p, and m of TA1 behaves exactly as n of TA2, then m of

TA1 minus {p} behaves exactly as n of TA2.

3.3 The Type System

We show the most important rules of iFTJ type system which allow to
typecheck traits only once. The remaining rules are presented in Appendix
A. The type system has three steps: first, expressions must be typed using

8

standard judgments of the form Γ ⊢ e ∈ I. Second, methods must be
typed inside a class using judgments of the form M OK IN C or inside a
trait. Since a trait is essentially a Java-interface with some behavior inside,
it has a type of its own. The associated judgment M OK IN T (and typing
rules) are similar. Judgments S OK IN T and S OK IN C hold to guarantee
that signatures are compatible. Next, altered traits must be typed using
judgments of the form TA OK requires S. The intuition behind the requires S

part is that the implementation of the S methods must be available in the
classes which import TA with the given signature. The implementation may be
given either by an explicit declaration in the body of the class (or trait), or
inherited by the superclass or by another trait. Signatures are considered equal
modulo renaming of their arguments. Finally, trait and class typechecking are
performed only once. Checking classes and traits is done via judgments of the
form TL OK requires S and CL OK where the trait and class tables TT and CT are
left implicit in the judgments. Like trait alterations, trait declaration checking
gives also the signature of the abstract methods.

Method typechecking is defined as follows

CT(C) = class C extends D imports TA {J f; K M}

x:I, this:C ⊢ e ∈ J J <: I

override(m, D, I → I) override(m, TA, I → I)

I m(I x){return e; } OK IN C
(Mth·Ok·Cla)

TT(T) = trait T imports TA {M; S}

x:I, this:T ⊢ e ∈ J J <: I override(m, TA, I → I)

I m(I x){return e; } OK IN T
(Mth·Ok·Tr)

(Mth·Ok·Cla) We first ensure that the method body e is typable with a type
compatible with its declared signature, i.e. that if the method body has
type J, then J is smaller (possibly equal) than the declared type I. We then
check the two override conditions, i.e. we check that if the method name m

is used in any of the imported trait or in the superclass, then it is used with
the same type as this method.

(Mth·Ok·Tr) This rule behaves as the previous (Mth·Ok·Cla) rule; it is
interesting to remark that the type assigned to the pseudovariable this

is the trait T itself, which is considered as a real type.

Simpler rules apply to check method signatures in a trait or in a class.

The trait alteration typing. These rules derive judgments of the form
TA OK requires S which means that TA is well-typed where every method de-
clared in the signature S must be implemented. The rationale is that every
method occurring in the require part refers to a method that is not (or no
more) implemented in the trait but is needed in order to complete the trait.

9

TA OK requires S m ∈ meth(TA)

n 6∈ meth(TA) ∪ meth(S) mtype(m, TA) = I → I

TA with {m@n} OK requires S ∪ {I m(I x)}
(Alias·Ok1)

TA OK requires S m ∈ meth(TA) n 6∈ meth(TA)

I n(I x) ∈ S mtype(m, TA) = I → I

TA with {m@n} OK requires (S \ {I n(I x)}) ∪ {I m(I x)}
(Alias·Ok2)

TA OK requires S m ∈ meth(TA) mtype(m, TA) = I → I

TA minus {m} OK requires S ∪ {I m(I x)}
(Exlude·Ok)

(Alias·Ok1) This rule handles the typechecking of aliasing where the new name
n is not a required method. It checks that the new method name n does not
correspond to a defined method in TA, and that the method name being
aliased m exists. Then, simply adds the method m to the required methods.

(Alias·Ok2) Behaves as (Alias·Ok1), except that the aliased method name m

takes the place of a required method and that the new method name n must
be removed from the list (both must have the same type interface).

(Exlude·Ok) Adds the aliased method m to the required methods, in case
another method calls m.

The class and trait typing rules are defined as follows

∩TA \ ⋄TA ⊆ meth(M) M OK IN T

TA OK requires S
′

(sig(TA) ∪ S) OK IN T

trait T imports TA {M; S} OK requires (S ∪ S
′
) \ meth(T)

(Tr·Ok)

K = C(J g, I f){super(g); this.f = f; }

fields(D) = J g ∩TA \ ⋄TA ⊆ meth(M) sig(TA) OK IN C

M OK IN C TA OK requires S
′

meth(S) ⊆ meth(C)

class C extends D imports TA {I f; K M} OK
(Cla·Ok)

Intuitively, those two rules check that all the components of the class and
of the trait are well-typed, and that all conflicts are resolved; the trait rule
also builds the list of methods that are required but not provided in the
trait. In those rules, for TT(T) = trait T imports TA {. . .} we have a judgment
S OK IN T basically meaning that the methods whose signature are in S do
not raise a typing conflict with T. It is used to check that the imported traits
are compatible (a class cannot import a trait with a method m returning an
integer and another trait with a method m returning a string, for instance).

(Tr·Ok)/(Cla·Ok)
• (only in (Cla·Ok))We fetch the constructor K and the fields g.
• We typecheck the set of altered traits TA producing a set of required

methods (the requires S
′ part).

10

• We typecheck the methods M inside T/C.
• We check the key condition ∩TA \ ⋄TA ⊆ meth(M) ensuring that every

conflict is resolved, and guaranteeing that the lookup algorithm provides
the correct conflict resolution.

• We typecheck the method signatures in TA and S. We check that all the
traits TA and the signature S are compatible in the trait T (resp. TA in the
class C), i.e. they can be pairwise composed without any conflict in the
method types (for instance, type conflicts may arise between an existing
and an abstract method).

• (only in (Tr·Ok)) The set of required methods in T, is then the set S
′

of all methods signature required by the imported trait alterations TA

plus the set S declared in T except all the methods that are defined (i.e.
implemented) in T. It is worth noticing here that the user can define more
method signatures in S than what is really needed; in other words: if a
method has been declared in S but its behavior is already present inside
an imported trait, then the system only checks that both the type of the
defined method and of the required one are compatible.

• (only in (Cla·Ok)) We check the condition meth(S) ⊆ meth(C). It means
that classes have to provide all the necessary methods for the computation
of its instances (objects of the form new C(. . .)). Specifically, meth(S) are
being implemented either inside the class, in the superclass or inside some
trait (other than the ones requiring it). As such, we ensure that every time
a method m is expected for C then it is also implemented in C.

4 Properties

Once the type system for iFTJ has been set up, the next step is to prove that (i)
the static semantics matches the dynamic one, i.e., types are preserved during
computation (modulo subtyping), that (ii) the interpreter cannot get stuck if
programs only include upcasts, and finally that (iii) the type system prevents
programs from the run-time message-not-understood error. The proofs of these
statements are not excessively more complicated than in FJ. The full proofs
are provided in Appendix B.

Untypable programs are not necessarily deterministic, since the lookup rules
do not give the priority to any of the imported trait (so that the order in
which traits are importer does not change the semantics). Conflict Resolution
Theorem states that typed programs have a deterministic lookup algorithm.
Which means nothing more than saying that all conflicts have been resolved.

Theorem 1 (Conflict Resolution)
If, for all Ci ∈ CL, we have Ci OK, then both mbody and mtype are functions. 2

Subject reduction follows easily.

11

Theorem 2 (Subject Reduction)
If Γ ⊢ e ∈ C and e −→ e′, then Γ ⊢ e′ ∈ D, for some D <: C. 2

Progress shows that the only way for the interpreter to get stuck is by reaching
a state where a downcast is impossible. Let # means cardinality (as in [9]).

Theorem 3 (Progress)
Suppose e is a well-typed expression

(1) If e includes new C(e).f as a subexpression, then fields(C)=T f and f ∈ f;
(2) If e includes new C(e).m(f) as a subexpression, then mbody(m, C) = (x, e0)

and #(x) = #(d). 2

In accordance with FJ, we define the notion of safe expression e in Γ if the
type derivation of the underlying (CT, TT) and Γ ⊢ e ∈ C contains no downcast
or stupid cast (rules (Typ·DCast), and (Typ·SCast)). Then, soundness of safety
and progress of safe programs follow.

Theorem 4 (Reduction preserves safety)
If e is safe in Γ, and e −→ e′, then e′ is safe in Γ. 2

Theorem 5 (Progress of safe programs)
Suppose e is safe in Γ. If e has (C)new D(e) as a subexpression, then D <: C. 2

5 Example

We give a small example in Figure 2, using the Java class Integer enriched
with some simple algebraic methods, e.g. mod and times. Here is a sum-up
of this example. First we define a trait Convertible which is purely abstract
(as an interface in Java, we define it only for typing purposes); it requires a
method producing an integer. Then, we declare a trait Hashable that imports
Convertible, and uses the to Int method as an input for its hashing function.
It allows then to define an extension H Integer of the class Integer with a
method hash to get a hash value of the considered integer. Independently,
we define a trait Convertible Pair that imports Convertible (thus every
Convertible Pair is also Convertible) and define a method to Int for a pair
of two convertible object. Finally, we define our strings as lists of characters.
The strings are indeed subclasses of a trait My String, which is an interface
equivalent to Hashable (in real life it would be a strict subtype of Hashable

though). As such, we have two classes that build strings, namely Null String,
i.e. a single element class, and Cons String which is intrinsically a pair of
a character and a string. The class Cons String imports Convertible Pair

to implement the method to Int which is required by My String (as a trait
importing Hashable). Then, we can assume a class Array, which can be used as
an array or an association table. Together with the hashing function of strings
(or that of hashable integers) it may be used as a hash table, as suggested

12

trait Convertible {;Integer to_Int()}
trait Hashable imports Convertible {
Integer hash() {... this.to_Int() ...};}

trait Convertible_Pair imports Convertible {
Integer to_Int() {return this.fst().to_Int().

plus(this.snd().to_Int().times(this.offset()));};
Convertible fst()

Convertible snd()

Integer offset()}
trait My_String imports Hashable { ; }

class H_Integer extends Integer imports Hashable { ;
H_Integer() {super();}
Integer to_Int() {return this;} }

class My_Char extends Objects imports Convertible {
int me;

My_Char(Integer c) {super();this.me=c.mod(new Integer(256));}
Integer to_Int() {return this.me;} }

class Cons_String extends Objects imports My_String Convertible_Pair{
My_Char head

My_String tail;

Cons_String(My_Char c,My_String s)

{super();this.head=c; this.tail=s;}
Convertible fst() {return this.head;}
Convertible snd() {return this.tail;}
Integer offset() {return new Integer(256);} }

class Null_String extends Objects imports My_String { ;
Null_String() {super();}
Integer to_Int() {return new Integer(0);} }

class Array extends Objects imports H_Integers {...
Object index(Integer i) {...}
Object assoc(Integer i) {...} }

(Array)(new Array(...).index(new Cons_String(...).hash()))

.assoc(new Cons_String(...))

Figure 2. Hashing Strings

in the example. Moreover, H Integers, Cons String, and Null String do not
only share the Hashable type, but they also have a common implementation
of the method hash gotten through trait inheritance.

6 Related Work and Conclusions

Related Work. In the past few years, great interest was recorded around
the possibility to use trait inheritance in statically typed class- and object-
based languages [10, 13, 14, 18]. Among the many propositions which arose in
the literature (and apart our FTJ), we recall the following ones.

13

(TcoreMoby) adds statically typed trait inheritance to an object-based
calculus with first-class functions of the ML family. Fisher and Reppy have
the same interest in typed traits as we do, and historically this paper can
be considered as the first attempt to typecheck traits statically. The key
points of TcoreMoby are that (a) two traits can be combined only if they
are disjoint, and that (b) one method can be overridden by another only
if it has the same type interface, and that (c) in TcoreMoby traits need to
be typechecked only once. The paper comes with the full set of proofs. Our
iFTJ relaxes point (a) and features points (b) and (c).

(Chai) adds statically typed trait inheritance to a Java-like language; in fact
there are three dialects defined: Chai1,2,3. As for TcoreMoby, the key points in
Chai are that (a) two traits can be combined only if they are disjoint, (b) one
method can be overridden by another only if it has the same type interface,
and (c) in Chai2,3 traits are typechecked only once, and that (d) in Chai3
traits can be substituted for one another dynamically. The paper comes with
proof sketches for the theorems of Chai1, and soundness theorems for Chai2,3,
whose proofs are not yet published. Our iFTJ can be compared with Chai2:
the bigger difference is that iFTJ relaxes point (a), by allowing conflicts
to be resolved via overriding, and features points (b) and (c), making the
type system more expressive than Chai2. Moreover, iFTJ comes with a full
metatheory.

(Scala) features traits as specific instance of an abstract class; thus the
abstract modifier is redundant for it. Traits in Scala are a bit like interfaces
in ClassicJava [8], since they are used to define object types by specifying the
signature of the supported methods. Besides in Scala the composition order
of trait is irrelevant. A solid implementation is available on the Scala web
site. A Featherweight Scala formal model with related meta-theory remains
to be fleshed out (and a formal comparison of features also).

(Fortress) specification language by Allen, Chase, Luchangco, Maessen, Ryu,
Steele, and Tobin-Hochstadt was published on SUN’s website at the end
of 2005. This language features traits-as-types (i.e. a trait is like an
interface in Java with some concrete method bodies inside), and objects
are trait instances, obtained by completing the imported trait by the body
declaration of the abstract methods. A formal model with related meta-
theory remains to be fleshed out.

However, our type system is deeply indebted to the work on incomplete
objects by Bono, Bugliesi, Dezani, and Liquori [3]; this work presented a type
system for the Lambda Calculus of Objects of Fisher, Honsell, and Mitchell [6],
an untyped λ-calculus enriched with object primitives. The paper allowed
objects to be typed independently of the order of their method additions.
This flexibility arises from introducing the notion of completion, a complement
to interface, to convey information on (the types of) the methods which
are not available in the object, and yet are referenced by its the methods.
Besides allowing a more flexible typing of methods (in particular, of mutually

14

recursive method definitions), this extension also allows methods to be invoked
on incomplete objects, i.e. objects whose implementation (the set of their
methods) is only partially specified. The paper conjectured that the concept
underpinning the typing of incomplete objects may be exploited in modeling
language constructs such as virtual methods and interfaces in class-based
languages (exactly what our model of typed trait does). Ten year later, we
found some evidence in our conjecture in designing a type system for iFTJ.

Conclusions. We have presented a formal development of iFTJ, a statically
typed, functional, class-based language featuring classes, objects, trait inheri-
tance where traits need to be typechecked only once in order to make the
system compatible with separated compilation. Future directions will focus on:

• Add bounded polymorphic-types or even generic-types as in GJ [9]; this
extension will greatly improve the usefulness of statically typed traits.

• Study the impact of trait inheritance for the language C#; although this
language is quite similar to Java, it has its peculiarities, which should be
carefully interleaved and kept compatible with typed traits.

Acknowledgments. (By the first author, in italian.) Cari Mario, Mariangi-
ola e Simona, senza i vostri insegnamenti non saprei quello che so e non sarei
quello che sono ...

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] E. Allen, D. Chase, V. Luchangco, J-W Maessen, G.L.Steele S. Ryu, and
S. Tobin-Hochstadt. The Fortress Language Specification, version 0.618., 2005.
http://research.sun.com/projects/plrg/fortress0618.pdf.

[3] V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping
for Extensible, Incomplete Objects. Fundamenta Informaticae, 38(4):325–364,
1999.

[4] L. Cardelli. Obliq: A Language with Distributed Scope. Computing Systems,
8(1):27–59, 1995.

[5] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. P. Black. Traits: A
mechanism for fine-grained reuse. ACM Trans. Program. Lang. Syst., 28(2):331–
388, 2006.

[6] K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and
Method Specialization. Nordic Journal of Computing, 1(1):3–37, 1994.

[7] K. Fisher and J. Reppy. Statically Typed Traits. http://www.cs.

uchicago.edu/files/tr authentic/TR-2003-13.pdf. The early version “A
Typed Calculus of Traits” has been presented at FOOL 10, 2004.

15

[8] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and Mixins. In Proc. of
POPL, pages 171–183. The ACM Press, 1998.

[9] A. Igarashi, B.C. Pierce, and P. Wadler. Featherweight Java: A Minimal Core
Calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

[10] L. Liquori and A. Spiwack. FeatherTrait: a modest extension of Featherweight
Java. ACM TOPLAS, to appear, 200X.

[11] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

[12] The Moby Team. The Moby Home Page, http://moby.cs.uchicago.edu/.

[13] O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening Traits. Journal of Object
Technology, 5(3), 2006.

[14] P. J. Quitslung. Java Traits – Improving Opportunities for Reuse. Technical
Report CSE-04-005, OGI School of Science and Engineering, 2004.

[15] The Scala Team. The Scala Home Page, 2007. http://scala.epfl.ch/.

[16] N. Schärli. Traits - Composing Classes from Behavioral Building Blocks. PhD
thesis, University of Berne, 2005.

[17] N. Schärli, S. Ducasse, O. Nierstrasz, and A.P. Black. Traits: Composable
Units of Behaviour. In Proc. of ECOOP, volume 2743 of LNCS, pages 248–274.
Springer-Verlag, 2003.

[18] C. Smith and S. Drossopoulou. Chai: Typed Traits in Java. In Proc. of ECOOP,
volume 3586 of LNCS, pages 453–478. Springer Verlag, 2005.

[19] A. Snyder. Inheritance and the Development of Encapsulated Software Systems.
In Research Directions in Object-Oriented Programming, pages 165–188. MIT
Press, 1987.

[20] D. Ungar and B. Smith, R. Self: The Power of Simplicity. In Proc. of OOPSLA,
pages 227–241. The ACM Press, 1987.

16

A Dynamic and Static Semantics of iFTJ

Head and Subtyping (Sub·Tr) and (Sub·Cla·Tr) plus

head(T) = T head(TA with {m@n}) = head(TA) head(TA minus {m}) = head(TA)

I <: I
(Sub·Refl)

I1 <: I2

I2 <: I3

I1 <: I3

(Sub·Trans)

class C extends D imports TA {. . .}

C <: D
(Sub·Cla)

Small-step semantics

fields(C) = I f

(new C(e)).fi −→ ei

(Run·Field)
C <: I

(I)(new C(e)) −→ new C(e)
(Run·Cast)

mbody(m, C) = (x, e0)

(new C(e)).m(d) −→ [d/x, new C(e)/this]e0
(Run·Call)

Congruence

e −→ e′

e.f −→ e′.f
(Cgr·Field)

e −→ e′

e.m(e) −→ e′.m(e)
(Cgr·Receiver)

e −→ e′

(I)e −→ (I)e′
(Cgr·Cast)

ei −→ e′
i

e.m(.., ei, ..) −→ e.m(.., e′
i
, ..)

(Cgr·Args)

ei −→ e′
i

new C(.., ei, ..) −→ new C(.., e′
i
, ..)

(Cgr·New)

Field lookup exactly as in FJ

Method body lookup (MBdy·Tr) and (MBdy·SCla) plus

CT(C) = class C extends D imports TA {I f; K M}

I m (I x){return e; } ∈ M

mbody(m, C) = (x, e)
(MBdy·Cla)

Trait lookup

∃ TA ∈ TA. altlook(m, TA) = M

tlook(m, TA) = M
(Tr·Ok)

∀ TA ∈ TA. altlook(m, TA) = fail

tlook(m, TA) = fail
(Tr·Ko)

Trait alteration lookup (ATr·Inh) and (ATr·Ali1) plus

TT(T) = trait T imports TA {M; S} I m(I x){return e; } ∈ M

altlook(m, T) = I m(I x){return e; }
(ATr·Found)

m 6= p m 6= q altlook(m, TA) = M⊥

altlook(m, TA with {p@q}) = M⊥

(ATr·Ali2)

17

m 6= n

altlook(m, TA with {m@n}) = fail
(ATr·Ali3)

altlook(n, TA) = fail

altlook(m, TA with {n@m}) = fail
(ATr·Ali4)

m 6= n altlook(m, TA) = M⊥

altlook(m, TA minus {n}) = M⊥

(ATr·Exl1)

altlook(m, TA minus {m}) = fail
(ATr·Exl2)

Method names and signatures

meth(I m(I x)) = {m}
(Mth·Sig)

meth(I m(I x){return e; }) = {m}
(Mth·Mth)

TT(T) = trait T imports TA {M; S}

meth(T) = meth(M) ∪ meth(TA)
(Mth·Tr)

CT(C) = class C extends D imports TA {C f; K M}

meth(C) = meth(M) ∪ meth(TA) ∪ meth(D)
(Mth·Cla)

meth(TA with {m@n}) = (meth(TA) \ {m}) ∪ {n}
(Mth·Ali)

meth(TA minus {m}) = meth(TA) \ {m}
(Mth·Exl)

sig(I m(I x){. . .}) = {I m(I x)}
(Sig·Mth)

sig(TA) = {S, I m(I x)}

sig(TA with {m@n}) = {S, I m(I x), I n(I x)}
(Sig·Alias)

sig(TA) = {S, I m(I x); }

sig(TA minus {m}) = {S}
(Sig·Exl)

TT(T) = trait T imports TA {M; S}

sig(T) = S ∪ sig(M) ∪ sig(TA)
(Sig·Tr)

Method paths in trait alterations (Path·{Inh,Alias1,2,Exc}) plus

m ∈ meth(TA)

m in TA P m in TA
(Path·Refl)

m in TA1 P p in TA2 p in TA2 P n in TA3

m in TA1 P n in TA3
(Path·Trans)

Method type lookup

CT(C) = class C extends D imports TA {J f; K M}

I m(I x){return e; } ∈ M

mtype(m, C) = I → I
(MTyp·Self)

18

altlook(m, TA) = I m(I x){return e; }

mtype(m, TA) = I → I
(MTyp·Impl)

altlook(m, TA) = fail msig(m, TA) = fail

mtype(m, TA) = fail
(MTyp·Fail)

Signature lookup and overriding (MSig·{Inh,End,Ali3}) plus

TT(T) = trait T imports TA {M; S} m 6∈ meth(T) I m(I x) ∈ S

msig(m, T) = I m(I x)
(MSig·Tr)

TT(T) = trait T imports TA {M; S} m 6∈ meth(T)

∀ TA ∈ TA. msig(m, TA) = fail m 6∈ meth(S)

msig(m, T) = fail
(MSig·End)

m 6= p m 6= q msig(m, TA) = S⊥

msig(m, TA with {p@q}) = S⊥

(MSig·Ali1)

m 6= n

msig(m, TA with {n@m}) = fail
(MSig·Ali2)

m 6= n altlook(m, TA) = fail

msig(m, TA with {m@n}) = fail
(MSig·Ali4)

altlook(m, TA)=I m(I x){return e; }

msig(m, TA minus {m}) = I m(I x)
(MSig·Ex1)

altlook(m, TA) = fail

msig(m, TA minus {m})=fail
(MSig·Ex2)

m 6= n msig(m, TA) = S⊥

msig(m, TA minus {n}) = S⊥

(MSig·Ex3)

m ∈ meth(T)

msig(m, T) = fail
(MSig·Fail)

Valid Method Overriding

mtype(m, I) = J → J0 implies I = J and I0 = J0

override(m, I, I → I0)
(M·Ov)

Basic expression typing exactly as in FJ

Method typing (Tr·Ok) and (Cla·Ok) plus

TT(T) = trait T imports TA {M; S} override(m, TA, I → I)

I m(I x) OK IN T
(Sig·Ok·Tr)

CT(C) = class C extends D imports TA {I f; K M}

override(m, D, I → I) override(m, TA, I → I)

I m(I x) OK IN C
(Sig·Ok·Cla)

19

B The Full Proofs

We prove that a method path relation only designs paths for existing methods.

Lemma 1 (Non Virtual Paths)
If m in TA1 P n in TA2 then, m ∈ meth(TA1) and n ∈ meth(TA2).

Proof By induction on the derivation of m in TA1 P n in TA2. 2

Weshow that altlook provides amethod implementationwith the proper name.

Lemma 2 (Naming Soundness)

• If altlook(m, TA) = M⊥, then either M⊥ = fail, or M⊥ = I m (I x){. . .}.
• If msig(m, TA) = S⊥, then either S⊥ = fail, or S⊥ = I m (I x).

Proof

• Straightforward induction on the derivation of altlook(m, TA) = M⊥.
• Follows straightforwardly from the first point. 2

We prove that a method path relation preserves the body of the method. It is
the first step for proving determinism of well-typed programs.

Lemma 3 (Diamond Proto-Soundness)
If m in TA1 P n in TA2, then altlook(n, TA2) = I n(I x){return e; } implies
altlook(m, TA1) = I m(I x){return e; }.

Proof By induction on the derivation of m in TA1 P n in TA2. Here are the
most relevant cases

• (Path·Inh) Since m 6∈ meth(M), the rule (ATr·Inh) can apply to TA1 which
implies the result.

• (Path·Ali1) The rule (ATr·Ali1) (or (ATr·Ali4)) can apply to TA1 which
implies the result.

• (Path·Ali2) Since m 6= p and m 6= q, the rule (ATr·Ali2) can apply to TA1

which implies the result.
• (Path·Exl) Since m 6= p, the rule (ATr·Exl1) can apply to TA1 which implies

the result. 2

We prove that if a trait is well-typed, then meth refers to the set of methods
where altlook does not fail.

Lemma 4 (meth Soundness)
If TA OK requires S, then m ∈ meth(TA) if and only if altlook(m, TA) 6= fail.

Proof By induction on the derivation of altlook(m, TA). Here are the most
relevant cases

• (ATr·Found) Then, TA = T. Then, altlook(m, T) 6= fail and, from rule
(Mth·Tr), we have m ∈ meth(T).

• (ATr·Inh) Then, TA = T, and TT(T) = trait T imports TA {M; S}. Then,

20

altlook(m, T) 6= fail ⇐⇒ ∃ TAi ∈ TA. altlook(m, TAi) 6= fail. Thus we have,
by induction hypothesis

altlook(m, T) 6= fail ⇐⇒ ∃ TAi ∈ TA. m ∈ meth(m, TAi) ⇐⇒ m ∈ meth(T) .

The latter comes from rule (Mth·Tr) and the statement m 6∈ meth(M).
• (ATr·Ali1) Then, TA = TA1 with {n@m}. Since TA is well-typed, we have that

n ∈ meth(TA1) and m 6∈ meth(TA1). Then, by induction hypothesis, we have
that altlook(n, TA1) 6= fail, thus altlook(m, TA) 6= fail, and rule (Mth·Ali) states
that m ∈ meth(TA). 2

We prove that altlook is a function when the program typechecks.

Lemma 5 (Conflict Resolution in Trait Alterations)
If TA OK requires S, then altlook(· , TA) is a function.

Proof By induction on the derivation of altlook. Here are the most relevant
cases
• (ATr·Inh) If tlook(m, TA) = fail, then the property obviously holds. Else, by

induction hypothesis, for all TAi ∈ TA, altlook(· , TAi) is a function.
◦ If m 6∈ ∩TA, then there is an unique TAi ∈ TA where altlook(m, TAi) 6= fail.
◦ If m ∈ ∩TA, then, since TA is well-typed, the rule (Tr·Ok) enforces that m ∈

⋄TA. Then, for all TAi ∈ TA, we have m ∈ meth(TAi) ⇒ m in TAi P n in TA1.
Moreover, we know that n ∈ meth(TA1), by Lemma 1, which means that
there is at least one altlook(n, TA1) = I n (I x){. . .} which is derivable, by
Lemma 4. Thus, altlook(m, TAi) = I m (I x){. . .} is derivable for all TAi such
that m ∈ meth(TAi), by Lemma 3. To conclude, we know that altlook(·, TAi)

is a function which ensures they are all equal.
• (ATr·Ali1) TA = TA1 with {n@m}. The induction hypothesis ensures that

altlook(· , TA1) is a function. Then, it is straightforward. 2

We prove that sig returns the set of the signatures of all method (both
implemented and required) of a typed trait.

Lemma 6 (sig Soundness)
If TA OK requires S, then mtype(m, TA) = I → I if and only if I m(I x) ∈ sig(TA).

Proof We prove, first, that for any m ∈ meth(TA), we have mtype(m, TA) = I →

I for some I, I and for the same I, I, we have I m(I x) ∈ sig(TA). This reduces
to the fact that altlook(m, TA) = I m(I x){. . .} implies I m(I x) ∈ sig(TA), by
Lemma 4, and thanks to the rule (MTyp·Impl)). We prove the latter result by
straightforward induction on the derivation of altlook(m, TA) = I m(I x){. . .}. To
conclude, we now need to establish the fact that if m 6∈ meth(TA), then we have
mtype(m, TA) = I → I if and only if I m(I x) ∈ sig(TA). This fact is equivalent
to if m 6∈ meth(TA), then msig(m, TA) = I m(I x) if and only if I m(I x) ∈ sig(TA).
Since it is obvious that we cannot derive both msig(m, TA) = I m(I x) and
msig(m, TA) = fail, we can prove both directions separately (and that either
of them holds). We prove that if m 6∈ meth(TA) and msig(m, TA) = I m(I x),
then I m(I x) ∈ sig(TA), and that if m 6∈ meth(TA) and msig(m, TA) = fail,

21

then I m(I x) 6∈ sig(TA). Both are proved by straightforward induction on the
derivation of msig(m, TA) = S⊥. We will emphasize one case of each, both being
representative of the proofs.

• (MSig·Ali3) Since altlook(m, TA) = I m(I x){. . .}, then we know, thanks to the
former part of the proof, that I m(I x) ∈ sig(TA). Then, by rule (Sig·Alias),
we derive that I m(I x) ∈ sig(TA with {m@n}). Hence the result.

• (MSig·Ali4) Thanks to typechecking of TA with {m@n}, we know that
m ∈ meth(TA). By Lemma 4, we thus know that altlook(m, TA) 6= fail. This
case can’t raise. 2

We prove that when the program typechecks, msig is a function. It is necessary
to ensure soundness of typing.

Lemma 7 (Conflict Resolution in Abstract Signatures)
If TA OK requires S, then msig(· , TA) is a function (modulo renaming of the

formal parameters).

Proof By induction on a derivation of msig. All cases are obviously disjoint,
except for (MSig·Ex1) / (MSig·Ex2), and (MSig·Ali3) / (MSig·Ali4) which
apply to the same terms. Remember however that by Lemma 5, altlook(· , TA)

is a function, thus ensuring that those two pairs of rules are indeed disjoint.
Knowing this and the fact that altlook(· , TA) is a function, every rule of msig

is straightforward, except from (MSig·Inh) treated below.

• (MSig·Inh) Then, T has been typechecked through rule (Tr·Ok), and TT(T) =

trait T imports TA {M; S}. We have, incidentally, that all TA ∈ TA do
typecheck also. Thus, by Lemma 5, altlook(· , TA) is a function for all
TA ∈ TA and, by induction hypothesis, msig(· , TA) is a function for all
TA ∈ TA. We also have that m 6∈ meth(TA), by Lemma 4, and this means
that altlook(m, TA) = fail for all TA ∈ TA (and it can be nothing else since
altlook(· , TA) is a function). We can then conclude that mtype(m, TAi)

is inferred through the (MTyp·Virt) rule for each TAi ∈ TA. Now let’s
assume that there are TA1, TA2 ∈ TA such that msig(m, TA1) 6= fail and
msig(m, TA2) 6= fail. Then, msig(m, TA1) = I m(I x) and msig(m, TA2) = J m(J y),
and we can then deduce that mtype(m, TA1) = I → I and mtype(m, TA2) = J → J

are derivable. The judgment (sig(TA) ∪ S) OK IN T in (Tr·Ok), ensures then
that I = J and I = J, by Lemma 6. Hence the result. 2

The system is kept non-deterministic to emphasize the fact that the order of
trait composition does not matter in the result. We prove that all conflict are
resolved both for static (typing) and dynamic semantics.

Theorem 1 (Conflict Resolution)
If for all Ci ∈ CL, we have Ci OK, and for all Ti ∈ TT, we have Ti OK requires S,
then both mbody(· , ·) and mtype(· , ·) are functions.

Proof We prove that mbody(· , ·) is a function by induction on the derivation
of mbody(m, Ci), the proof for mtype(· , ·) being similar (note however that

22

there are two extra cases to deal with for mtype, handled directly by Lemmas
5 and 7).

• (MBdy·Cla) Direct.
• (MBdy·SCla) Straightforward by induction hypothesis.
• (MBdy·Tr) For all TAi ∈ TA, altlook(· , TAi) is a function by Lemma 5.
◦ If m 6∈ ∩TA, then there is an unique TAi ∈ TA where altlook(m, TAi) 6= fail.
◦ If m ∈ ∩TA, then, since Ci is well-typed, the rule (Cla·Ok) enforces that m ∈

⋄TA. Then, for all TAi ∈ TA, we have m ∈ meth(TAi) ⇒ m in TAi P n in TA1.
Moreover, we know that n ∈ meth(TA1), by Lemma 1, which means that
there is at least one altlook(n, TA1) = I n (I x){. . .} which is derivable, by
Lemma 4. Thus, altlook(m, TAi) = I m (I x){. . .} is derivable, for all TAi such
that m ∈ meth(TAi), by Lemma 3. To conclude, we know that altlook(·, TAi)

is a function. Which ensures they are all equal. 2

In the following, we suppose that Theorem 1 holds, and we can address
mbody and mtype as mathematical functions. We prove that msig has the
same semantics than the requires set of trait checking. Both are expected to
give the signatures of the methods which are required in a trait alteration.

Lemma 8 (Require Soundness)
If TA OK requires S, then msig(m, TA) = S if and only if S ∈ S.

Proof Straightforward induction on the derivation of msig(m, TA) = S. Here
are the most relevant cases:

• (MSig·Ali2) In both rules (Alias·Ok1) and (Alias·Ok2), it is easy to observe
that the new name of the method is not in the requires list (the role of
(Alias·Ok2) is actually to remove it from the requires list if it appears in
the previous step). Hence the result.

• (MSig·Ali3) In both rules (Alias·Ok1) and (Alias·Ok2), n ∈ meth(TA1)

is a precondition. By Lemma 4, it contradicts the precondition of rule
(MSig·Ali3). This case never occurs when a trait alteration typechecks. 2

We prove that trait alterations do not alter the type interface of a trait.

Lemma 9 (head Soundness)
If TA OK requires S and mtype(m,head(TA)) = I → I, then mtype(m, TA) = I → I.

Proof By induction on TA. Let us prove the most significant cases

• (TA = TA1 minus {p}), with p 6= m. Then, mtype(m, TA) is inferred from
either altlook(m, TA) or msig(m, TA) (thanks to (MTyp·Impl) or (MTyp·Virt),
respectively). In both cases the result is straightforward.

• (TA = TA1 minus {m}). Since TA typechecks, then altlook(m, TA1) 6= fail, by
Lemma 4. We also have, by definition of altlook, that altlook(m, TA) = fail.
By definition of mtype, we have that mtype(m, TA) is inferred from msig(m, TA)

(rule (MTyp·Virt)), and that mtype(m, TA1) is inferred from altlook(m, TA1)

(rule (MTyp·Impl)). By rule (MSig·Ex1), we have mtype(m, TA1) = I → I

23

implies mtype(m, TA) = I → I. By induction hypothesis we have the result.
• (TA = TA1 with {n@m}). Since TA typechecks, we can derive that TA1

typechecks and altlook(m, TA1) = fail. Then, we know that if mtype(m, TA1) =

I → I, then msig(m, TA1) = I m(I x). By Lemma 8, it follows that I m(I x) ∈ S
′

(where TA1 OK requires S
′). We can deduce that TA is typechecked through

the (Alias·Ok2) rule. It is then obvious that mtype(m, TA1) = I → I implies
mtype(m, TA) = I → I (it is enforced directly by the (Alias·Ok2) rule). By
induction hypothesis, we have the result. 2

From now on the lemma and theorem sequence is the same as in FJ and FTJ.

Lemma 10 (mtype Soundness)
If mtype(m, J) = L → L, then mtype(m, I) = L → L, for all I <: J.

Proof Straightforward induction on the derivation of I <: J, using Lemma 9
for the cases (Sub·Tr) and (Sub·Cla·Tr). We show the most difficult cases

• (Sub·Cla) Let’s assume that mtype(m, D) = L → L. We want to prove that
mtype(m, C) = L → L. It can be achieved by several rules.
◦ (MTyp·Self) Then, the result is obtained thanks to the rule (Mth·Ok·Cla);

in particular, thanks to the override clause in it.
◦ (MTyp·Tr) Let us suppose that the type of m is obtained from the

trait TAi. We then know that sig(TAi) OK IN C. In particular, for any
I m(I x) ∈ sig(TAi) we know that override(m, D, I → I) holds. We can rewrite
it thanks to Lemma 6 to if mtype(m, D) = I → I, then mtype(m, TAi) = I → I.

◦ (MTyp·Super) This case is direct. 2

Lemma 11 (Substitution lemma)
If Γ, x:J ⊢ e ∈ J and Γ ⊢ d ∈ I, where I <: J, then Γ ⊢ [d/x]e ∈ I for some
I <: J.

Proof By induction on the derivation of Γ, x:J ⊢ e ∈ J. We will show only
two cases the other ones are straightforward

• (Typ·Call). By induction hypothesis, we have Γ ⊢ [d/x]e0 ∈ J0, and J0 <: I0,
and Γ ⊢ [d/x]e ∈ I

′, and I
′

<: I. Then, by Lemma 10, we have that
mtype(m, J0) = mtype(m, I0) = J → I. By transitivity we also have I

′
<: J.

Then, we conclude that Γ ⊢ e0.m(e) ∈ I (and obviously I <: I).
• (Typ·Field). By induction hypothesis, we have Γ ⊢ [d/x]e0 ∈ I0 for some

I0 <: C0. An easy induction on the derivation of I0 <: C0 shows that
I0 = D0 for some D0. Then, it is easy to show that D0 <: C0 implies
fields(D0) ⊆ fields(C0). Hence the result. 2

Lemma 12 (Weakening)
If Γ ⊢ e ∈ C, then Γ, x : D ⊢ e ∈ C.

Proof Straightforward induction. 2

Lemma 13 (Method Body Type)
If mtype(m, C) = J → J and mbody(m, C) = (x, e), then for some I0 with C <: I0,

24

there exists I <: J such that x:J, this:I0 ⊢ e ∈ I.

Proof We prove the following statement by induction on the derivation of
mbody(m, C) = (x, e): if mbody(m, C) = (x, e), then J m (J x){return e; } OK IN I0

for some I0 with C <: I0 and some J → J. Then, by Lemma 10,
J → J = mtype(m, C) holds.

• (MBdy·Cla) Immediate from (Cla·Ok) rule.
• (MBdy·Tr) Straightforward induction on the derivation of altlook(m, TA) =

J m (J x){return e; }.
• (MBdy·SCla) Induction case. 2

We are ready to prove the main theorems.

Theorem 2 (Subject Reduction)
If Γ ⊢ e ∈ J and e −→ e′, then Γ ⊢ e′ ∈ I, for some I <: J.

Proof We prove it by a straightforward induction on the derivation of e−→e′.
The base case (reduction of the head redex) is done by a straightforward case
analysis on the reduction rule used. This proof has no difficult content, however
if a reader is interested, a comprehensive account of the details can be found
in the original FJ paper [9]. We provided all the lemmas used in the proof, so
it works also for iFTJ (the key lemma being Lemma 13). 2

Theorem 3 (Progress)
Suppose e is a well-typed expression.

(1) If e includes new C(e).f as a subexpression, then fields(C)=T f and f ∈ f.
(2) If e includes new C(e).m(f) as a subexpression, then mbody(m, C) = (x, e0)

and #(x) = #(d).

Proof The proof is straightforward: subexpression are well-typed, thus we
can assume that the subexpression appears at the head of e. Then, the result is
deduced directly from the typing rules. Theorem 1 is essential for this proof. 2

Theorem 4 (Reduction preserves safety)
If e is safe in Γ, and e −→ e′, then e′ is safe in Γ.

Proof This proof is just similar to the Subject Reduction proof. 2

Theorem 5 (Progress of safe programs)
Suppose e is safe in Γ. If e has (C)new D(e) as a subexpression, then D <: C.

Proof The result is straightforward from the definition of safety. Indeed the
only rule that can be applied to derive the type of (C)new C0(e) is (Typ·UCast).
The result follows directly. 2

25

