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1 LIFO, Université d’Orléans David.Teller@univ-orleans.fr
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Abstract. This is the year 2008 and ML-style exceptions are every-
where. Most modern languages, whether academic or industrial, feature
some variant of this mechanism. Languages such as Java even feature
static coverage-checking for such exceptions, something not available for
ML languages, at least not without resorting to external tools.
In this document, we demonstrate a design principle and a tiny library for
managing errors in a functional manner, with static coverage-checking,
automatically-inferred, structurally typed and hierarchical exceptional
cases, with a reasonable run-time penalty. Our work is based on OCaml
and features monads, polymorphic variants, compile-time code rewriting
and trace elements of black magic.

1 Introduction

Despite our best intentions and precautions, even correct programs may fail.
The disk may be full, the password provided by the user may be wrong or
the expression whose result the user wants plotted may end up in a division by
zero. Indeed, management of dynamic errors and other exceptional circumstances
inside programs is a problem nearly as old as programming. Error management
techniques should be powerful enough to cover all possible situations and flexible
enough to let the programmer deal with whichever cases are his responsibility
while letting other modules handle other cases, should be sufficiently noninvasive
so as to let the programmer concentrate on the main path of execution while
providing guarantees that exceptional circumstances will not remain unmanaged,
all without compromising performance or violating the paradigm.

Nowadays, most programming languages feature a mechanism based on (or
similar to) the notion of exceptions, as pioneered by PL/I [10], usually with the
semantics later introduced in ML [12]. A few languages, such as Haskell, define
this mechanism as libraries [19], while most make it a language primitive, either
because the language is not powerful enough, for the sake of performance, to add
sensible debugging information, or as a manner of sharing a common mechanism
for programmer errors and manageable errors.

As a support for our discussion on the management of errors and excep-
tional circumstances, let us introduce the following type for the representation
of arithmetic expressions, written in OCaml:



type expr = Value of float

| Div of expr * expr

| Add of expr * expr

The implementation of an evaluator for this type is a trivial task:

l e t rec eval = function

Value f → f

| Div (x, y) → (eval x) /. (eval y)

| Add (x, y) → (eval x) +. (eval y)

(*val eval: expr → float *)

However, as such, the interpreter fails to take into account the possibility of
division by zero. In order to manage this exceptional circumstance (or error),
we promptly need to rewrite the code into something more complex:

Listing 1.1. Ad-hoc error management

type (α, β) result = Ok of α | Error of β

l e t rec eval = function

Value f → Ok f

| Div (x, y) → (match eval x with

Error e → Error e

| Ok x’ → match eval y with

Error e → Error e

| Ok y’ when y’ = 0.→ Error ”Div i son by 0”
| Ok y’ → Ok (x’ /. y’))

| Add (x, y) → (match eval x with

Error e → Error e

| Ok x’ → match eval y with

Error e → Error e

| Ok y’ → Ok (x’ +. y’))

(*val eval: expr → (float , string) result *)

While this function succeeds in managing exceptional cases, the code is
clumsy and possibly slow. An alternative is to use the built-in mechanism of
exceptions – which we will refer to as “native exceptions”– as follows:

Listing 1.2. Error management with native exceptions

exception Error of string

l e t rec eval = function

Value f → f

| Div (x, y) → l e t (x’, y’) = (eval x, eval y) in

i f y’ = 0. then raise (Error ” d i v i s i o n by 0”)
else x’ /. y’

| Add (x, y) → eval x +. eval y

(*val eval: expr → float *)

This definition of eval is easier to write and read, closer to the mathematical
definition of arithmetic operations and faster. While native exceptions appear



to be a great win over explicitly returning an error value, the implementation of
this mechanism is commonly both less flexible and less safe than ad-hoc error
management. In particular, in ML languages, the loss of flexibility appears as
the impossibility of defining exceptions which would use any polymorphic type
parameters4. As for the loss of safety, it is a consequence of eval containing no
type information could let us determine that the function may fail and what kind
of information may accompany the failure. Worse than that: the compiler itself
does not have such information and cannot provide guarantees that every ex-
ceptional case will eventually be managed. Arguably, the possibility for a native
exception to completely escape is comparable to the possibility for a pattern-
matching to go wrong, which in turn is comparable to null-pointer exceptions
in most modern industrial languages – while technically not a type error, this
remains a source of unsafety which we will refer to as “incomplete coverage” in
the rest of this document.

While it is possible to complete the type system to guarantee complete cov-
erage, perhaps as a variation on types and effects [17], either as part of the
mandatory compilation process, as in Java, or as external tools [14], this guar-
antee does nothing to improve the lack of flexibility. This is quite unfortunate,
as numerous situations thus require the manual definition of many superfluous
exceptions with identical semantics but different types, or lead to the overuse of
magic constants to specify sub-exceptions, or require impure or unsafe hacks to
implement simple features. SML provides a way to regain some polymorphism
in exceptions defined locally using generative exceptions. To improve flexibility
one needs to change deeply the type system [1]

Another possible approach which may be used to obtain both the readability
of exceptions, guarantee of complete coverage and parametric polymorphism,
is to implement error management as monads [19], a path followed by Haskell.
However, this approach often results in either not-quite-readable and possibly
ambiguous type combinations consisting in large hierarchies of algebraic combi-
nators, in the necessity of writing custom error monads or monad transformers,
which need to be manually rewritten as often as the list of exceptional cases
changes, or in the use of dynamic types. In addition, these monads are perceived
as having a large computational cost, due to constant thunking and dethunking
of continuations and to the lack of compiler-optimized stack unrolling.

In this document, we attempt to obtain the best of both worlds: polymor-
phism, type-safety, coverage-check, with the added benefits of automatic infer-
ence of error cases and the definition of classes and subclasses of exceptional
cases, all of this without the need to modify the programming language. As this
is an OCaml-based work, we also take into account the impact of this program-

4 For comparison, the Java type-checker rejects subtypes of Exception with parametric
polymorphism, the C# parser rejects catch clauses with parametric polymorphism
but allows general catch clauses followed by unsafe downcasts, while Scala accepts
defining, throwing and catching exceptions with parametric polymorphism, but the
semantics of the language ignores these type parameters both during compilation
and during execution.



ming style in terms of both performance, syntactic sugar, possible compile-time
optimizations. Despite the number of claims appearing in the previous sentences,
our work is actually based on very simple concepts and does not have the ambi-
tion of introducing brand new programming methodologies, nor to revolutionize
ML programming. Rather, our more limited objective is to present an interest-
ing design principle and a tiny library for error management, in the spirit of
Functional Pearls or of a tutorial, and based on ML-style exceptions, monads,
phantom types, polymorphic variants and code rewriting. Some of our results
are positive, some negative and, somewhere along the way, we revisit techniques
results discarded by previous works on hierarchical exceptions [11] and demon-
strate that, when redefined with better language support, they may be used to
provide safer (and possibly faster) results.

In a first section we demonstrate briefly an error monad, well-known in the
world of Haskell but perhaps less common in the ML family. We then proceed to
complete this monad with the use of lightweight types to achieve automatic infer-
ence of error cases, before pushing farther these lightweight types to permit the
representation of classes and subclasses of exceptional cases, while keeping guar-
antees of coverage. Once this is done, we study the performance of this monad
and progressively move the code from the library to the compiler. Finally, we
conclude by a discussion on usability, potential improvements, and comparison
with other related works.

The source code for the library is available as a downloadable package [18].
Elements of this work will be included in the rehauled OCaml standard libraries,
OCaml Batteries Included.

2 The error monad

As we discussed already, Listing 1.1 shows a rather clumsy manner of managing
manually whichever errors may happen during the evaluation of an arithmetic
expression. However, after a cursory examination of this extract, we may notice
that much of the clumsiness may be factored away by adding an operation to
check whether the result of an expression is Ok x, proceed with x if so and abort
the operation otherwise. Indeed in the world of monads [19], this is the binding

operation. In OCaml, this function is typically hidden behind syntactic sugar [4]
perform and ←−, which allows us to rewrite

Listing 1.3. Towards monadic error management

l e t bind m k = match m with

Ok x → k x

| Error _ → m

l e t rec eval = function

Value f → Ok f

| Div (x, y) → perform x’ ←− eval x ; y’ ←− eval y ;

i f y’ = 0. then Error ” D i v i s i on by 0”
else Ok (x’ /. y’)



| Add (x, y) → perform x’ ←− eval x ; y’ ←− eval y ;

Ok (x’ +. y’)

(*val eval: expr → (float , string) result *)

For the sake of abstraction (and upcoming changes of implementation), we
also hide the implementation of type (α, β) result behind two functions
return (for successes) and throw (for failures):

Listing 1.4. Monadic error management

l e t return x = Ok x

l e t throw x = Error x

l e t rec eval = function

Value f → return f

| Div (x, y) → perform x’ ←− eval x ; y’ ←− eval y ;

i f y’ = 0. then throw ” D i v i s i on by 0”
else return (x’ /. y’)

| Add (x, y) → perform x’ ←− eval x ; y’ ←− eval y ;

return (x’ +. y’)

This new definition of eval is arguably as easy to read as the version of List-
ing 1.2. As we have decided to abstract away type result, we need functions to
run a computation and determine it success. We call respectively these functions
catch (for catching one error case) and attempt (for catching all error cases and
entering/leaving the error monad):

Listing 1.5. Catching errors

l e t catch ~handle = function Ok x → Ok x

| Error e → handle e

l e t attempt ~handle = function Ok x → x

| Error e → handle e

Here we use a labeled argument ~handle (instead of just handle) so that it can
be called by explicitly stating its name, and even reordered:

attempt normal_case ~handle:error_case

We may now group all the functions of the error monad as one module
Error monad with the following signature:

Listing 1.6. A module for the error monad

type (+α, +β) result

val return: α → (α, β) result

val throw : β → (α, β) result

val bind : (α, β) result → (α → (γ, β) result) →
(γ, β) result

val catch : handle :(β → (α, γ) result) →
(α, β) result → (α, γ) result

val attempt: handle :(β → α) → (α, β) result → α



The + in (+α, +β) result specify that this type is covariant, i.e. an expression
of type (α, β) result can be generalized even if it is not a value [8].

This adoption of monadic-style error reporting proves sufficient to convey
polymorphic type information. As we will see in the next section, we may take
advantage of this to improve flexibility of our library even further.

To convince ourselves of the capabilities of the error monad in terms of poly-
morphism, let us write a toy implementation of (persistent) association lists.
The signature contains two functions: find to retrieve the value associated to a
key, and add to add an association to the list. Operation find k l fails when
nothing is associated to k in l, while add k u l fails when there is already a
value v associated to k in l. In both case the key k is used as the error report.

We give the implementation of this module in Listing 1.7, together with its
signature in Listing 1.8. As expected, the type of errors thrown by add and find

depends on the type of the input.

Listing 1.7. Association list with polymorphic exceptions

type (α,β) assoc = (α*β) list

l e t empty = []

l e t rec add k u = function

[] → return [k,u]

| (x, v as a)::l → i f k=x then throw k

else perform l’ ←− add k u l ;

return (a::l’)

l e t rec find k = function

[] → throw k

| (x,v)::l → i f k=x then return v

else find k l

Listing 1.8. Association list signature

type (α,β) assoc

val empty: (α,β) assoc

val add : α → β → (α,β) assoc → ((α,β) assoc , α) result

val find : α → (α,β) assoc → (β,α) result

In the rest of the paper, we shall concentrate on the eval example. However,
should need arise, this example could be refined similarly.

3 Representing errors

While Listing 1.4 presents a code much more usable than that of Listing 1.1 and
while this listing is type-safe, the awful truth is that this safety hides a fragility,
due to the use of “magic” character strings to represent the nature of errors
– here, "Division by 0", a constant which the type-checker cannot take into
account when attempting to guarantee coverage. Unfortunately, this fragility is
shared by elements of both OCaml’s, SML’s or Haskell’s standard libraries.



Now, of course, it may happen that we need to represent several possible
errors cases, along with some context data. For instance, during the evaluation
of simple arithmetic exceptions, arithmetic overflow errors could also arise. For
debugging purposes, we may even decide that each error should be accompanied
by the detail of the expression which caused the error and that overflows should
be split between overflows during addition and overflows during division.

The error monad of Section 2 handles propagation for any type β of errors.
We shall investigate how to choose this type to handle those cases.

3.1 Errors as heavy-weight sums

The first and most obvious choice is to represent errors as sum types. For our
running example, we could write

Listing 1.9. Simple arithmetic errors

type cause_of_overflow = Addition | Division

type eval_error = Division_by_zero of expr

| Overflow of expr * cause_of_overflow

Now, as our error monad lets us transmit arbitrary error information along
with the error itself, we may rewrite eval so as to take advantage of eval error

instead of string, without having to declare a new exception constructor or to
rewrite the interface or implementation of the error monad:

Listing 1.10. Monadic error management with sum types

l e t ensure_finite f e cause =

i f is_infinite f then throw (Overflow(e, cause ))

else return f

l e t rec eval = function

Value f → return f

| Div (x,y) as e → perform x’ ←− eval x ; y’ ←− eval y ;

i f y’ = 0. then throw (Division_by_zero e)

else ensure_finite (x’ /. y’) e Division

| Add (x,y) as e → perform x’ ←− eval x ; y’ ←− eval y ;

ensure_finite (x’ +. y’) e Addition

(*val eval: expr → (float , eval_error) result *)

While this solution improves on the original situation, it is not fully satisfying.
Indeed, it is quite common to have several functions share some error cases but
not all. For instance, a basic visual 10-digit calculator and a scientific plotter
may share on a common arithmetic library. Both evaluators use division and
may suffer from divisions by zero. However, only the scientific plotter defines
logarithm and may thus suffer from logarithm-related errors. Should the error-
reporting mechanism of the library be defined as one heavy-weight sum type, the
visual calculator would need to handle all the same error cases as the scientific
plotter. OCaml’s built-in pattern-matching coverage test will therefore require



all error cases to be managed, even though the functions which may trigger these
error cases are never invoked by the visual calculator.

The alternative is to use disjoint possible errors for distinct functions. How-
ever, this choice quickly leads to composability nightmares. Since a division by
zero and a logarithm-error are members of two disjoint types, they need to be in-
jected manually into a type division by zero or log error, defined as a sum
type, for use by the scientific plotter. While possible, this solution is cumber-
some to generalize and tends to scale very poorly for large projects, especially
during a prototyping phase. These composability troubles also appear as soon
as two different libraries use disjoint types to represent errors: arithmetic errors,
disk errors or interface toolkit errors, for instance, must then be injected into an
awkward common type of errors, and projected back towards smaller types of
errors as need arises.

3.2 Errors as lightweight composition of sums

Another approach, commonly seen in the Haskell world, and actually not very
different from the second choice just mentioned, is to define a more general type
along the lines of

Listing 1.11. Haskell-style either type

type (α, β) either = Left of α | Right of β

With such a data structure, building lightweight compositions of error cases
becomes a trivial task. However, these lightweight compositions are also an easy
recipe for obtaining unreadable constructions consisting in trees of either and
tuples. That is, attempting to convert eval to use only such lightweight types
typically results in the following expression, and its rather convoluted type:

Listing 1.12. Monadic error management with lightweight either

l e t ensure_finite f message =

i f is_infinte f then throw message

else return f

l e t rec eval = function

Value f → return f

| Div (x,y) as e → perform x’ ←− eval x ; y’ ←− eval y ;

i f y’ = 0. then throw (Right e)

else ensure_finite (x’ /. y’) (Left (Left e))

| Add (x,y) as e → perform x’ ←− eval x ; y’ ←− eval y ;

ensure_finite (x’ +. y’) (Left (Right e))

(* val eval : expr →
( float ,( (expr , expr) either ,expr) either ) result *)

While it is possible to avoid such chains of either by combining this approach
with the manual definition of new types – perhaps abstracted away behind mod-
ules – the result remains unsatisfactory in terms of comprehension and falls far
from solving the composability nightmare.



3.3 Errors as extensible types

Another alternative would be the use of extensible types, as featured in Alice
ML [16]. More generally, one such type is available in languages of the ML
family: native exceptions. Instead of our current type eval error, and with the
same code of eval, we could therefore define two native exceptions, whose role
is to be raised monadically:

exception Division_by_zero of expr

exception Overflow of expr * cause_of_overflow

If, at a later stage, the set of exceptions needs to be extended to take into
account, say, logarithm errors, we may implement the new case with the following
definition:

exception Logarithm_error of expr

Better even, this solution proves compatible with the existing native excep-
tion system and permits trivial conversion of native exceptions for use with the
error monad:

l e t attempt_legacy ~handle f arg = try f arg

with e → handle e

(*val attempt_legacy: handle :(exn → β) → (α → β) → α → β*)

At this point, a first weakness appears: while the addition of brand new error
cases such as Logarithm error is a trivial task, extending cause of overflow

is impossible unless we find a way to define cause of overflow as an extensible
type. Assuming that we have a way to express several distinct extensible types,
perhaps by using an hypothetical encoding with phantom types, we are still
faced with a dilemma: should all errors be represented by items of the same type
exn or should we use several disjoint extensible types? The question may sound
familiar, as we have already been faced with the same alternative in the case
of heavy-weight sum types. As it turns out, and for the same reasons, neither
choice is acceptable: sharing one type gets into the way of coverage guarantees,
while splitting into several types leads, again, to composability nightmares.

Or does it? After all, OCaml does contain an additional kind of types, close
cousin to extensible sum types, but with much better flexibility: Polymorphic
Variants [7].

3.4 Errors as polymorphic variant

Polymorphic variants represent a kind of lightweight sum types designed to max-
imize flexibility. Indeed, the main traits of polymorphic variants are that

1. no declaration is necessary – rather, definition is inferred from usage
2. declaration is possible, for specification and documentation purposes
3. open variants may be composed automatically into a larger variant
4. constructors may be shared between unrelated polymorphic variants.



When used to represent errors, trait 1. lets us concentrate on the task of
building the algorithm, without having to write down the exact set of errors
before the prototyping phase is over. Trait 2. proves useful at the end of the
prototyping phase, to improve error-checking of client code and documentation,
while 3. lets OCaml infer the set of errors which may be triggered by an ex-
pression – and check completeness of the error coverage, just as it would do
for heavy-weight sum types. Finally, trait 4. lets us define functions which may
share some – but not necessarily all – error cases.

Before rewriting the full implementation of eval, let us build a smaller exam-
ple. The following extract defines an expression expression div by zero which
throws a division by zero with information Value 0.:

l e t div_by_zero = throw (‘Division_by_zero (Value 0. ))

(* val div_by_zero : (α,

[> ‘Division_by_zero of expr ]) result *)

The type of div by zero mentions that it may have any result α, much like
raising ML-exceptions produce results of type α, and that it may throw an error
consisting in an open variant, marked by constructor ‘Division by zero, and
containing an expr.

Similarly, we may define an expression with the ability to cause an overflow
during division, much as we could with a heavy-weight sum type:

l e t overflow_div = throw (‘Overflow (‘Division (Value 0.)))

(* val overflow_div : (_α, _[> ‘Overflow of

_[> ‘Division of expr ] ] ) result *)

Finally, both expressions may be composed into an expression which might
cause either a division by zero or an overflow during division, resulting in:

i f true then div_by_zero

else overflow_div

(* (_α, _[> ‘Division_by_zero of expr

| ‘Overflow of _[> ‘Division of expr ] ]) result *)

As we see from the inferred type of this expression, the result of the com-
position may produce either results (of any type) or errors marked either by
‘Division by zero (and accompanied by an expr) or by ‘Overflow (and ac-
companied by another tag ‘Division, itself accompanied by an expr). This
error signature remains open, which allows us to add further error cases.

As expected, converting eval to polymorphic variants is straightforward:

Listing 1.13. Monadic error management with polymorphic variants

l e t rec eval = function

Value f → return f

| Div (x,y) as e → perform x’ ←− eval x ; y’ ←− eval y ;

i f y’ = 0. then throw (‘Division_by_zero e)

else ensure_finite (x’ /. y’) (‘Overflow (‘Division e))

| Add (x,y) as e → perform x’ ←− eval x ; y’ ←− eval y ;

ensure_finite (x’ +. y’) (‘Overflow (‘Addition e))



(*val eval :

expr → ( float , [> ‘Division_by_zero of expr

| ‘Overflow of [> ‘Addition of expr

| ‘Division of expr ] ] ) result *)

As we hoped, with polymorphic variants, we do not have to manually label
error cases. Rather, the compiler may infer error cases from the source code. As
this inferred information appears in the type of our function, coverage may be
proved by the type-checker. Therefore, we may write:

l e t test1 e = attempt (eval e) ~handle :( function

‘Division_by_zero _→ print_string ” D i v i s i on by 0”; 0.

| ‘Overflow _ → print_string ”Over f low ”; 0.)

(*val test1 : expr → float *)

On the other hand, the following extract fails to compile:

# let test2 e = attempt (eval e) ~handle :(

function ‘Overflow _ → print_string ”Over f low ”; 0. )

function ‘Overflow _ →
^^^^^^^^^^^^

This pattern matches values of type

[< ‘Overflow of α ]

but is here used to match values of type

[> ‘Division_by_zero of expr

| ‘Overflow of [> ‘Addition of expr

| ‘Division of expr ] ]

In addition, the composability of polymorphic variants, which we have demon-
strated, means that we do not have to decide whether to put all the error cases
defined by a library in one common type or to split them among several disjoint
types: barring any conflicting name or any specification which we may decide to
add to prevent composition, there is no difference between one large polymorphic
variant type and the automatically inferred union of several smaller ones.

Note that this choice of polymorphic variants does not alter the signature
of our module, as featured in Listing 1.6. In particular, a consequence is that
function catch can be used to eliminate one (or more) variant type exception
while propagating others:

l e t ignore_overflow e = catch (eval e) ~handle :( function

‘Overflow _ → return 0.

| ‘Division_by_zero _ as ex → throw ex)

(*val ignore_overflow: expr →
(float , [> ‘Division_by_zero of expr]) result *)

Unfortunately, due to limitations on type inference of polymorphic variants,
this elimination requires manual annotations and a priori knowledge of both the
types of error cases which must be handled and the types of error cases which
should be propagated:

l e t ignore_overflow e = catch (eval e) ~handle :( function



‘Overflow _ → return 0.

| _ as ex → throw ex)

(*val ignore_overflow: expr →
( float , [> ‘Division_by_zero of expr

| ‘Overflow of [> ‘Addition of expr

| ‘Division of expr ] ] ) result *)

While this limitation is perhaps disappointing, the upside is that, as we will
now see, polymorphic variants and a little syntactic sugar may carry us farther
than usual ML-style exceptions.

3.5 From polymorphic variants to exception hierarchies

We have just demonstrated how polymorphic variants solve the problem of com-
posing error cases. Actually, our examples show a little bit more: we have not
only defined two kinds of errors (divisions by zero and overflows), but also defined
two sub-cases of errors (overflow due to addition and overflow due to division).

Passing the right parameters to function attempt, we may choose to consider
all overflows at once, as we have done in our latest examples, or we may prefer
to differentiate subcases of overflows:

Listing 1.14. Matching cases and subcases

l e t test3 e = attempt (eval e) ~handle :( function

‘Division_by_zero _ → print_string ” D i v i s i on by 0”; 0.

| ‘Overflow ‘Addition _ → print_string ”+ ov e r f l ow s ”; 0.

| ‘Overflow _ → print_string ”Other o v e r f l ow ”; 0.)

In other words, while we have chosen to present sub-cases as additional in-
formation carried by the error, we could just as well have decided to consider
them elements of a small hierarchy:

– division by zero is a class of errors ;
– overflow is a class of errors ;
– overflow through addition is a class of overflows ;
– overflow through division is a class of overflows.

From this observation, we may derive a general notion of classes of errors,
without compromising composability and coverage checking.

Before we proceed, we need to decide exactly what an exception class should
be. If it is to have any use at all, it should be possible to determine if an excep-
tion belongs to a given class by simple pattern-matching. In order to preserve
our results and the features used up to this point, an exception class should
be a data structure, defined by one or more polymorphic variant constructors
and their associated signature, as well as some error content. In addition, for
exception classes to be useful, it must be possible to specify a subtyping relation
between classes. We also need to ensure consistency between the error content
of classes related by subtyping. Finally, we should be able to define new classes
and subclasses without having to modify the definition of existing code.



To achieve all this, we encode classes using a method comparable to tail
polymorphism [2] with polymorphic variants5. Where classical uses of tail poly-
morphism take advantage of either algebraic data-types or records, though, the
use of polymorphic variants preserves extensibility.

We first introduce a chain-link record, whose sole use is to provide human-
readable field names sub and content. Field sub is used to link a class to its
super-class, while field content serves to record the class-specific additional error
information which the programmer wishes to return along with the error:

type (α, β) ex = {

content: α;

sub: β option;

} constraint β = [> ]

The constraint β = [> ] line binds β to being a polymorphic variant row.
From this, assuming for the course of this example that division by zero is a

top-level class of exceptions, we may produce the following constructor:

l e t division_by_zero_exc ?sub content =

‘Division_by_zero {

content = content;

sub = sub; }

(*val ?sub:([> ] as α) → β →
[> ‘Division_by_zero of (β, α) ex]*)

Argument content is self-documented, while sub will serve for subclasses to reg-
ister the link. ?sub means that it is optional, it is realised as a labeled argument
of an option type.

Similarly, we may now define overflow:

l e t overflow_exc ?sub content =

‘Overflow {

content = content;

sub = sub; }

Since we decided to describe overflow during addition as a subclass of over-
flow, we may define its constructor by chaining a call to overflow exc, passing
the new chain-link as argument.

l e t overflow_addition ?sub content =

overflow_exc ~sub:(‘Addition {

content = ();

sub = sub;

}) content

Or, equivalently, with a small piece of syntactic sugar introduced to increase
readability of exception definitions:

l e t exception overflow_division content =

Overflow content; Division ()

5 A similar idea has been suggested in the context of Haskell [11] but discarded as a
“very interesting, but academic” and a “failed alternative”.



The changes to the library are complete. Indeed, one simple record type
is sufficient to move from polymorphic variants to polymorphic variants with
hierarchies. To confirm our claim that we preserve composability and coverage
guarantees, let us revisit eval and our test cases.

Adapting eval to our hierarchy is just the matter of replacing concrete type
constructors with abstract constructors:

Listing 1.15. Eval with hierarchies

l e t rec eval = function

Value f → return f

| Div (x,y) as e → perform x’ ←− eval x ; y’ ←− eval y ;

i f y’ = 0. then throw (division_by_zero_exc e)

else ensure_finite (x’ /. y’) (overflow_division e)

| Add (x,y) as e → perform x’ ←− eval x ; y’ ←− eval y ;

ensure_finite (x’ +. y’) (overflow_addition e)

(* val eval : expr →
(float ,

[> ‘Division_by_zero of (expr , α) ex

| ‘Overflow of

(expr ,

[> ‘Addition of (unit , β) ex

| ‘Division of (unit , γ) ex ])

ex ]) result *)

While the type information is painful to read – and could benefit from some
improved pretty-printing – it accurately reflects the possible result of eval, the
nature of exceptions and subexceptions and their contents.

Adapting the test of Listing 1.14 to our more general framework, we obtain
the following extract, slightly more complex:

l e t test4 e = attempt (eval e) ~handle :( function

‘Division_by_zero _ →
print_string ” D i v i s i on by 0”; 0.

| ‘Overflow {sub = Some (‘Addition _)} →
print_string ”+ ov e r f l ow s ”; 0.

| ‘Overflow _ →
print_string ”Other o v e r f l ow ”; 0. )

For convenience, we introduce another layer of syntactic sugar, marked by
a new keyword attempt, and which provides a simpler notation for exception
patterns. With this sugar, we may rewrite the previous listing as

l e t test5 e = attempt eval e with

Division_by_zero _ → print_string ” D i v i s i on by 0” ; 0.

| Overflow _; Addition _ → print_string ”+ ov e r f l ow s ” ; 0.

| Overflow _ → print_string ”Other o v e r f l ow ”; 0.

While we do not demonstrate this due to space limitations, this syntactic
sugar proves also useful to add optional post-treatment for successes, for failures
and for any result (à la finally).



With this simplified notation, let us demonstrate coverage guarantees by
omitting the case of overflow division:

l e t test6 e = attempt eval e with

Division_by_zero _ → print_string ” D i v i s i on by 0”; 0.

| Overflow _; Addition _ → print_string ”+ ov e r f l ow s ” ; 0.

The following error message demonstrates that the type-checker has correctly
detected the missing case (and integrates well with our syntax extension). The
solution is suggested at the end of the message:

Listing 1.16. Missing subcase (error message)

Division_by_zero _ →
^^^^^^^^^^^^^^^^^^^

This pattern matches values of type

[< ‘Division_by_zero of α

| ‘Overflow of (expr ,

[< ‘Addition of β ]) ex ]

but is here used to match values of type

[> ‘Division_by_zero of (expr , _) ex

| ‘Overflow of

(expr ,

[> ‘Addition of (unit , γ) ex

| ‘Division of (unit , δ ) ex ])

ex ]

The first variant type does not allow tag(s) ‘Division

Similarly, our encoding lets the type-checker spot type or tag errors in excep-
tion-matching, as well as provide warnings in case of some useless catch clauses.
We do not detail these error/warning messages, which are not any more readable
than the one figuring in Listing 1.16, and which could just as well benefit from
some customized pretty-printing.

3.6 Bottom line

In this section, we have examined a number of possible designs for error re-
ports within the error monad. Some were totally unapplicable, some others were
impractical. As it turns out, by using polymorphic variants, we may achieve
both inference of error cases, composability of error cases and simple definition
of hierarchies of error classes, while retaining the ability of the type-checker to
guarantee coverage of all possible cases. All of this is implemented in a meager
29 lines of code, including the module signature.

At this point, we have obtained all the features we intended to implement.
Our next step is to study the performance cost – and to minimize it, if possible.

4 Measuring performance

According to our experience, when hearing about monads, typical users of OCaml
tend to shrug and mutter something about breaking performance too much to
be as useful as built-in exceptions. Is that true?



At this point, we set out to measure the speed of various representations of
errors in OCaml and to search for alternative implementations and variants of
the error monad which would let us improve performances. In the course of this
quest, we tested several dozens of versions, using sometimes purely functional
techniques, mostly imperative primitives, type-unsafe optimizations, compile-
time rewriting. Due to space constraints, we can only present a short summary
of our results in this document. A more complete overview will be made available
as a technical report.

The numbers are presented in Figure 1. The six techniques investigated are

ad-hoc management the technique used in Listing 1.1
native exceptions the technique used in Listing 1.2
pure error monad the error monad demonstrated so far
references and exceptions an implementation of the error monad using na-

tive exceptions to handle error propagation:

exception Raised

type (α, β) result = β option ref → α

l e t attempt ~handle v =

l e t result = ref None in

try v result

with Raised → match !result with

None → assert false (* Unused *)

| Some e → handle e

l e t bind m k r = k (m r) r

l e t return x _ = x

l e t throw x b = b := Some x; raise Raised

Results are implemented as functions which raise a native exception when
an error is found. As native exceptions in OCaml cannot be polymorphic,
we pass the error message in a reference, that we give as an argument to
the result-function. The reference actually contains a β option to be able
to initialize it.

phantom types and exceptions another implementation of the error monad
using exceptions. Instead of using a reference as a “channel” to convey the
error message, we make use of the type-unsafe Obj.obj. And make use of
phantomtypes [6] to make sure that it is only applied in safe situations:

exception Raised of Obj.t

type (α, β) result = unit → α constraint β = [> ]

l e t attempt (v:(_,β) result) ~handle =

try v ()

with Raised r → handle (Obj.obj r : β)

l e t bind m k () = k ( m () ) ()

l e t return x () = x

l e t throw x () = raise (Raised (Obj.repr x))

pure error monad with rewriting a variation on the error monad imple-
mented in Section 2. The monadic bind primitive is meant to be used
mostly in the form p ←− m; e, a sort of let ... in construction which



is interpreted as bind m (fun p -> e). This produces an unnecessary in-
termediary closure which OCaml compiler does not optimize out. We adress
that issue by extending the monad primitives with a preprocessor function
rewrite bind:

val rewrite_bind: m:Ast.expr → p:Ast.patt →
e:Ast.expr → Ast.loc → Ast.expr

We shall use this function directly as the interpretation of p ←− m; e, in-
stead of building a term out of traditionnal monadic combinators.

l e t rewrite_bind ~m ~p ~e _loc =

<:expr < match $m$ with

| Ok $p$ → $e$

| Error err → Error err >>

Notice that using this function forces to expose the implementation of (α,β)
result. An alternative solution would be instead to expose another type
(α,β) result which happens to be the implementation of (α,β) result.
Then rewrite bind can convert between both using Obj.magic. The beauty
of this approach is that even if after preprocessing the code contains unsafe
type-casts, these are inserted by the preprocessor at safe places, with no need
to ever break the monad abstraction6.

To obtain this benchmark, we implemented using each technique

an arithmetic evaluator errors are rather uncommon, being raised only in
case of division by zero (300 samples)

the n queens problem only one pseudo-error is raised, when a solution has
been found (5 samples)

union of applicative sets of integers pseudo-errors are raised very often to
mark the fact that no change is necessary to a given set (300 samples).

Every test has been performed with OCaml 3.10.2, under Linux, on native
code compiled for the 32bit x86 platform, with maximal inlining, executed 15
times, after a major cycle of garbage-collection, with the best and the worst
result discarded. The results are presented as a percentage of the number of
samples in which the execution time falls within given bounds:

Very good Execution time of the sample is within 5% of the execution time of
the fastest implementation for this test (the “shortest execution time”)

Good Within 5-15% of the shortest execution time.
Acceptable Within 15-30% of the shortest execution time.
Slow Within 30-50% of the shortest execution time.
Bad At least 50% longer than the shortest execution time.

For information, we also provide

Average Average of ratio duration of test
shortest execution time

.

Deviation Standard deviation of duration of test
shortest execution time

.



Evaluator Queens Union

Ad-hoc error management

Very good 56% 40 % 18%
Good 26% 60 % 43%
Acceptable 12% 0 % 35%
Slow 3% 0 % 4%
Bad 3% 0 % 0%

Average 1.06 1.05 1.13
Deviation 0.12 0.04 0.10

Native exceptions

Very good 70% 100% 100%
Good 16% 0 % 0%
Acceptable 12% 0 % 0%
Slow 2% 0 % 0%
Bad 0% 0 % 0%

Average 1.06 1.00 1.00
Deviation 0.13 0.00 0.00

Pure error monad

Very good 37% 0 % 0%
Good 35% 20 % 0%
Acceptable 18% 60 % 14%
Slow 7% 20 % 71%
Bad 3% 0 % 15%

Average 1.12 1.24 1.48
Deviation 0.14 0.02 0.14

Evaluator Queens Union

Reference and native exceptions

Very good 0% 0 % 0%
Good 7% 0 % 0%
Acceptable 33% 0 % 0%
Slow 41% 0 % 0%
Bad 19% 100% 100%

Average 1.35 1.75 2.26
Deviation 0.20 0.06 0.23

Phantom types and native exceptions

Very good 1% 0 % 0%
Good 8% 0 % 0%
Acceptable 39% 0 % 0%
Slow 35% 0 % 0%
Bad 17% 100% 100%

Average 1.35 1.73 2.22
Deviation 0.22 0.06 0.22

Pure error monad with rewriting

Very good 54% 0 % 0%
Good 28% 100% 0%
Acceptable 12% 0% 5%
Slow 5% 0 % 56%
Bad 1% 0 % 38%

Average 1.07 1.07 1.48
Deviation 0.15 0.01 0.14

Fig. 1. Testing the performance of the error monad

The first conclusion we draw from our measurements is that the pure error
monad is inappropriate as a mechanism for optimising returns. While this is
unsurprising, we also notice that the speed of the pure monad is actually quite
reasonable when it is used to deal with errors, and can be largely improved by
plugging-in a little compiler support. Further experiments with improvements,
which go beyond the scope of this document, hint that slightly more complex
rewriting rules can go even further – and not just for error monads. By oppo-
sition, our every attempt to domesticate native exceptions into a construction
which could be checked for complete coverage incurred an impressive slowdown
which made them useless. Our most successful attempts at native exceptions,
which also required plugged-in compiler support, remained a little slower than
the pure error monad with rewriting.

At this point, the fastest implementation of our library consists in the pure
error monad (29 lines), compile-time optimisations (49 lines) and some (larger)
syntactic sugar. To handle circumstances in which exceptions are used as op-

6 using this technique we have also built a variant of the “phantom types and excep-
tions” approach, which it proved to be less efficient



timised returns, we complete this with a 16 lines-long module, which provides
a mechanism of local exceptions with polymorphism, while retaining the speed
of native exceptions and adding a little safety. This module can also make use
of hierarchical exceptions but is neither safe nor generic enough to replace the
error monad.

5 Conclusion

We have demonstrated how to design an error-reporting mechanism for OCaml
extending the exception semantics of ML, without altering the language. With
respect to OCaml’s built-in exception mechanisms, our work adds static checks,
polymorphic error reports, hierarchies and support for locally-defined exceptions
and relaxes the need of declaring error cases, while retaining a readable syntax
and acceptable performance.

To obtain this richer mechanism, we make use of monads, polymorphic vari-
ants and code rewriting and demonstrate the folk theorem of the OCaml commu-
nity that polymorphic variants are a more generic kind of exceptions. We have
also attempted to optimize code through numerous techniques, and succeeded
through the use of compile-time domain-specific code generators.

Related works Other works have been undertaken with the objective of making
exceptions safer or more flexible. Some of these approaches take the form of
compile-time checkers such as OCamlExc [14] or similar works for SML [20].
These tools perform program analysis and thus need to evolve whenever the
language’s semantic does; their maintenance can be quite involved. Similarly,
the Catch tool for Haskell [13] uses abstract interpretation to provide guarantees
that pattern matches of a program (including pattern-matching upon errors)
suffice to cover all possible cases, even when individual pattern-matches are not
exhaustive. All these tools retain the exception mechanism of the underlying
language and therefore add no new feature, in particular no hierarchies of error
classes.

Other efforts are closer to our approach. In addition to the very notion of
monads [19], the Haskell community has seen numerous implementations of
extensible sets of exceptions, either through monad transformers or dynamic
type reflection. Hierarchical exceptions [11] through typeclass hierarchies and
dynamic type reflection have also been implemented for Haskell. These choices
could have been transposed and sometimes improved into OCaml. We decided to
avoid monad transformers in the simple case of error reporting, as these too often
require manual definition and manual composition of program-specific or library-
specific error cases. Similarly, several variants on run-time type information are
possible in OCaml, either with dynamic type reflection comparable to Haskell’s
Data.Typeable, or combinations of view patterns and either dynamically typed
objects or lightweight extensible records, all of which have been implemented for
OCaml. However, we preferred avoiding these dynamic typing solutions which,
as their Haskell counterpart, forbid any automatic coverage-check. Yet another



encoding of hierarchies has been demonstrated for ML languages, through the
use of phantom types [6]. While this work is very interesting, our experiments
seem to show that the use of this encoding for exceptions leads to a much less
flexible and composable library, in which new sub-kinds of errors cannot be
added post-facto to an existing design.

Another combination of native exceptions and monad-like combinators for
fast error reporting has been designed in the context of ML [15]. While bench-
marks obtained with this discipline indicate better performance than what we
achieve, this work aims only at reducing redundant error messages and does not
improve the flexibility or safety of error management. This difference in purpose
allows an efficient mix of native exceptions and monadic ones. Perhaps more in-
terestingly, the author demonstrates a set of error-related function types which
may not be obtained with pure monads, such as:

((α→ β)→ γ → δ)→ (α→ (β, ǫ) result)→ γ → (δ, ǫ) result

This combinator, which extends traditional function application to handle erro-
neous arguments, requires native exceptions, and hence cannot be implemented
in our pure monad. It may however be implemented trivially with the comple-
mentary library we designed for local exceptions.

Numerous other works focus on performance in ML languages and their kin.
In particular, the Glasgow Haskell Compiler is usually able to efficiently inline
simple functions or rewrite simple compositions – as the OCaml compiler can do
neither automatically in our case, this is what we implement manually to opti-
mize away needless abstractions. As for the technique we employ for performing
this inlining, it is essentially a specialized form of multi-stage compilation, as
available in MetaOCaml [5] or outside the ML community [9]. In particular, our
use of specialized code rewriters to avoid the cost of abstraction is an idea also
found in MetaOCaml-based works [3].

Future works While in this document we have investigated only the problem
of exception management, our work has yielded ideas which we believe may be
applied to the broader domains of effect regions [17]. Indeed, we have started
working on an implementation for OCaml through a combination of libraries
and syntactic redefinitions. While early experiments seem to indicate that the
limitations of type inference on polymorphic variants will limit inference of effect
regions, we hope our implementation incurs only a negligible runtime penalty
and allows comfortable interactions with existing libraries.

Part of our work on exceptions will be included in OCaml Batteries Included,
the community-maintained standard library replacement for OCaml. Most of the
modules of this library are being designed to permit monadic error management.
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