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Abstract. The reference reconciliation problem consists in deciding
whether different identifiers refer to the same data, i.e. correspond to
the same real world entity. In this article we present a reference recon-
ciliation approach which combines a logical method for reference rec-
onciliation called L2R and a numerical one called N2R. This approach
exploits the schema and data semantics, which is translated into a set of
Horn FOL rules of reconciliation. These rules are used in L2R to infer ex-
act decisions both of reconciliation and non-reconciliation. In the second
method N2R, the semantics of the schema is translated in an informed
similarity measure which is used by a numerical computation of the sim-
ilarity of reference pairs. This similarity measure is expressed in a non
linear equation system, which is solved by using an iterative method. The
experiments of the methods made on two different domains, show good
results for both recall and precision. They can be used separately or in
combination. We have shown that their combination allows to improve
runtime performance.

Key words: Semantic Data Integration, Ontologies, Automatic reason-
ing, Reference reconciliation, Equation system, Iterative resolution.

1 Introduction

The data reconciliation problem is one of the main problems encountered when
different sources have to be integrated. It consists in deciding whether different
data descriptions refer to the same real world entity (e.g. the same person or
the same publication). For example, in a standard relational database a data
description is a set of tuples referring to a given identifier. In the context of data
integration, data descriptions are coming from different sources. These sources
are heterogeneous, built in an autonomous way and for different business re-
quirements. In such a context, the assumption of unique identifier does not hold:
two different identifiers can refer to the same real world entity. We therefore pre-
fer to use the term of reference instead of identifier. In the following like [1] we
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will use “the reference reconciliation problem” to refer to the data reconciliation
problem. This problem is also known as the record linkage or the record match-
ing problem [2–4], the entity resolution problem [5, 6] or the object identification
problem [7].

Schema heterogeneity is a major cause of the mismatch of the data descrip-
tions between sources. Extensive research work has been done recently (see [8,
9] for surveys) to reconcile schemas and ontologies through mappings. In this
work, we assume that the schema heterogeneity problem has been solved. We
focus on the data heterogeneity problem when data conform to the same global
schema.

The conformity to a same global schema does not indeed prevent variations
between data descriptions. For example, two descriptions of persons with the
same attributes Last Name, First Name, Address can vary on the values of
those attributes while referring to the same person, for instance, if the First
Name is given entirely in one tuple, while it is abbreviated in the second tuple.

Therefore, the reference reconciliation problem is a crucial issue for data in-
tegration and raises multiple difficulties. First, different conventions and vocab-
ularies can be used to represent and describe data. For example, in one source a
contact attribute can be represented by a set of phone numbers while in another
source it is represented by an e-mail address. Second, information can be incom-
plete, i.e. the values of some attributes can be missing. Third, data descriptions
can contain syntactic errors which are specially frequent when they are auto-
matically extracted from the Web. Fourth, as data descriptions can be created
and updated independently in different sources, their freshness over sources is a
real issue which can lead to have apparently different descriptions representing
the same real world entity.

Data cleaning which aims at detecting duplicates in databases is faced with
the same problems. Most of the existing works (e.g., [10–12]) perform compar-
isons between strings for computing the similarity between the values of the same
attribute, and then combine them for computing the similarity between tuples.
In [5] the matching between data descriptions is generic but is still based on
local comparisons. Some recent works [13, 1, 14, 6] follow a global approach that
exploits the dependencies possibly existing between reference reconciliations.
Those dependencies often result from the semantics of the domain of interest.
For example, the reconciliation between two courses described by their titles
and the name of the professors in charge of them can entail the reconciliation
between two descriptions of persons. This requires some knowledge of the do-
main to be made explicit, like the fact that a professor is a person, that a course
is identified by its title and has only one professor in charge of it. In [1], such
knowledge is taken into account but must be encoded in the weights of the edges
of the dependency graph.

In this paper, we study the problem of reference reconciliation in the case
where the data are described relatively to a rich schema expressed in RDFS [15]
extended by some primitives of OWL-DL [16] and SWRL [17]. OWL-DL and
SWRL are used to enrich the semantics of the classes and properties declared



Combining a Logical and a Numerical Method for Data Reconciliation 3

in RDFS. This enriched data model that we have called RDFS+ enables to
express that two classes are disjoint or that some properties (or their inverse)
are functional. Note that relational data and schema can be easily mapped into
RDFS [18, 19] and their constraints translated in RDFS+.

For the reference reconciliation problem we propose a knowledge-based and
unsupervised approach, based on two methods, a logical one called L2R and a
numerical one called N2R. The logical method for reference reconciliation (L2R)
is based on the translation in first order logic Horn rules of some of the schema
semantics. These Horn rules enable to infer both exact reconciliations and non-
reconciliations among a subset of reference pairs. Rules inferring synonymies and
non synonymies between basic values are also generated from the schema con-
straints. Since L2R is based on logical inferences, it has a 100% precision, under
the assumption that the schema and data are error-free. Such an assumption
is not necessarily satisfied when the data is ”dirty“ or the global schema is an
integrated schema resulting from an automatic reconciliation process. In order
to complement the partial results of L2R, we have designed a Numerical method
for Reference Reconciliation (N2R). It exploits the L2R result and allows to
compute similarity scores for each pair of references. The distinguishing features
of N2R compared to existing numerical methods of reference reconciliation are
(i) it is unsupervised and (ii) the similarity computation takes into account some
of the schema semantics : the functional dependencies of the properties are cap-
tured by aggregating the similarities of the involved references and values using
the maximum function. Consequently, the mutual influences between similarity
scores are expressed in a non linear equation system. In order to solve it, we use
an iterative method inspired from Jacobi method [20] for which we have proved
the convergence.

In the two methods the (non) reconciliation decisions or the similarity scores
are propagated to other reference pairs. Therefore, L2R and N2R are two global
methods, which can be applied separately or in combination. They are based on
the most recent proposals for the Semantic Web (RDF, OWL-DL and SWRL).
They can be used for reconciling data in most of the applications based on the
Semantic Web technologies. The experimentations done on two different data
sets (scientific publication domain and tourism domain) show good results for
both precision and recall. Furthermore, the recall is significantly increased if the
schema is enriched by adding constraints.

The paper is organized as follows. In Section 2, we define the data model, and
in Section 3, the problem of reference reconciliation that we consider. Then, in
Section 4, we describe the logical method implemented in L2R, and in Section 5,
the numerical method implemented in N2R. In Section 6, we present the results
that we have obtained for the experimental evaluation of L2R an N2R on two
real data sets. We summarize the related work in Section 7. Finally, we conclude
and sketch some future work in Section 8.
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2 The RDFS+ data model

We describe the data model, that we have called RDFS+ because it extends
RDFS with some OWL-DL primitives and SWRL rules. RDFS+ can be viewed
as a fragment of the relational model (restricted to unary or binary relations)
enriched with typing constraints, inclusion and exclusion between relations and
functional dependencies.

2.1 Schema representation and its constraints

A RDFS schema consists of a set of classes (unary relations) organized in a
taxonomy and a set of typed properties (binary relations). These properties can
also be organized in a taxonomy of properties. Two kinds of properties can be
distinguished in RDFS: the so-called relations, the domain and the range of which
are classes and the so-called attributes, the domain of which is a class and the
range of which is a set of basic values (e.g. Integer, date, String). This distinction
is also made in OWL which allows to declare Object and datatype properties.
For example, in the RDFS schema presented in figure 1 and corresponding to
a cultural application, we have as relation Located having as domain the class
Museum and as range the class City. We also have an attributeMuseumName
having as domain the class Museum and as range the data type Literal.

Note that, relations and attributes can be renamed in order to ensure that
every attribute and every relation has only one domain and one range.

Fig. 1. Example of a RDFS schema

This schema could be extracted from the following relational schema :
CulturalPlace(IDCulturalPlace), Museum(IDCulturalPlace#, MuseumName, ID-
City#, Category), Painting(IDPainting,PaintingName, IdArtist#, IDCulturalPlace#),
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Artist(IDArtist, ArtistName, YearOfBirth), City(IDCity, CityName).

We allow the declaration of constraints expressed in OWL-DL or in SWRL
in order to enrich the RDFS schema. The constraints that we consider are of the
following types.

– Constraints of disjunction between classes DISJOINT (C, D) is used
to declare that the two classes C and D are disjoint, for example : DISJOINT
(CulturalP lace, Artist).

– Constraints of functionality of properties PF (P ) is used to declare
that the property P (relation or attribute) is a functional property. It is
similar to functional dependencies in relational databases [21]. For example,
PF (Located) and PF (MuseumName) express respectively that a museum
is located in one and only one city and that a museum has only one name.
These constraints can be generalized to a set {P1, . . . , Pn} of relations or
attributes to state a combined constraint of functionality that we will denote
PF (P1, . . . , Pn). It means that for a set of n references which instantiate the
domains of P1, . . . , Pn there is only one reference or one value of their ranges.
We note that in the RDFS schema (cf. Figure 1) all the attributes and all
the relations are functional, except, the relation Contains.

– Constraints of inverse functionality of properties PFI(P ) is used to
declare that the property P (relation or attribute) is an inverse functional
property. For example, PFI(Contains) expresses that a painting cannot
belong to several cultural places. These constraints can be generalized to
a set {P1, . . . , Pn} of relations or attributes to state a combined constraint
of inverse functionality that we will denote PFI(P1, . . . , Pn). For example,
PFI(MuseumAddress, MuseumName) expresses that one address and one
museum name cannot be associated to several museums (i.e. both are needed
to identify a museum). In summary, the set of inverse functional properties of
the RDFS schema (cf. Figure 1) are : {PFI(MuseumAddress,MuseumName),
PFI(PaintingName), PFI(Contains), PFI(ArtistName), PFI(CityName)}.

It is important to note that the constraints of disjunction and of simple
functionality (i.e., of the form PF (P ) or PFI(P )) can be expressed in OWL-
DL while the constraints stating combined constraints of functionality (i.e., of
the form PF (P1, . . . , Pn) or PFI(P1, . . . , Pn)) require the expressive power of
SWRL.

2.2 Data description and their constraints

A datum has a reference which has the form of a URI (e.g. http://www.louvre.
fr, NS-S1/painting243), and a description which is a set of RDF facts involving
its reference. An RDF fact can be:

– either a class-fact C(i), where C is a class and i is a reference,
– or a relation-fact R(i1, i2), where R is a relation and i1 and i2 are references,
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– or an attribute-fact A(i, v), where A is an attribute, i a reference and v a
basic value (e.g. integer, string, date).

The data description that we consider is composed of the RDF facts coming
from the data sources enriched by applying the RDFS entailment rules [22]. We
consider that the descriptions of data coming from different sources conform
to the same RDFS+ schema (possibly after schema reconciliation). In order to
distinguish the data coming from different sources, we use the source identifier
as the prefix of the reference of the data coming from that source. For example,
Figure 2 provides examples of data coming from two RDF data sources S1 and
S2 which conform to a same RDFS+ schema describing the cultural application
previously mentioned.

Source S1 :

MuseumName(S1 m1,“LE LOUVRE”); Contains(S1 m1,S1 p1); Located(S1 m1,S1 c1);
CityName(S1 c1,”Paris”); PaintingName(S1 p1,“La Joconde”);

Source S2 :

MuseumName(S2 m1,“musee du LOUVRE”); Located(S2 m1,S2 c1); Contains(S2 m1,S2 p1);
Contains(S2 m1, S2 p2); CityName(S2 c1, “Ville de paris”);
PaintingName(S2 p1, “Abricotiers en fleurs”); PaintingName(S2 p2, “Joconde’ );

Fig. 2. Example of RDF data of cultural places domain.

We consider two kinds of constraints accounting for the Unique Name As-
sumption (UNA). The UNA states that two data of the same data source hav-
ing distinct references refer to two different real world entities (and thus cannot
be reconciled). Such an assumption is valid when a data source is clean. We
have defined another kind of constraint called the Local Unique Name Assump-
tion (denoted LUNA). The LUNA is weaker than the UNA, and states that all
the references related to a same reference by relation refer to real world enti-
ties that are pairwise distinct. For example, from the facts Authored(p, a1), ...,
Authored(p, an) coming from the same data source, we can infer that the ref-
erences a1, . . . , an correspond to distinct authors of the paper referred to by p.
In practice, it is often the case that all the values of a multi-valued property of
a given instance, are provided as a group coming from a single source, like for
instance the authors of a given paper, or the list of paintings in a given museum.
It is therefore realistic to suppose that this group of values does not contain any
duplicate. It is what LUNA means.

3 The reference reconciliation problem

Let S1 and S2 be two data sources which conform to the same RDFS+ schema.
Let I1 and I2 be the two reference sets that correspond respectively to the data
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of S1 and S2. The problem consists in deciding whether references are reconciled
or not reconciled.

A method of reference reconciliation is said complete if it provides a deci-
sion for each reference pair (i1, i2) ∈ I1 × I2. It is numerical if the decision is
based on similarity scores. It will be said symbolic if the yes/no answers for the
reconciliation between reference pairs is based on symbolic inferences.

L2R is symbolic but incomplete, while N2R is complete but numerical.
Let Reconcile3 be a binary predicate. Reconcile(X, Y) means that the two

references denoted by X and Y refer to the same world entity.
The reference reconciliation problem considered in L2R consists in extracting

from the set I1 × I2 of reference pairs two subsets REC and NREC such that:

{

REC = {(i, i′)| Reconcile(i, i′)}
NREC = {(i, i′)| ¬Reconcile(i, i′)}

The reference reconciliation problem considered in N2R consists in, given a
similarity function Simr : I1 × I2 −→ [0..1], and a threshold Trec (a real value in
[0..1] given by an un expert, fixed experimentally or learned on a labeled data
sample), computing the following set:

RECn2r = {(i, i′) ∈ (I1 × I2)\(REC ∪ NREC)| Simr(i, i
′) > Trec}

In order to evaluate the quality of the results of a reference reconciliation
method, well-known measures in the Information Retrieval (IR) domain can be
employed. It consists essentially in Precision, Recall and F-Measure defined as
follows:

– Precision of a reconciliation method is the ratio of correct reconciliations
and non-reconciliations among those found by the method.

– Recall of a reconciliation method is the ratio of correct reconciliations and
non-reconciliations found by the method among the whole expected set of
correct reconciliations and non-reconciliations.

– F-Measure of a reconciliation method is computed to balance the recall and
precision values : F − Measure = (2 ∗ Recall ∗ Precision) ÷ (Recall +
Precision).

4 L2R: a Logical method for Reference Reconciliation

In this section we present an extended version of the L2R method presented in
[23]. The method is based on the inference of facts of reconciliation (Reconcile(i, j))
and of non reconciliation (¬Reconcile(i′, j′)) from a set of facts and a set of
rules which transpose the semantics of the data sources and of the schema
into logical dependencies between reference reconciliations. Facts of synonymy
(SynV als(v1, v2)) and of no synonymy (¬SynV als(u1, u2)) between basic values

3 Reconcile and not Reconcile can also be expressed in OWL by using sameAs and
differentFrom predicates.
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(strings, dates) are also inferred. For instance, the synonymy SynV als(“JoDS′′,
“Journal of Data Semantics′′) may be inferred. This binary predicate is anal-
ogous to the predicate Reconcile but applied on basic values.

The L2R distinguishing features are that it is global and logic-based: every
constraint declared on the data and on the schema in RDFS+ is automatically
translated into first-order logic Horn rules (rules for short) that express depen-
dencies between reconciliations. The advantage of such a logical approach is that
if the data are error-free and if the declared constraints are valid, then the recon-
ciliations and non reconciliations that are inferred are correct, thus guaranteeing
a 100 % precision of the results.

We first describe the generation of the reconciliation rules. Then we present
the generation of the facts and finally the reasoning which is performed on the
set of rules and facts to infer reconciliation decisions.

4.1 Generation of the set of reconciliation rules

They are automatically generated from the constraints that are declared on the
data sources and on their common schema. We omit to write the quantifiers
applied to variables because all the variables are universally quantified in the
scope of each rule. According to standard first-order logic conventions, variables
will be denoted by lower case letters, and predicate names will start by a capital
letter.

Translation of the constraints on the data sources. We introduce the
unary predicates Src1 and Src2 in order to label each reference according to its
original source (Srci(x) means that the reference x is coming from the source
Si).

The UNA assumption, if it is stated on the sources S1 and S2, is translated
automatically by the following four rules:

R1 : Src1(x) ∧ Src1(y) ∧ (x 6= y) ⇒ ¬Reconcile(x, y)

R2 : Src2(x) ∧ Src2(y) ∧ (x 6= y) ⇒ ¬Reconcile(x, y)

R3 : Src1(x) ∧ Src1(z) ∧ Src2(y) ∧ Reconcile(x, y)∧(x 6= y) ⇒ ¬Reconcile(z, y)

R4 : Src1(x) ∧ Src2(y) ∧ Src2(z) ∧ Reconcile(x, y)∧(x 6= y) ⇒ ¬Reconcile(x, z)

The first two rules express the fact that two distinct references coming from the
same source cannot be reconciled. The last ones mean that one reference coming
from a source S2 (resp. S1) can be reconciled with at most one reference coming
from a source S1(resp. S2).
For each relation R, the LUNA assumption is translated automatically by the
following rules denoted respectively R11(R) and R12(R):

R11(R) : R(z, x) ∧ R(z, y) ∧ (x 6= y) ⇒ ¬Reconcile(x, y)

R12(R) : R(x, z) ∧ R(y, z) ∧ (x 6= y) ⇒ ¬Reconcile(x, y)
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For example, if the LUNA is declared, the two following two rules are generated
for the relation Authored relating references to papers to references to persons:
they express that there is no duplicates in the set of authors of a given paper
(respectively in the set of papers of a given author) and that there is no duplicates
in the set of papers of a given author.

R11(Authored) : Authored(z, x)∧Authored(z, y)∧ (x 6= y) ⇒ ¬Reconcile(x, y)

R12(Authored) : Authored(x, z)∧Authored(y, z)∧ (x 6= y) ⇒ ¬Reconcile(x, y)

Translation of the schema constraints. For each pair of classes C and D
involved in a DISJOINT (C, D) statement declared in the schema, or such that
their disjunction is inferred by inheritance, the following rule is generated:

R5(C, D) : C(x) ∧ D(y) ⇒ ¬Reconcile(x, y)

For example, the following rule is generated if the classes Painting and Artist
are declared disjoint:

R5(Painting, Artist) : Painting(x) ∧ Artist(y) ⇒ ¬Reconcile(x, y)

For each relation R declared as functional by the axiom PF (R), the following
rule R6.1(R) is generated :

R6.1(R) : Reconcile(x, y) ∧ R(x, z) ∧ R(y, w) ⇒ Reconcile(z, w)

For example, the following rule is generated concerning the relation Located
which relates references of museums to references of cities and which is declared
functional:

R6.1(Located) : Reconcile(x, y)∧Located(x, z)∧Located(y, w) ⇒ Reconcile(z, w)

For each attribute A declared as functional by the axiom PF (A), the following
rule R6.2(A) is generated :

R6.2(A) : Reconcile(x, y) ∧ A(x, z) ∧ A(y, w) ⇒ SynV als(z, w)

The binary predicate SynVals replaces the predicate Reconcile in the conclusion
of the rule. For example, the following rule is generated concerning the attribute
MuseumName which relates references of museums to their name and which is
declared functional:

R6.2(MuseumName) : Reconcile(x, y)∧MuseumName(x, z)∧MuseumName(y, w)

⇒ SynV als(z, w)

For each relation R declared as inverse functional by the constraint PFI(R), the
following rule R7.1(R) is generated:

R7.1(R) : Reconcile(x, y) ∧ R(z, x) ∧ R(w, y) ⇒ Reconcile(z, w)
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For each attribute A declared as inverse functional by the constraint PFI(A),
the following rule R7.2(A) is generated:

R7.2(A) : SynV als(x, y) ∧ A(z, x) ∧ A(w, y) ⇒ Reconcile(z, w)

Likewise, analogous rules are generated for translating constraints PF (P1, . . . , Pn)
of combined constraints of functionality and PFI(P1, . . . , Pn) of combined con-
straints of inverse functionality. PF (P1, . . . , Pn), where all the Pi’s are relations,
is translated by the following rule:

R7.1(P1, . . . , Pn) :
∧

i∈[1..n]

[Pi(z, xi)∧Pi(w, yi)∧Reconcile(xi, yi)] ⇒ Reconcile(z, w)

If some Pi’s are attributes, the corresponding Reconcile(xi, yi) must be replaced
by SynV als(xi, yi). For example, the declaration PF (PaintedBy, PaintingName)
states a composed functional dependency which expresses that the artist who
painted it jointly with its name functionally determines a painting. It is trans-
lated in the following rule:

R7.1(PaintedBy, PaintingName):

PaintedBy(z, x1) ∧ PaintedBy(w, y1) ∧ Reconcile(x1, y1)

∧PaintingName(z, x2)∧PaintingName(w, y2)∧SynV als(x2, y2) ⇒ Reconcile(z, w)

Similarly, PFI(P1, . . . , Pn), where all the Pi’s are relations, is translated into
the rule:

R7.2(P1, . . . , Pn) :
∧

i∈[1..n]

[Pi(xi, z)∧Pi(yi, w)∧Reconcile(xi, yi)] ⇒ Reconcile(z, w)

Transitivity rule : it allows inferring new reconciliation decisions by applying
transitivity on the set of already inferred reconciliations. Its logical semantics is:

R8 : Reconcile(x, y) ∧ Reconcile(y, z) ⇒ Reconcile(x, z)

We note that this rule is generated only if the UNA constraint is not stated on the
data sources. Indeed, when the UNA is stated, a reference can not be reconciled
with more than one reference. Therefore, the transitivity rule is not meaningful
in this setting. We do not generate a rule for expressing transitivity between
synonymies values, since, according to Fischer [24], the synonymy between basic
values is not transitive because of polysemy.

4.2 Reasoning method for reference reconciliation

In order to infer sure reconciliation and non-reconciliation decisions, we apply an
automatic reasoning method based on the resolution principle [25]. This method
applies to the clausal form of the set of rules described in Section 4.1 and a set
of facts describing the data which is generated as follows.
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Generation of the set of facts . The set of RDF facts corresponding to the
description of the data in the two sources S1 and S2 is augmented with the
generation of:

– new class-facts, relation-facts and attribute-facts derived from the domain
and range constraints that are declared in RDFS for properties, and from
the subsumption statements between classes and properties that are stated
in RDFS. For example if the fact ContemporaryMuseum(i) is present in one
of the sources, the class-facts Museum(i) and CulturalP lace(i) are added
to the description of that source;

– facts of the form Src1(i) and Src2(j) for each reference i ∈ I1 and each
reference j ∈ I2,

– synonymy facts of the form SynV als(v1, v2) for each pair (v1, v2) of basic
values that are identical (up to some punctuation or case variations): for
instance, the fact SynVals(”La Joconde”, ”la joconde”) is added because
these two values differ only by two capital letters,

– non synonymy facts of the form ¬SynV als(v1, v2) for each pair (v1, v2) of
distinct basic values of a functional attribute (PF) for which it is known
that each possible value of this attribute has a single form . For instance,
¬SynV als(′′2004′′,′′ 2001′′), ¬SynV als(′′France′′, ′′Algeria′′) are added.

Resolution-based algorithm for reference reconciliation. The reasoning
is applied to R ∪ F : the set of rules (put in clausal form) and the set of facts
generated as explained before. It aims at inferring all unit facts in the form of
Reconcile(i, j), ¬Reconcile(i, j), SynV als(v1, v2) and ¬SynV als(v1, v2).

The resolution is a reasoning method for theorem proving by a successive
application of the resolution rule[26] on the set of clauses. Several resolution
strategies have been proposed so that the number of computed resolutions to
obtain the theorem proof are reduced (for more details about these strategies
see [26]). We have chosen to use the unit resolution[27], defined as follows:

Definition 1. Unit resolution: it is a resolution strategy where at least one of
the two clauses involved in the resolution is a unit clause, i.e. reduced to a single
literal.

The unit resolution is complete for refutation4 in the case of Horn clauses
without functions [27]. Furthermore, the unit resolution method is linear with
respect to the size of clause set [28].

The Conjunctive Normal Form (CNF) of the knowledge base R∪F is made
of Horn clauses and contains a lot of unit clauses. It is important to notice that
the reconciliation and synonymy rules though having negative conclusions still
correspond to Horn clauses. For all these reasons, unit resolution is a method
which is appropriate for our problem.

4 Proving by refutation that a literal L is logically entailed from a theory T is viewed
as the unsatisfiability of the theory T ∪ {¬L}, i.e. deduce the empty clause (�).
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The unit resolution algorithm that we have implemented consists in com-
puting the set SatUnit(R ∪ F) of unit instantiated clauses contained in F or
inferred by unit resolution on R∪F . Its termination is guaranteed because there
are no function symbols in R∪F . Its completeness for deriving all the facts that
are logically entailed is stated in the following theorem. Because of the limited
form of inequalities appearing in the rules (and thus in the clauses) we avoid
to use paramodulation in combination with resolution by a preprocessing step
on R ∪ F . This consists in generating all the propositional rules that can be
obtained from R by matching their conditions to facts in F with substitutions
satisfying the inequality statements. This results into a set of clauses (a subset
of which being totally instantiated) without inequalities. A simple optimization
is also implemented that prunes all the unit clauses of the form Reconcile(i, i)
that may be generated: only unit clauses of the form Reconcile(i, j) such that
i 6= j are then used as resolvents.

Theorem 1. – Completeness of unit resolution for deriving facts from function-
free Horn clauses.
Let R be a set of Horn clauses without functions. Let F be a set of ground unit
clauses. If R∪F is satisfiable then:

∀p(a), (R∪F |= p(a)) ⇒ (p(a) ∈ SatUnit(R∪ F)),

where, p(a) is a ground unit clause.

The theorem relies on the assumption that R ∪ F is satisfiable. R ∪ F is the
logical transposition of the constraints that are declared on the schema and
the data. Therefore, if those constraints are correct and if the data are error-
free then R ∪ F is satisfiable. In any case, our resolution-based algorithm will
detect if R∪F is unsatisfiable. A by-product of our logical approach is to detect
whether the set of declared constraints on the schema and on the data sources is
contradictory. If that it the case, this set of constraints must be revised by the
database administrator in charge of the data integration.

Other reasoners, like for instance description logic reasoners, could be used
for the derivation of reconciliation facts. However, description logics are not spe-
cially appropriate to express some of the reconciliation rules that we consider,
which require explicit variable bindings. In addition, up to our knowledge, the
existing description logic reasoners are not guaranteed to be complete for the
computation of prime implicates.

Illustrative example. We now illustrate on the example of data and RDFS+

schema, given in Section 2, the resolution-based reasoning for the reference rec-
onciliation. We will also show how reconciliation and non-reconciliation decisions
are inferred and chained.

The successive application of the unit resolution on the knowledge base R∪F ,
presented in the Figure 3, allows inferring the set of (non) reconciliation and
synonymy facts presented in Figure 3.
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The clauses R1 and R2 allow inferring a set of non-reconciliations between
all the references coming from the same source, e.g. ¬Reconcile(S1 m1, S1 c2).
The clauses R5 translating the disjunction between classes, allow inferring non-
reconciliations between references which instantiate disjoint classes, (e.g. ¬ Reconcile
(S1 m1, S2 p1)) is obtained thanks to the clause R5(Painting, Museum). Fur-
thermore, the successive application of the unit resolution between the unit
clauses contained in F and the clause R7.2(PaintingName) allows inferring
Reconcile(S2 p1, S1 p1), which means that the two paintings S2 p1 and S1 p1
refer to the same painting. Then, the museums S1 m1 and S2 m2 which con-
tain these paintings are reconciled as well, thanks to the clause R7.1(Contains).
The propagation of the new reconciliation facts allows inferring the synonymie
fact SynV als(′′Le LOUV RE′′, ′′musee du LOUV RE′′) thanks to the clause
R6.2(MuseumName). Finally, thank to the clause R6.1(Located) we entail the
reconciliation Reconcile (S1 c1, S2 c1) of the two cities. Therefore, this new rec-
onciliation leads to the entailment of the synonymy SynV als(′′ville de Paris′′,
′′Paris′′) thanks to the clause R6.2(CityName).

Knowledge base

R= { R1 : ¬ Src1(x) ∨ ¬ Src1(y) ∨ ¬Reconcile(x, y)
R2 : ¬ Src2(x) ∨ ¬ Src2(y) ∨ ¬Reconcile(x, y) ...
R5(Painting, City) : ¬ Painting(x)∨ ¬ City(y) ∨ ¬Reconcile(x, y)
R5(Painting, Museum) : ¬ Painting(x) ∨ ¬ Museum(y) ∨ ¬Reconcile(x, y)
R5(City, Museum) : ¬ City(x) ∨ ¬ Museum(y) ∨ ¬Reconcile(x, y) ...
R6.1(Located) : ¬ Reconcile(x, y) ∨ ¬ Located(x, z) ∨ ¬ Located(y,w) ∨ Reconcile(z, w)
R6.2(MuseumName) : ¬ Reconcile(x, y) ∨¬ MuseumName(x, z)
∨¬ MuseumName(y,w) ∨SynV als(z,w)
R6.2(CityName) : ¬ Reconcile(x, y)∨ ¬ CityName(x, z)∨ ¬ CityName(y,w)∨ SynV als(z, w) ...

R7.2(PaintingName) : ¬SynV als(x, y) ∨ ¬ PaintingName(z, x)∨
¬ PaintingName(w, y) ∨Reconcile(z, w)
R7.1(Contains) : ¬Reconcile(x, y) ∨ ¬ Contains(z, x) ∨ ¬ Contains(w, y) ∨ Reconcile(z, w) ...}
F= { MuseumName(S1 m1, “LE LOUV RE′′); Contains(S1 m1, S1 p1);
Contains(S2 m1, S2 p2); CityName(S2 c1, “V ille de paris′′); ...
Src1(S1 m1); Src1(S1 p1); Src1(S1 c1); Src2(S2 m1); Src2(S2 p1); Src2(S2 c1)
SynV als(′′La Joconde′′,′′ Joconde′′)}

Reference reconciliation result

SatUnit(R ∪F) = {...;
¬Reconcile(S1 m1, S1 c2) ; ¬Reconcile(S1 m1, S1 p1); ¬Reconcile(S1 p1, S1 c1);
¬Reconcile(S2 m1, S2 p1); ¬Reconcile(S2 m1, S2 c1); ¬Reconcile(S2 c1, S2 p1);
¬Reconcile(S1 m1, S2 p1) ; ¬Reconcile(S1 m1, S2 c1); ¬Reconcile(S1 p1, S2 c1);
¬Reconcile(S1 c1, S2 p1);
Reconcile(S2 p1, S1 p1); Reconcile(S1 m1, S2 m1); Reconcile(S1 c1, S2 c1);
SynV als(“musee du LOUV RE′′, “LE LOUV RE′′) ; SynV als(′′ville de Paris′′,′′ Paris′′)}

Fig. 3. Illustrative exemple of unit resolution-based reference reconciliation
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4.3 Dictionary of synonyms and no synonyms.

The set of synonymies and no synonymies between basic values inferred by the
the reference reconciliation algorithm are saved in two dictionaries. The dictio-
naries can also be exploited by a numerical method for reference reconciliation
based on similarities between strings. We will see (see Section 5) how these (no)
synonymies can be used by N2R method.

We distinguish different kinds of synonyms: (i) Codes, like 1 for yes 75 for
Paris and (*) for star. (ii) Abbreviations, like apt for appartement, or acronyms
like ACM for Association for Computing Machinery. (iii) Real synonyms, like
good for comfortable. (iv) Translations, like Royaume-Uni for United Kingdom .

The (no) synonymies can be viewed as knowledge learnt in an automatic
and a unsupervised way. Indeed, this allows our method to capitalize its expe-
rience by learning more and more on the syntactic variations that characterize
an application domain.

5 N2R: a Numerical method for Reference Reconciliation

In this section we describe the numerical method for reference reconciliation
(N2R) that we have designed and implemented. Like existing numerical methods
(e.g., [1, 6]), it computes a similarity score for each pair of references. However,
N2R has two main distinguishing characteristics. First, it is fully unsupervised:
in contrast with the existing methods, it does not require any training phase from
manually labeled data to set up coefficients or parameters. Second, it is based
on equations that model the influence between similarities. In the equations,
each variable represents the (unknown) similarity between two references while
the similarities between values of attributes are constants that are computed by
using standard similarity measures on strings or on sets of strings. The functions
modeling the influence between similarities are a combination of maximum and
average functions in order to take into account the constraints of functionality
and inverse functionality declared in the RFDS+ schema in an appropriate way.

Solving this equation system is done by an iterative method inspired from
the Jacobi method [20], which is fast converging on linear equation systems. The
point is that the equation system that results for modeling the global influence
of similarities is not linear, due to the use of the max function for the numerical
translation of the functionality and inverse functionality axioms declared in the
RFDS+ schema. Therefore, we had to prove the convergence of the iterative
method for solving the resulting non linear equation system.

N2R can be applied alone or in combination with L2R. In this case, the results
of non-reconciliation inferred by L2R are exploited for reducing the reconciliation
space, i.e., the size of the equation system to be solved by N2R. In addition, the
results of reconciliations and of synonymies or non synonymies inferred by L2R
are used to set the values of the corresponding constants or variables in the
equations.
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We first use a simple example to illustrate how the equation system is built
from the data descriptions related to the references to reconcile. We then in-
troduce the notations and the similarity measures that are used in order to
distinguish the different types of constants and functions involved in the equa-
tions. Finally, we describe in the general case how the equation system is built
from the data descriptions, and we provide the iterative method for solving it.

5.1 Illustrative example

Let us consider the data descriptions of Figure 2. They conform to the RFDS+

schema given in the Figure 1, the constraints of which are described in Section
2.1. Let us assume that the UNA is stated in both the sources S1 and S2.

Let us suppose that L2R has been applied, resulting on the non-reconcilations
of all the pairs of references coming from the same source and those belonging to
two disjoint classes. The only remaining pairs of references to consider for N2R
are then:

< S1 m1, S2 m1 >, < S1 c1, S2 c1 >, < S1 p1, S2 p1 > and < S1 p1, S2 p2 >.
The similarity score Simr(ref, ref ′) between the references ref and ref ′ of

each of those pairs is modeled by a variable:

– x1 models Simr(S1 m1, S2 m1),
– x2 models Simr(S1 p1, S2 p1),
– x3 models Simr(S1 p1, S2 p2),
– x4 models Simr(S1 c1, S2 c1).

We obtain the following equations that model the dependencies between those
variables from the relations relating the corresponding references and the con-
straints declared on them in the schema:

x1 = max(0.68, x2, x3, x4/4)
x2 = max(0.1, x1/2)
x3 = max(0.9, x1/2)
x4 = max(0.42, x1)

The first equation expresses that the variable x1:

– strongly and equally depends on the variables x2 and x3, and also on 0.68,
which is the similarity score between the two strings “LE LOUVRE” and
“musee du LOUVRE” computed by the Jaro-Winkler function [29],

– weakly depends on x4.

The reason of the strong dependencies is that Contains is an inverse functional
relation (a painting is contained in only one museum) relating S1 m1 and S2 m1
(the similarity of which is modeled by x1) to S1 p1 for S1 m1 and S2 p1 and
S2 p2 for S2 m1, and MuseumName is a functional attribute (a museum has
only one name) relating S1 m1 and S2 m1 respectively to the two strings “LE
LOUVRE” and “musee du LOUVRE”.
The weak dependency of x4 onto x1 is expressed by the term x4/4 in the equa-
tion, where the ratio 1/4 comes from that there are 4 properties (relations or
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attributes) involved in the data descriptions of S1 m1 and S2 m1. The depen-
dency of x4 onto x1 is weaker than the previous ones because x4 expresses the
similarity between the two cities in which the museums modeled by x1 are lo-
cated and Located is not an inverse functional relation.
Conversely, because Located is functional, x1 has a strong influence on the vari-
able x4, which translates into the second equation, where 0.42 is the Jaro-Winkler
score of similarity between the strings “Paris” and “Ville de Paris” which are
the respective values associated to the references S1 c1 and S2 c1 by the inverse
functional attribute CityName.
The weak influence of x1 on x2 and x3 is due to the fact that Contains is not
functional. It is expressed through the two last equations, where 0.1 is the Jaro-
Winkler score of similarity between the strings “La Joconde” and “Abricotiers
en fleurs”, and 0.9 is the Jaro-Winkler score of similarity between the strings
“La Joconde” and “Joconde”.

5.2 Notations and similarity measures on (sets of) basic values

As illustrated in the previous example, the constants in the equations are sim-
ilarities between basic values (e.g., String, Date, Numbers) or between sets of
basic values, for which a lot of similarity measures have been extensively studied
[29].

Similarity measures on basic values. We denote Simv the similarity mea-
sure used to compute the similarity score between two basic values.
For pairs of basic values < v1, v2 > such that SynV al(v1, v2) (respectively
¬SynV al(v1, v2)) has been inferred by L2R , we set: Simv(v1, v2) = 1 (respec-
tively Simv(v1, v2) = 0).
For computing the similarity scores between basic values that are not dealt with
by L2R, depending on the attributes and the characteristics of their values (e.g
short/long values, values containing abbreviations), we set Simv to the most
appropriate similarity measure according to [29].

SSimv: the similarity measure on sets of basic values. Some attributes
are multi-valued (e.g. a person can have a set of phone numbers).

SSimv(S1, S2) denotes the similarity score between the two sets of basic
values S1 and S2.

In order to compute the similarity between two sets of values we need to take
into account their size and also the similarity scores of the pairs of values formed
from these two sets.

We propose a similarity measure that we have named SoftJaccard which is
inspired from SoftTFIDF measure defined by [29] and from the Jaccard mea-
sure. SoftJaccard allows relaxing the constraint of equality of the tokens used in
Jaccard. CLOSEv(S1, S2, θ) represents the values (v1, v2) ∈ S1 × S2 that have
a similarity score Simv(v1, v2) > θ. SoftJaccard is defined by the expression:

SoftJaccard(S1, S2, θ) =
|CLOSEv(S1, S2, θ)|

|S1|
, with |S1| ≥ |S2|
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Example 1. SoftJaccard({”Fatiha Sais”, ”Marie−Christine Rousset”, ”Helene Gagliardi”},
{”Nathalie Pernelle”, ”Fatiha Sais”}), 0.7) = 1/3

Common attributes and relations: definitions and notations. Given a
pair of references < i, i′ >, we will denote:

– CAttr(< i, i′ >) the set of its common attributes: A is a common attribute
to < i, i′ > if there exists atleast a fact A(i, v) in the data description of i
and also atleast a fact A(i′, v′) in the data description of i′.

– CRel(< i, i′ >) the set of its common relations: R is a common relation to
< i, i′ > if there exists atleast a fact R(i, r) in the data description of i and
also atleast a fact R(i′, r′) in the data description of i′.

Example 2. In Figure 2, we have: CAttr(< S1 m1, S2 m1 >) = {MuseumName}
CRel(< S1 m1, S2 m1 >) = {Located, Contains}

Among CAttr(< i, i′ >) and CRel(< i, i′ >) we need to distinguish those which
are (inverse) functional from those which are not:

– FDA(< i, i′ >) denotes the set of common attributes of the reference pair
< i, i′ > that are inverse functional.

– FDR(< i, i′ >) denotes the set of common relations of the reference pair
< i, i′ > that are functional or inverse functional.

Example 3. FDA(< S1 p1, S2 p1 >) = {PaintingName}
FDR(< S1 c1, S2 c1 >) = {Located}

These sets are generalized by considering the generalized constraints of (in-
verse) functionality which involve sets of attributes and relations. We note these
sets FDM

A (< i, i′ >) and FDM
R (< i, i′ >). Among those attributes and relations

that are not functional or inverse functional, we distinguish those for which i
and i′ are mono-valued from those for which i or i′ are multi-valued:

– NFDA(< i, i′ >) denotes the set of common attributes of < i, i′ > that are
not inverse functional but that are mono-valued for i and for i′.

– NFD∗
A(< i, i′ >) denotes the set of common attributes of < i, i′ > that are

not inverse functional and that are multi-valued for i or for i′.
– NFDR(< i, i′ >) denotes the set of common relations of < i, i′ > that are

not (inverse) functional but that are mono-valued for i and for i′.
– NFD∗

R(< i, i′ >) denotes the set of common relations of < i, i′ > that are
not (inverse) functional and that are multi-valued for i or for i′.

5.3 The equations modeling the dependencies between similarities.

The variables in the equation system. For each pair of references, its simi-
larity score is modeled by a variable xi and the way it depends on other similarity
scores is modeled by an equation: xi = fi(X), where n is the number of reference
pairs for which we apply N2R, and X = (x1, x2, . . . , xn).
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When a reference pair < refh, ref ′
h >, represented by a similarity score

xj , is involved in the similarity equation of another reference pair < ref, ref ′ >
corresponding to the variable xi, a contextual suffix i is added to the variable xj .
In addition, we denote by three secondary suffixes the three types of functional
dependencies that we distinguish : df for a functional dependency, dfm for a
multiple functional dependency, and ndf for non functional dependency. Thus,
for the i-th reference pair < ref, ref ′ > we distinguish the following variables
xij−df , xij−dfm and xij−ndf they depend on.

In addition, we define a variable XSij−ndf in order to express the similarity
score of the reference sets S1 and S2 of the j-th common relation of the i-th ref-
erence pair < ref, ref ′ >. This variable is defined only when the relation belongs
to NFD∗

R(< ref, ref ′ >). Its value is obtained by the function SSimr(S1, S2)5.

The constants in the equation system. They represent the similarity score
of basic values. For each pair of values (v, v′) of the j-th common attribute of
the i-th reference pair, a constant bij−df , bij−dfm or bij−ndf is assigned. These
constants represent the similarity score obtained by the function Simv(v, v′).

In addition, we define a constant BSij−ndf in order to express the similarity
score of value sets S1 and S2 of the j-th common attribute. This constant is
defined only when the attribute belongs to NFD∗

A(< ref, ref ′ >). Its value is
obtained by the function SSimv(S1, S2).

The equations. Each equation xi = fi(X) is of the form:

fi(X) = max(fi−df (X), fi−ndf (X))

The function fi−df (X) is an aggregation function of the similarity scores of the
value pairs and the reference pairs of attributes and relations with which the
i-th reference pair is functionally dependent. The function fi−ndf (X) allows to
aggregate the similarity scores of the values pairs (and sets) and the reference
pairs (and sets) of attributes and relations with which the i-th reference pair is
not functionally dependent.

Modeling the influence of functional attributes and functional rela-
tions. fi−df (X) is defined by the maximum of similarity scores of the value
pairs and reference pairs of attributes and relations with which the two refer-
ences ref and ref ′ are functionally dependent. The maximum function allows
propagating the similarity scores of the values and the references having a strong
impact. fi−df (X) is defined as follows:

fi−df (X) = max(

j=|FDA(<ref,ref ′>)|
⋃

j=0

(bij−df ), avg(

j=|FDM

A
(<ref,ref ′>)|
⋃

j=0

(bij−dfm)),

5 SoftJaccard applied on the sets of references.
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j=|FDR(<ref,ref ′>)|
⋃

j=0

(xij−df ), avg(

j=|FDM

R
(<ref,ref ′>)|
⋃

j=0

(xij−dfm)))

Note that the similarity scores of the values and the references of attributes
and relations which belongs to a same multiple functional dependency are first
aggregated by an average function.

Modeling the influence of non functional attributes and non functional
relations. fi−ndf(X) is defined by a weighted average of the similarity scores
of the values and the references of attributes and relations with which the two
references ref and ref ′ are not functionally dependent. fi−ndf (X) is defined as
follows:

fi−ndf (X) =

j=|NFDA(<ref,ref ′>)|
∑

j=0

(λij∗ bij−ndf )+

j=|NFD∗

A
(<ref,ref ′>)|
∑

j=0

(λij∗ BSij−ndf )+

j=|NFDR(<ref,ref ′>)|
∑

j=0

(λij ∗ xij−ndf ) +

j=|NFD∗

R
(<ref,ref ′>)|
∑

j=0

(λij ∗ XSij−ndf )

Where λij represents the weight of the j-th attribute or relation in the simi-
larity computation of the i-th reference pair. Since we have neither expert knowl-
edge nor training data, λij is computed in function of the number of the common
attributes and relations.

5.4 Iterative algorithm for reference pairs similarity computation

To compute the similarity scores, we have implemented an iterative resolution
method inspired from the Jacobi method [20] for the resolution of linear equation
systems. At each iteration, the method computes the variables values by using
those computed in the precedent iteration.

Iterative similarity scores computation. Starting from an initial vector
X0 = (x0

1, x
0
2, . . . , x

0
n), the value of the vector X at the k-th iteration is obtained

by the expression : Xk = F (Xk−1). At each iteration k we compute the value
of each xk

i : xk
i = fi(x

k−1
1 , xk−1

2 , . . . . . . , xk−1
n ) until a fix-point with precision ǫ

is reached. The fix-point is reached when : ∀ i, |xk
i − xk−1

i | ≤ ǫ. The value
of ǫ is fixed at a very small positive real number. The more ǫ value is small the
more the set of reconciliations may be large.

The complexity of this method is in (n2) for each iteration, where n is the
number of variables. The same kind of approach has been followed by [30] in the
context of schema matching. It is important to note that the convergence of the
Jacobi method is not always guaranteed. We have proved its convergence for the
resolution of our equation system.



20 Combining a Logical and a Numerical Method for Data Reconciliation

Illustration of the iterative similarity computation. We illustrate the
similarity computation on the system of equations obtained from the data de-
scriptions of Figure2. The constants, the variables and the weights are given in
the table 1. The constants correspond to the similarity scores of pairs of basic
values computed by using the Jaro-Winkler measure [29]. The weights are com-
puted in function of the number of common attributes and common relations of
the reference pairs. We assume that point-fix precision ǫ is equal to 0.005.

Variables Constants Weights

x1 = Simr(S1 m1, S2 m1) b11 = Simv(“LOUV RE′′, “Musee du LOUV RE′′′) = 0.68 λ11 = 1

4

x2 = Simr(S1 p1, S2 p1) b21 = Simv(“La Joconde′′, “Abricotiers en fleurs′′) = 0.1 λ21 = 1

2

x3 = Simr(S1 p1, S2 p2) b31 = Simv(“La Joconde′′, “Joconde′′) = 0.9 λ31 = 1

2

x4 = Simr(S1 c1, S2 c1) b41 = Simv(“Paris′′, “V ille de Paris′′) = 0.42 λ41 = 1

2

Table 1. The variables, the constants and the weights of the equation system

The equation system is the one given in Section 5.1. The different iterations
of the resulting similarity computation are provided in Table 2.

Iterations 0 1 2 3 4

x1 = max(0.68, x2, x3,
1

4
∗ x4) 0 0.68 0.9 0.9 0.9

x2 = max(0.1, 1

2
∗ x1) 0 0.1 0.34 0.45 0.45

x3 = max(0.9, 1

2
∗ x1) 0 0.9 0.9 0.9 0.9

x4 = max(0.42, x1) 0 0.42 0.68 0.9 0.9
Table 2. Illustrative example – Iterative similarity computation.

The solution of the equation system is X = (0.9, 0.45, 0.9, 0.9). This corre-
sponds to the similarity scores of the four reference pairs. The fix-point has been
reached after four iterations. The error vector is then equal to 0.

This example, shows how the similarity scores are propagated between the
reference pairs through the relations having a strong impact on reference pairs.
For instance, at the iteration (2), the similarity 0.9 of the painting pair <
S1 p1, S2 p2 > has been propagated to the museum pair < S1 m1, S2 m1 >
through the relation contains which belongs to FDR(< S1 m1, S2 m1 >).
At the following iteration (3) the same similarity score has been propagated
to city pair < S1 c1, S2 c1 > through the relation located which belongs to
FDR(< S1 c1, S2 c1 >). Furthermore, we have a weaker propagation of the
similarity scores. For example, at the iteration (3) the similarity score 0.90 of
the museums obtained at the iteration (2) has been propagated to the pair of
paintings < S1 p1, S2 p1 >. Its similarity score grows to 0.45.

If we fix the reconciliation threshold Trec at 0.80, then we obtain three rec-
onciliation decisions: two cities, two museums and two paintings.
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We note that the reconciliation threshold is empirically fixed. In supervised
approaches [11, 3], it is learnt on labeled data.

6 Experiments

The logical method (L2R) and the numerical one (N2R) have been implemented
and tested on data sets related to two different domains: the tourism domain
and the scientific publications.

6.1 Presentation of the data sets (HOTELS and Cora)

The first real data set HOTELS, provided by an industrial partner, corresponds
to a set of seven data sources which leads to a pairwise data integration problem
of 21 pairs of data sources. These data sources contain 28,934 references to hotels
located in Europe. The UNA is stated for each source.The hotel descriptions in
the different sources are very heterogeneous. First, the instantiated properties
are different from one to another. Second, the basic values are multilingual,
contain abbreviations, and so on.

The second data set Cora6 (used by [1] and [14]) is a collection of 1295
citations of 112 different research papers in computer science. In this data set,
the objective of the reference reconciliation is the cleaning of a given data source
(i.e. duplicates elimination). The reference reconciliation problem applies then
to I × I where I is the set of references of the data source S to be cleaned. For
this data set, the UNA is not stated and the RDF facts describe references which
belong to three different classes (Article, Conference, Person).

The RDFS+ schemas: HOTELS conforms to a RDFS schema of tourism
domain, which is provided by the industrial partner. We have added a set of
disjunction constraints (e.g. DISJOINT(Hotel, Service)), a set of (inverse) func-
tional property constraints (e.g. PF(EstablishmentName), PF(Name),
PFI(EstablishmentName, AssociatedAddress)).

For the Cora data set, we have designed a simple RDFS schema on the sci-
entific publication domain, which we have enriched with disjunction constraints
(e.g. DISJOINT(Article, Conference)), a set of functional property constraints
(e.g. PF(Published), PF(ConfName)) and a set of inverse functional property
constraints (e.g. PFI(Title, Year, Type), PFI(ConfName, ConfYear)).

For the Cora data set, the expected results for reference reconciliation are
provided. Therefore, the recall and the precision can be easily obtained by com-
puting the ratio of the reconciliations or non-reconciliations obtained by L2R
and N2R among those that are provided.

For the HOTELS data set, we have manually detected the correct results of
reconciliations or non-reconciliations between the references of two data sources
containing respectively 404 and 1392 references to hotels.

6 another version of Cora is available at http://www.cs.umass.edu/~mccallum/data/
cora-refs.tar.gz
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6.2 L2R results

Since the set of reconciliations and the set of non-reconciliations are obtained
by a logical resolution-based algorithm the precision is of 100% by construction.
Then, the measure that it is meaningful to evaluate in our experiments is the
recall.

In the following, we summarize the results obtained on the HOTELS data
set and then those obtained on the Cora data set. We emphasize the impact on
the recall of increasing the expressiveness of the schema by adding constraints.

RDFS+ RDFS+ & {DA or DP}
HOTELS Cora HOTELS Cora

Recall (REC) 54 % 52.7 % 54 % 52.7 %
Recall (NREC) 8.2 % 50.6 % 75.9 % 94.9 %

Recall 8.3 % 50.7 % 75.9 % 94.4 %

Precision 100 % 100 % 100 % 100 %

Fig. 4. L2R results on HOTELS and Cora data sets

L2R Results on HOTELS data set. In the figure 4, we show the recall that
we have obtained on the two sources on which we have manually detected the
reconciliation and no reconcilation pairs. We distinguish the recall computed only
on the set of reconciled references (REC) and only on not reconciled references
(NREC). To examine the 532368 reference pairs we have first automatically
extracted the name and address of the hotels belonging to the smaller source.
Then, we have used the standard string search commands of Unix to search in
the file of the second source the truncated corresponding strings (in order to be
robust with typographical errors). Then, we have set the correct no reconcilations
to be the remaining pairs.

As it is shown in the column named “RDFS+ (HOTELS)” of the figure 4,
we have obtained a recall of 8.3%. If we only consider the reconciliations subset
(REC) the recall is 54%. The REC subset corresponds to the reconciliations
inferred by exploiting the inverse functional constraint PFI(EstablishmentName,
AssociatedAddress). It is important to emphasize that those reconciliations are
inferred in spite of the irregularities in the data descriptions: not valued addresses
and a lot of variability in the values, in particular in the addresses : “parc des
fees” vs. “parc des fees, (nearby Royan)”. In addition, in one of the data sources,
several languages are used for the basic values.

If we only consider the non-reconciliations subset (NREC) the recall is 8.2%.
Actually, the only rules that are likely to infer no reconciliations are those trans-
lating the UNA assumption. Now, if we enrich the schema just by declaring
pairwise disjoint specializations of the Hotel class (by distinguishing hotels by
their countries), we obtain an impressive increasing of the recall on NREC, from
8.2% to 75.9%, as it is shown in the “RDFS+ (HOTELS) & DA” column.
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L2R Results on Cora data set. We focus on the results obtained for the
Article and Conference classes, which contain respectively 1295 references and
1292 references.

As presented in the column named “RDFS+ (Cora)” of the figure 4, the
recall obtained on the Cora data set is 50.7%. This can be refined in a recall of
52.7% computed on the REC subset and a recall of 50.6% computed on NREC
subset. The set of inferred reconciliations (REC subset) for references to articles
is obtained by exploiting the constraint PFI(Title, Year) of combined inverse
functionality on the properties T itle and Y ear. For the conferences, 35.8% of
the reconciliations are obtained by exploiting the constraint PFI(ConfName,
ConfYear) of combined inverse functionality on the attributes ConfName and
ConfY ear, and 64.1% are obtained by propagating the reconciliations of ref-
erences to articles, using the constraint PF(Published) of functionality of the
relation Published. The set of inferred no reconciliations (NREC subset) are
obtained by exploiting the constraint of disjunction between the Article and
Conference classes.

For this data set, the RDFS+ schema can be easily enriched by the declara-
tion that the property confYear is discriminant. When this discriminant property
is exploited, the recall on the REC subset remains unchanged (52.7%) but the
recall on NREC subset grows to 94.9%, as it is shown in the “RDFS+ (Cora) &
DP” column. This significant improvement is due to chaining of different rules
of reconciliations: the non-reconciliations on references to conferences for which
the values of the confYear are different entail in turn non-reconciliations of the
associated articles by exploiting the constraint PF(published).

This recall is comparable to (while a little bit lower than) the recall on the
same data set obtained by supervised methods like e.g., [1]. The point is that
L2R is not supervised and guarantees a 100% precision.

6.3 N2R Results

In the following we summarize the results obtained on the HOTELS data set
and on the Cora data set by N2R after the application of L2R.

N2R results on HOTELS data set. The results obtained by N2R on the
HOTELS data set are given in Figure 5, where the values in the x-axis correspond
to values of the reconciliation threshold Trec.

When Trec = 1, N2R do not obtain more results than L2R. When Trec is
decreased to 0.70 the recall increases of 31 % while the precision remains at
100%. The best results have been obtained at Trec = 0.55. For this value, the F-
Measure reaches a maximum value of 94 %, with a recall of 98 % and a precision
of 91 %. Some mis-reconciliations are due to the fact that some hotel references
have the same name and a different addresses and vis versa.

The reconciliation space of N2R has been reduced of 75.9 % which corre-
sponds to 427 212 of reference pairs among 562 368 reference pairs in total.

When N2R is applied independently, the results are very close than those
obtained when N2R is combined with L2R.
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Fig. 5. N2R results obtained on HOTELS data set

N2R results on Cora data set . The results obtained by N2R on the Cora
data set are given in the Figure 6.

Fig. 6. N2R results obtained on Cora data set

For Trec = 1, N2R do not obtain more results than L2R. We also emphasize
the interesting evolution of the recall and precision values in function of Trec.
Indeed, when the threshold is decreased to 0.85, the recall increases by 33% while
the precision only falls by 6%. The best results are obtained when Trec = 0.85.
The F-measure is then at its maximum value of 88%. Besides, when the recall
value is almost of 100%, for Trec = 0.5, the precision value is still about 40%.

The exploitation of the non-reconciliation inferred by L2R allows an impor-
tant reduction of the reconciliation space handled in N2R. For the Cora data
set the size of the reconciliation space is about 37 millions of reference pairs. It
has been reduced of 32.8 % thanks to the correct no reconciliations inferred by



Combining a Logical and a Numerical Method for Data Reconciliation 25

L2R. This reduction corresponds to 12 millions of reference pairs. Moreover, the
reconciliation inferred by L2R are not recomputed in N2R.

These experimentations show that good results can be obtained by an auto-
matic and unsupervised method if it exploits knowledge declared in the schema.
Furthermore, the method is able to obtain F-Measure which is better than some
supervised methods such that [14]. This collective record linkage method obtains
an F-Measure of 87% for the same data set. Nevertheless, the results obtained by
other supervised methods are slightly better than ours: [1] obtain a F-Measure
of 90 % by using a method based on a dependency graph where the dependencies
between reference pairs are learnt on labeled data ; and [31] obtain a F-Measure
of 95 % by using an adaptive approach where the used similarity measures are
learnt on labeled data and adapted to the specificities of the data sets. Since, in
our numerical method, the similarity computation takes into account the schema
semantics, it obtains results that are comparable to those obtained by supervised
methods, even without using any labeled data.

When N2R is applied separately, we obtain only a slight regression of N2R
results.

6.4 Efficiency results

We have conducted efficiency experiments of the reconciliation methods L2R and
N2R on Cora data set. We aim by these experiments to show how the efficiency
of N2R is improved when the L2R results are exploited. We have applied the
reference reconciliation methods on reference sets selected from Cora data set
ranging from 632 to 6108 references. At each stage we have increased the data
set of 1

10 th of the whole set of references.

Fig. 7. Execution time of L2R and N2R methods obtained on Cora data set
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We note that the reference reconciliation code was implemented in Java, and
our experiments were run on 2,2GHz Intel Core 2 Duo with 2GB of RAM.

To analyze effenciency, we have measured the execution time of the methods
without considering the runtime of the data loading step, because it is common
for both methods. Figure 7 shows the execution time obtained for the methods
of reference reconciliation L2R and N2R, when they are applied independently
and when they are combined, i.e. N2R is preceeded by L2R. For N2R method
we have fixed the parameter ǫ at 0.0001.

The first result concerns the case when L2R and N2R are applied indepen-
dently (curves labeled L2R and N2R-INDEP of the Figure 7. We notice that
when the dataset gets larger, L2R outperforms N2R up to 59 % for 3685 refer-
ences.

The second result concerns the execution time of N2R when it uses the results
inferred by L2R. The curves labeled N2R-INDEP and N2R-COMB show a real
improvement of N2R runtime when it is preceeded by L2R. The runtime falls of
74% for the 6108 references. This improvement in the N2R runtime is due to the
large amount of non-reconciliations inferred by L2R, that are not considered by
N2R i.e. they are not added in the equation system. Even the inferred reconcil-
iations between references contribute in the speeding up of N2R. Actually, the
similarity scores of these references is fixed at the maximum value then there is
no need to compute their similarity scores be N2R. We have also noticed that the
convergence of N2R-COMB is achieved in less iterations (3 iterations in average)
than when is is applied independently (9 iterations in average). Finally, Figure
7 shows that N2R-COMB outperforms L2R up to 42% for the 6108 references.

7 Related work

The problem of reference reconciliation was introduced by the geneticist New-
combe [32] and was first formalized by Fellegi and Sunter [2]. Since then, various
approaches have been proposed in different areas and under different names –
record linkage[2, 3], object matching [7], or entity resolution [6, 5]. We distin-
guish the different approaches : (i) according to the exploitation of the reference
descriptions, i.e. if the relations between references are exploited in addition to
the attributes ; and (ii) according to how knowledge is acquired, i.e. if knowledge
is learnt on labelled data or is declared by domain expert.

The naive way to decide on the reconciliation or on the non-reconciliation
of references, is the comparison of their unstructured textual description [33,
34]. In these approaches, the similarity is computed by using only the textual
values of the attributes in the form of a single long string without distinguishing
which value corresponds to which attribute. This kind of approaches is useful
in order to have a fast similarity computation [33], to obtain a set of reference
pairs that are candidates for the reconciliation [34] or when the attribute-value
associations may be incorrect. That is why this technique is used in CiteSeer
portal to reconcile data which is automatically extracted from Web pages.
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The traditional approaches of reference reconciliation consider the reference
description as structured in several attributes. To decide on the reconciliation or
on the non-reconciliation of references, some of these approches use probabilistic
models [2–4], such as Bayesian network or SVM. However, these probabilistic
models need to be trained on labeled data. This training step can be very time-
consuming what is not desirable in online applications. Indeed, in such online
contexts, labeled data can not be acquired and runtime constraints are very
strong. Alternative approaches have been proposed like [35] where the similarity
measures (see [29] for a survey) are used to compute smilarity scores between
attribute values which are then gathered in a linear combination, like a weighted
average. Although these approaches do not need training step, they however
need to learn some parameters like weights associated to similarity scores of the
different attributes. In order to improve the result quality some methods [11]
use adaptive supervised algorithms that learn string similarity measures from
labeled data.

The idea of exploiting relations that link references together has been re-
cently explored in several works on reference reconciliation. The relations can be
either explicitly expressed in data [12, 1, 14], such as foreign-keys in relational
databases, or discovered [13] and then used during the reference reconciliation.
To model the dependencies between reference pairs induced by the relations, [1]
build a dependency graph and use it to iteratively propagate similarity scores
and reconciliation decisions. However, the weights associated to the dependencies
are learnt on labeled data. In [13] , the authors translate the Context Attraction
Principle in a linear equation system and then, by its resolution they compute
the connection strength between entities, through relations. In [14], a proba-
bilistic dependency model has been proposed. It allows propagating reconcilia-
tion decisions through shared relations. In our approach, the relations between
references are exploited by both logical and numerical reference reconciliation
methods. The relations are used in the logical method to iteratively propagate
reconciliation and non-reconciliation decisions through the logical rules. They
are exploited in the numerical method to iteratively propagate similarity scores
thanks to the iterative resolution of the non-linear equation system. Furthermore,
our logical method infer correct non-reconciliations between references which is
very usefull in applications where there are very few redundancies. These correct
non-reconciliations can be used by the numerical method to reduce its reconcil-
iation space and therefore speed-up its excecution time.

In order to improve the quality of their results, some recent methods exploit
knowledge like the importance of the different attributes and relations, similarity
measures or reconciliation and non-reconciliation rules. Knowledge can be either
learnt on labeled data or declaratively specified by a domain expert. For instance,
in [35, 1], knowledge about the impacts of the different attributes or relations are
encoded in weights learnt on labeled data. In [7] the rules of value normalization
(i.e. date format, phone number) and of reconciliation are learnt on labeled
data by using a decision tree model. In the declarative approach proposed by
[36], profiles of the representative entities are expoited. These profiles that are
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manually specified by a domain expert contain a set of constraints on correlations
between attributes which should be satisfied by the references.

In the system AJAX [10] a declarative language has been proposed to ex-
press different kinds of knowledge like knowledge on value normalization, on
mapping operations and on the extraction of groups of references. Although
these supervised and declarative methods ensure good results, they remain how-
ever vulnerable to changes of application domain and of data sources features.
The supervised method should re-learn the knowledge on new labeled data and
for the declarative methods the expert should be asked to re-specify the used
knowledge. In the spirit of knowledge-based approches, we propose two declar-
ative methods which exploit general knowledge declared on the schema and on
the data sources, such as functional dependencies and Unique Name Assump-
tion. In L2R, knowledge semantics is automatically translated into Horn rules
and used to infer (non) reconciliations between reference pairs and (non) syn-
onymies between values. Knowledge semantics is also automatically translated
into non-linear equations which allow to compute similarity scores of reference
pairs. Comparing to the viewed knowledge-based approches, our methods are not
sensitive to domain and data changes. The exploited knowledge are general and
domain-independent, indeed. Futhermore, the logical and numerical methods are
unsupervised since no labeled data is needed by neither L2R nor N2R.

8 Conclusion and future work

We have presented the combination of a logical and numerical approach for
the reference reconciliation problem. Both approaches exploit schema and data
knowledge given in a declarative way by a set of axioms. This guarantees their
genericity: if the domain or the sources change it is sufficient to update the set of
axioms. Secondly, the relations between references are exploited either by L2R
for propagating (non) reconciliation decisions through logical rules or by N2R
for propagating similarity scores thanks to the resolution of the equation system.
Third, the two methods are unsupervised because no labeled data set is used.
Fourth, the combined approach is able to capitalize its experience by saving the
correct (no) synonymies inferred by L2R in a dictionary. This allows to learn the
syntactic variations of an application domain.

Furthermore, by using the logical method we obtain reconciliations and non-
reconciliations that are sure. This distinguishes L2R from other existing works.
This is an important point since, as it has been emphasized in [3], unsupervised
approaches which deal with the reference reconciliation problem have a lot of
difficulties to estimate in advance the precision of their system when it is applied
to a new set of data. The numerical method complements the results of logical
one. It exploits the schema and data knowledge and expresses the similarity
computation in non linear equation system. This distinguishes N2R from other
existing work.

The experiments show promising results for recall, and most importantly its
significant increasing when axioms are added. This shows the interest and the
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power of the generic and flexible approach of L2R since it is quite easy to add
rules to express constraints on the domain of interest.

As a future work, we first plan to exploit the results of the logical step to learn
the weighting coefficients involved in the combination of the different similarity
scores. We also plan to adapt the method to be used in a peer-to-peer settings.
A system such SomeWhere [37] is a P2P infrastructure that exploits mappings
between peer’s ontologies to answer queries in a sound and complete way. This
could be completed by a reference reconciliation method based on L2R and
N2R to discover and exploit reconciliation decisions between references stored at
different peers. Finally, we plan to study how the reference reconciliation could
help the schema reconciliation and conversely how the schema reconciliation
could help the reference reconciliation.
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