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Abstract: Many problems in scientific computing involving a large sparse ma-
trix A are solved by Krylov subspace methods. This includes methods for the
solution of large linear systems of equations with A, for the computation of a
few eigenvalues and associated eigenvectors of A, and for the approximation
of nonlinear matrix functions of A. When the matrix A is non-Hermitian, the
Arnoldi process commonly is used to compute an orthonormal basis of a Krylov
subspace associated with A. The Arnoldi process often is implemented with
the aid of the modified Gram-Schmidt method. It is well known that the lat-
ter constitutes a bottleneck in parallel computing environments, and to some
extent also on sequential computers. Several approaches to circumvent orthog-
onalization by the modified Gram-Schmidt method have been described in the
literature, including the generation of Krylov subspace bases with the aid of
suitably chosen Chebyshev or Newton polynomials. We review these schemes
and describe new ones. Numerical examples are presented.
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Construction de bases de sous-espaces de Krylov

Résumé : Beaucoup de problèmes du calcul numérique qui font intervenir
une grande matrice creuse A sont résolus par des méthodes de sous-espaces de
Krylov. Il en est ainsi de la résolution d’un système linéaire défini par A, du
calcul de quelques valeurs propres ou vecteurs propres de A et de l’approximation
de fonctions non linéaires de la matrice A. Quand la matrice A n’est pas
hermitienne, une base orthonormale d’un sous-espace de Krylov de A est habituel–
lement calculée par le procédé d’Arnoldi. En général, ce procédé met en œuvre
une orthogonalisation grâce au procédé de Gram-Schmidt modifié. Mais il
est bien connu que celui-ci constitue un goulot d’étranglement pour le calcul
parallèle et même, d’une certaine façon, aussi pour le calcul séquentiel. Plusieurs
approches se passant de l’algorithme de Gram-Schmidt modifié sont déjà connues,
en particulier celles qui construisent des bases à partir de polynômes de Tcheby–
shev ou de Newton. Nous présentons ici une analyse de ces approches et en
proposons de nouvelles. Des expériences numériques concluent le rapport.

Mots-clés : Bases de sous-espaces de Krylov, procédé d’Arnoldi, méthode
iterative
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1 Introduction

Let A ∈ Cn×n be a large and sparse matrix. Many commonly used numerical
methods for the solution of large-scale problems involving A, such as the solution
of linear systems of equations,

Ax = b, x, b ∈ C
n, (1)

the computation of a few eigenvalues and associated eigenvectors of A, and the
evaluation of expressions of the form f(A)b, where f is a nonlinear function,
first project the problem to Krylov subspace of small to moderate dimension
and then solve the projected problem; see, e.g., [5, 6, 28] and references therein
for discussions of this approach.

In order to simplify our presentation, we will assume the matrix A to be
nonsingular and focus on implementations of the Generalized Minimal Residual
(GMRES) method, introduced by Saad and Schultz [29, 30], for the solution of
large linear systems of equations (1) with a sparse and nonsymmetric matrix.
However, our discussion applies also to Krylov subspace methods for eigenvalue
computation and the evaluation of matrix functions.

Let x0 be an initial approximate solution of (1) and define the associated
residual vector r0 := b−Ax0. GMRES computes a more accurate approximate
solution x1 := x0 + z0, with z0 ∈ Km(A, r0), such that

‖b − Ax1‖ = ‖r0 − Az0‖ = min
z∈Km(A,r0)

‖r0 − Az‖ , (2)

where
Km(A, r0) := span{r0, Ar0, . . . , A

m−1r0} (3)

is a Krylov subspace. The positive integer m is assumed to be much smaller
than n, and small enough, so that dim(Km(A, r0)) = m. Throughout this paper,
‖ · ‖ denotes the Euclidean vector norm or the associated induced matrix norm.
The present paper considers complex linear systems of equations. When A and
b have real entries only, the computations can be organized so that only real
floating-point arithmetic is required, and only real vectors have to be stored.

The minimization problem (2) commonly is solved by first applying m steps
of the Arnoldi process to the matrix A with initial vector r0. This yields the
Arnoldi decomposition

AVm = VmHm + fmeT
m, (4)

where the matrix Vm := [v1, v2, . . . ,vm] ∈ Cn×m has orthonormal columns with
v1 = r0/‖r0‖, the matrix Hm ∈ Cm×m is upper Hessenberg with positive sub-
diagonal entries, and the vector fm ∈ Cn satisfies V ∗

mfm = 0. The superscript ∗

denotes transposition and complex conjugation, the superscript T transposition
only, and ek denotes the kth axis vector of appropriate dimension.

Assume that the vector fm in the Arnoldi decomposition is nonvanishing.
Then we may define vm+1 := fm/‖fm‖ and Vm+1 := [Vm, vm+1] ∈ Cn×(m+1),
and we can express (4) in the form

AVm = Vm+1Ĥm, (5)
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4 B. Philippe & L. Reichel

where the matrix Ĥm ∈ C
(m+1)×m is obtained by appending the row ‖fm‖eT

m

to Hm. We also refer to the augmented matrix Ĥm as an upper Hessenberg
matrix. Substituting (5) into (2) yields

min
z∈Km(A,r0)

‖r0 − Az‖ = min
y∈Cm

∥

∥

∥
‖r0‖e1 − Ĥmy

∥

∥

∥
. (6)

The solution y0 of the least-squares problem on the right-hand side of (6) is
determined by QR factorization of the matrix Ĥm, and we obtain the solution
z0 := Vmy0 of the minimization problem (2) and the corresponding approx-
imate solution x1 := x0 + Vmy0 of (1). For numerical stability, the Arnoldi
process is implemented with the modified Gram-Schmidt method. This yields
the following algorithm.

Algorithm 1.1 GMRES implementation based on the Arnoldi process.
Input: m, x0, r0 := b − Ax0.
Output: approximate solution x1, upper Hessenberg matrix Ĥm = [ηjk] ∈ C(m+1)×m

(the computed ηjk are the nontrivial entries).
v1 := r0/‖r0‖;
for k := 1, 2, . . . , m do

w := Avk;
for j := 1, 2, . . . , k do

ηjk := w∗vj ; w := w − ηjkvj;
end j;
ηk+1,k := ‖w‖; vk+1 := w/ηk+1,k;

end k;
Solve (6) for y0 by computing the QR factorization of Ĥm.
x1 := x0 + Vmy0; r1 := b − Ax1; ✷

We remark that the vector r1 in the last line of Algorithm 1.1 also can be
evaluated according to r1 := r0 − Vm+1Ĥmy0; however, this formula may yield
lower accuracy than r1 := b − Ax1. We therefore use the latter formula in the
algorithm.

If fm vanishes in (4), then the least-squares problem (6) simplifies to a linear
system of equations and Algorithm 1.1 yields the solution of (1). For this reason,
we assume henceforth that fm �= 0 for all m considered.

The storage requirement of Algorithm 1.1 grows linearly with m, and the
number of arithmetic floating point operations (flops) required grows quadrat-
ically with m. Therefore, one generally chooses 10 ≤ m ≤ 50. If the residual
error r1 associated with the computed approximate solution x1 determined by
Algorithm 1.1 is not sufficiently small, then one seeks to determine an improved
approximate solution by solving a minimization problem analogous to (2). This
yields the cyclic GMRES algorithm; see [29, 30].

Algorithm 1.2 Cyclic GMRES(m) algorithm.
Input: m, x0, r0 := b − Ax0, tolerance ǫ > 0;
Output: approximate solution xj, such that ‖b − Axj‖ ≤ ǫ;
for j := 0, 1, 2, . . . until ‖rj‖ ≤ ǫ do

Solve min
z∈Km(A,rj)

‖rj − Az‖ for zj ∈ Km(A, rj). (7)

INRIA



Krylov subspaces bases 5

xj+1 := xj + zj ;
rj+1 := rj − Azj ;

(8)

end j; ✷

The computation of the solution of (2) and (7) by application of the Arnoldi
process requires many vector-vector operations. These operations can be dif-
ficult to implement efficiently both on sequential and parallel computers due
to their low granularity and the frequent global communication required. The
development of alternative implementations therefore has received considerable
attention; see, e.g., [3, 4, 8, 12, 16, 17, 31]. The methods proposed in these refer-
ences first seek to determine a fairly well-conditioned, but generally nonorthog-
onal, basis for the Krylov subspace (3), and then orthonormalize it. The latter
can be carried out with matrix-vector operations and has higher granularity
than the computations of Algorithm 1.1. The best implementations of this kind
execute faster than Algorithms 1.1 and 1.2, not only on parallel computers, but
also on sequential ones; see [4, 16] for examples.

Joubert and Carey [16, 17] use Chebyshev polynomials for a suitable interval
in the complex plane to generate a Krylov subspace basis. The location of this
interval is important for the conditioning of the basis generated. The Cheby-
shev polynomials are of nearly constant magnitude on ellipses in the complex
plane, whose foci are the endpoints of the interval; see Section 3 or [9, 22]. Let
λ(A) denote the spectrum of A and let Eλ(A) denote the smallest ellipse, which
contains λ(A). The analyses of Section 3 and by Joubert and Carey [16], as
well as computed examples reported in Section 5 and [16, 17], show that the
Chebyshev polynomials for the interval between the foci of Eλ(A) can be applied
to determine useful Krylov subspace bases for many matrices A. Here we only
note that in actual computations λ(A) typically is not known and generally is
too expensive to compute. Consequently, for most matrices A, the foci of the
ellipse Eλ(A) cannot be determined. Instead the eigenvalues of Hm, which are
Ritz values of A, are used to determine an approximation of the foci of Eλ(A).
For instance, Joubert and Carey [16, 17] propose to carry out Algorithm 1.1
initially and determine the smallest ellipse that contains all the eigenvalues of
Hm. The subsequently generated Krylov subspaces are represented by Cheby-
shev polynomials for the interval between the foci of this ellipse. We remark
that the proposed choice of ellipse may not be meaningful if the matrix A is
pronouncedly nonnormal; see, e.g., [24] for a discussion.

Algorithm 1.2 requires the solution of a sequence of minimization problems
(7). The solution of these problems by Algorithm 1.1 generates a sequence
of m × m upper Hessenberg matrices Hm; cf. (4). We show in Section 2 how
matrices Gm, which are unitarily similar to the matrices Hm, can be determined
inexpensively during the computation with nonorthonormal Krylov subspace
bases without carrying out computations of the form described in Algorithm
1.1. The availability of the matrices Gm allows Ritz values of A to be computed
periodically and the interval defining Chebyshev polynomial bases to be updated
during the solution process. The computations with Chebyshev polynomial
Krylov subspace bases is described in Section 3.

There are matrices A for which Krylov subspace bases generated by Cheby-
shev polynomials are too ill-conditioned to be useful already for moderate sub-
space dimensions. For instance, this situation may arise when most of the
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6 B. Philippe & L. Reichel

eigenvalues are confined to a small area in the interior of Eλ(A). In these situa-
tions another polynomial basis should be used. Newton polynomial bases have
been applied in [3, 4, 12, 31]. Section 4 extends this approach by describing
how to i) construct the Newton polynomials when many iterations are required
but only few Ritz values are available, and ii) incorporate information about
new Ritz values during the solution process. Section 5 presents a few computed
examples, and Section 6 contains concluding remarks.

We close this section with some comments on hybrid iterative methods.
These methods “learn” about the spectrum during the iterations, e.g., by ini-
tially or periodically computing Ritz values, and then adjusting iteration pa-
rameters that determine the rate of convergence by using the new Ritz values
computed. Manteuffel [19, 20] described the first hybrid method, an adap-
tive Chebyshev iteration scheme. A recent comparison of implementations of
Chebyshev iteration is presented in [15]. Other hybrid methods are discussed
in, e.g., [7, 11, 21, 24, 27, 31, 32]. Hybrid schemes may be more efficient both
on sequential and parallel computers than Algorithm 1.2 provided that certain
iteration parameters, which determine the performance of hybrid methods, are
set to appropriate values. However, for many linear systems of equations it is
difficult to determine suitable values of these parameters. In fact, there may
not exist suitable values. This is the case for Chebyshev iteration when the
origin is in the convex hull of the spectrum. Moreover, there are linear systems
of equations for which the iteration parameters should not be determined by
the eigenvalues; the pseudospectrum or field of values may be more relevant
quantities to study when determining iteration parameters; see Eiermann [10]
and Nachtigal et al. [24] for discussions. We note that the determination of
parameters for the schemes discussed in the present paper is less critical than
for hybrid iterative methods provided that the generated Krylov subspace basis
is not too ill-conditioned, because the values of the parameters in the former
only affect the conditioning of the Krylov subspace basis, but not the rate of
convergence.

2 Computation of Ritz values without the Arnoldi

process

We discuss how the matrix Ĥm in the decomposition (5) can be computed
inexpensively during the computations with a nonorthonormal Krylov subspace
basis. This matrix can be applied to determine approximations of pseudospectra
of A; the eigenvalues of the associated square matrix Hm, defined by (4), are
Ritz values of A.

The nonorthogonal Krylov subspace bases of this paper are generated with
recursion formulas of the form

αk+1zk+1 = (A − βk+1I)zk − γk+1zk−1, k = 0, 1, 2, . . . , (9)

where the αk, βk, and γk are user-specified scalars with γ1 = 0.
The iterative methods first execute Algorithm 1.1 in order to determine the

approximate solution x1, the associated residual vector r1, and the matrix Ĥm.
The latter is helpful for choosing suitable parameters αk, βk, and γk. We discuss

INRIA



Krylov subspaces bases 7

these choices in Sections 3 and 4. Here we only note that z0 = r1 yields

Km(A, r1) = span{z0, z1, . . . ,zm−1}.

Introduce the Krylov subspace basis matrices

Zm = [z0, z1, . . . ,zm−1] ∈ C
n×m, Zm+1 = [Zm, zm] ∈ C

n×(m+1), (10)

as well as the tridiagonal matrix

T̂m =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

β1 γ2 O
α1 β2 γ3

α2 β3 γ4

α3
. . .

. . .

. . . βm−1 γm

αm−1 βm

O αm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ C
(m+1)×m. (11)

Then the relations (9), for 0 ≤ k ≤ m, can be expressed as

AZm = Zm+1T̂m. (12)

Define the QR factorization

Zm+1 = Wm+1Rm+1 (13)

where the matrix Wm+1 ∈ Cn×(m+1) has orthonormal columns with Wm+1e1 =
r1/‖r1‖, and the matrix Rm+1 ∈ C(m+1)×(m+1) is upper triangular. Introduce
the condition number

cond(Zm+1) =

max
‖y‖=1

‖Zm+1y‖

min
‖y‖=1

‖Zm+1y‖
. (14)

Let Rm be the leading m × m principal submatrix of Rm+1 and let the
matrix Wm consist of the first m columns of Wm+1. Then Zm = WmRm is a
QR factorization. Substituting the QR factorizations of Zm+1 and Zm into (12)
gives

AWm = Wm+1Ĝm, Ĝm = Rm+1T̂mR−1
m , (15)

where we note that the (m + 1) × m matrix Ĝm is upper Hessenberg. We are
interested in relating the matrices Wm+1 and Ĝm above to the corresponding
matrices Vm+1 and Ĥm determined by the Arnoldi process; cf. (5). The fol-
lowing proposition is a consequence of the Implicit Q Theorem; see, e.g., [33,
Theorem 3.3].

Proposition 2.1 Assume that m steps of the Arnoldi process can be applied to
the matrix A ∈ Cn×n with initial vector r1 ∈ Cn without breakdown and give
the decomposition

AVm = Vm+1Ĥm,

RR n� 7099



8 B. Philippe & L. Reichel

where Vm+1 ∈ C
n×(m+1) has orthonormal columns, Vm consists of the first

m columns of Vm+1, and Ĥm ∈ C(m+1)×m is upper Hessenberg with positive
subdiagonal entries. Let

AWm = Wm+1Ĝm

be another decomposition, such that Wm+1 ∈ Cn×(m+1) has orthonormal columns,
Wme1 = Vme1, and Ĝm ∈ C(m+1)×m is upper Hessenberg with nonvanishing
subdiagonal entries. Then Wm+1 = Vm+1Dm+1 and Ĝm = D−1

m+1ĤmDm, where

Dm+1 ∈ C
(m+1)×(m+1) is unitary and diagonal, and Dm is the leading m × m

principal submatrix of Dm+1. In particular, the matrices Ĥm and Ĝm are uni-
tarily equivalent, i.e., they have the same singular values. The matrices Hm

and Gm, obtained by removing the last row of Ĥm and Ĝm, respectively, are
unitarily similar, i.e., they have the same eigenvalues.

The eigenvalues of the matrices Hm and Gm provide insight about the spec-
trum of A, at least when A is not pronouncedly nonnormal. Similarly, the
matrices Ĥm and Ĝm shed some light on the pseudospectrum of A and, in
particular, on the nonnormality of A; see [35, 36] for discussions on the latter.

We can use the Arnoldi-like decomposition (12) and the factorization (15) of
Ĝm when determining the correction of the approximate solution x1 as follows.
In view of that

min
z∈Km(A,r1)

‖r1 − Az‖ = min
y∈Cm

‖r1 − AZmy‖ = min
y∈Cm

‖‖r1‖e1 − Rm+1T̂my‖,
(16)

we solve the small least-squares problem on the right-hand side above for y1 ∈
Rm and obtain the new approximate solution of (1) from

x2 := x1 + Zmy1.

3 Chebyshev polynomial bases

This section discusses the construction of Krylov subspace bases with the aid of
shifted and scaled versions of the standard Chebyshev polynomials of the first
kind,

Tk(t) := cosh(k cosh−1(t)), k = 0, 1, 2, . . . . (17)

Introduce the family of ellipses in C,

E(ρ) :=
{

eiθ + ρ−2e−iθ : −π < θ ≤ π
}

, i :=
√
−1, ρ ≥ 1.

Then E(ρ) has foci at ±2ρ−1. We will consider the scaled Chebyshev polynomials

C
(ρ)
k (z) :=

1

ρk
Tk(

ρ

2
z), k = 0, 1, 2, . . . .

It follows from

Tk

(

1

2

(

ρeiθ + ρ−1e−iθ
)

)

=
1

2

(

ρkeikθ + ρ−ke−ikθ
)

that on the ellipse E(ρ), we have

C
(ρ)
k (eiθ + ρ−2e−iθ) =

1

2

(

eikθ + ρ−2ke−ikθ
)

; (18)

INRIA



Krylov subspaces bases 9

see, e.g., [9, 22] for properties of Chebyshev polynomials.
Consider the inner product on E(ρ),

(f, g) :=

∫ π

−π

f(eiθ + ρ−2e−iθ)g(eiθ + ρ−2e−iθ)dθ, (19)

where the bar denotes complex conjugation. Then

(C
(ρ)
j , C

(ρ)
k ) =

⎧

⎨

⎩

0, j �= k,
2π, j = k = 0,

1
2π

(

1 + ρ−4
)

, j = k > 0.
(20)

Let Pm denote the set of all polynomials of degree at most m. We first

show that the scaled Chebyshev polynomials C
(ρ)
k , k = 0, 1, 2, . . . , form a fairly

well conditioned basis of Pm on E(ρ). Subsequently, we discuss the condition
number of Krylov subspace bases determined with the aid of these polynomials.
Gautschi [13, 14] studied several polynomial bases for approximation of functions
on a real interval. Our investigation is inspired by and related to Gautschi’s
work.

Let {φj}m
j=0 be a family of polynomials with φj of degree j. We would like

to determine the sensitivity of the polynomial

Φm(z) :=

m
∑

j=0

δjφj(z), z ∈ E(ρ),

to perturbations in the coefficients δj ∈ C. For this purpose we introduce the
condition number

κS

(

{φj}m
j=0

)

:=

max
‖d‖=1

max
z∈S

∣

∣

∣

∣

∣

∣

m
∑

j=0

δjφj(z)

∣

∣

∣

∣

∣

∣

min
‖d‖=1

max
z∈S

∣

∣

∣

∣

∣

∣

m
∑

j=0

δjφj(z)

∣

∣

∣

∣

∣

∣

, d = [δ0, δ1, . . . , δm]T , (21)

for the polynomial basis {φj}m
j=0 on a compact set S in C. It is convenient to

introduce the uniform norms for continuous functions on S,

‖g‖S := max
z∈S

|g(z)|, g ∈ C(S),

and for vectors in Cm+1,

‖d‖∞ := max
0≤j≤m

|δj |, d = [δ0, δ1, . . . , δm]T ∈ C
m+1.

These norms are used in the proof of the following theorem, which considers the

basis {C(ρ)
j }m

j=0 on E(ρ).

Theorem 3.1

κE(ρ)

(

{C(ρ)
j }m

j=0

)

≤ 4(m + 1).

RR n� 7099



10 B. Philippe & L. Reichel

Proof. Let P
(ρ)
m :=

∑m
j=0 δjC

(ρ)
j and d = [δ0, δ1, . . . , δm]T . Then

‖P (ρ)
m ‖E(ρ) ≤

m
∑

j=0

|δj | max
0≤j≤m

‖C(ρ)
j ‖E(ρ) ≤ ‖d‖

√
m + 1,

where the last inequality follows from the fact that ‖C(ρ)
j ‖E(ρ) ≤ 1, cf. (18),

and from Cauchy’s inequality. Hence, the numerator of (21) with φj := C
(ρ)
j is

bounded by
√

m + 1.
We turn to the denominator of (21). It follows from the orthogonality (20)

of the C
(ρ)
j that

δj =
(P

(ρ)
m , C

(ρ)
j )

(C
(ρ)
j , C

(ρ)
j )

, j = 0, 1, . . . , m.

The Cauchy inequality and (20) yield

|δj | ≤ 2

π

∣

∣

∣
(P (ρ)

m , C
(ρ)
j )

∣

∣

∣

≤ 2

π

∫ π

−π

|P (ρ)
m (eiθ + ρ−2e−iθ)||C(ρ)

j (eiθ + ρ−2e−iθ)|dθ

≤ 2

π

(
∫ π

−π

|P (ρ)
m (eiθ + ρ−2e−iθ)|2dθ

)1/2 (
∫ π

−π

|C(ρ)
j (eiθ + ρ−2e−iθ)|2dθ

)1/2

≤ 4‖P (ρ)
m ‖E(ρ) .

Hence,

‖P (ρ)
m ‖E(ρ) ≥ 1

4
‖d‖∞

and, therefore,

min
‖d‖=1

‖P (ρ)
m ‖E(ρ) ≥ 1

4
min
‖d‖=1

‖d‖∞ =
1

4
√

m + 1
.

This establishes the theorem. ✷

Theorem 3.1 shows the scaled Chebyshev polynomials C
(ρ)
j to be quite well

conditioned on E(ρ). Gautschi [14] investigated the conditioning of monomial
bases on an interval, and showed rapid exponential growth of the condition
number with the number of basis elements. Note that suitably scaled monomial
bases are well conditioned on circles centered at the origin. The conditioning of
scaled monomial bases on ellipses with center at the origin is discussed in [25],
where exponential growth with the number of basis elements is established for
ellipses with distinct foci.1

The bound of Theorem 3.1 is independent of translation, rotation, and scal-
ing of the ellipse, provided that the standard Chebyshev polynomials Tj are
translated, rotated, and scaled accordingly. Let E(f1,f2,r) denote the ellipse with
foci f1 and f2 and semi-major axis of length r. This ellipse can be mapped onto
an ellipse E(ρ) with a suitable value of ρ ≥ 1 by translation, rotation, and scal-
ing. There is a parametric representation ζ(θ), −π < θ ≤ π, of E(f1,f2,r), such

1The condition number used in [14, 25] is defined slightly differently from (21), but this
does not affect the exponential growth rate.
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Krylov subspaces bases 11

that appropriately translated, rotated, and scaled versions, Sj , of the standard
Chebyshev polynomials (17) satisfy

Sj(ζ(θ)) = C
(ρ)
j (eiθ + ρ−2e−iθ), −π < θ ≤ π, j = 0, 1, 2, . . . . (22)

We will use the polynomials Sj to generate Krylov subspace bases.
Assume that m is small enough so that the columns of the matrix

Zm+1 = [S0(A)r1, S1(A)r1, . . . , Sm(A)r1] ∈ C
n×(m+1) (23)

form a basis of the Krylov subspace Km+1(A, r1). Since the Tj satisfy a three-
term recursion relation, so do the Sj . Therefore, the matrix (23) can be deter-
mined from a recursion of the form (9).

The condition numbers (14) for the matrix (23) and (21) for the polynomial
basis {Sj}m

j=0 of Pm easily can be related if we assume the matrix A to be
normal and the vector r1 to be of particular form. Thus, let A have the spectral
factorization

A = UΛU∗, Λ = diag[λ1, λ2, . . . , λn] ∈ C
n×n, U ∈ C

n×n, U∗U = I.

and let

r1 := Ue, e :=
1√
n

[1, 1, . . . , 1]T ∈ C
n.

Then

max
‖d‖=1

‖Zm+1d‖ = max
‖d‖=1

‖U∗Zm+1d‖ ≥ max
‖d‖=1

‖U∗Zm+1d‖∞

= max
‖d‖=1

∥

∥

∥

∥

∥

∥

m
∑

j=0

δjSj(Λ)e

∥

∥

∥

∥

∥

∥

∞

=
1√
n

max
‖d‖=1

max
λ∈λ(A)

∣

∣

∣

∣

∣

∣

m
∑

j=0

δjSj(λ)

∣

∣

∣

∣

∣

∣

(24)

and

min
‖d‖=1

‖Zm+1d‖ = min
‖d‖=1

‖U∗Zm+1d‖ ≤
√

n min
‖d‖=1

‖U∗Zm+1d‖∞

=
√

n min
‖d‖=1

∥

∥

∥

∥

∥

∥

m
∑

j=0

δjSj(Λ)e

∥

∥

∥

∥

∥

∥

∞

= min
‖d‖=1

max
λ∈λ(A)

∣

∣

∣

∣

∣

∣

m
∑

j=0

δjSj(λ)

∣

∣

∣

∣

∣

∣

. (25)

It follows from (14), (21), (24), and (25) that

κ(Zm+1) ≥
1√
n

κλ(A)

(

{Sj}m
j=0

)

. (26)

One can show similarly that

κ(Zm+1) ≤
√

n κλ(A)

(

{Sj}m
j=0

)

. (27)
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12 B. Philippe & L. Reichel

The inequalities (26) and (27) show that a poorly conditioned polynomial
basis on λ(A) gives a badly conditioned matrix Zm+1. It is therefore impor-
tant for the success of the proposed GMRES implementation that the chosen
polynomial basis not be very ill-conditioned on λ(A).

Assume that the matrix A is fairly close to normal, let A have eigenval-
ues close to all points of the ellipse E(f1,f2,r), and let the translated, rotated,
and scaled Chebyshev polynomials Sj satisfy (22). Then the above discussion
suggests that the matrix Zm+1 defined by (23) is fairly well conditioned for
moderate values of m. Since the spectrum of A generally is not available, this
observation suggests that one should determine the smallest ellipse E(f1,f2,r)

that contains all available Ritz values of A and use the translated, rotated,
and scaled Chebyshev polynomials Sj associated with this ellipse. Joubert and
Carey [16, 17] present a different analysis, but suggest the use of a similar Krylov
subspace basis; our scheme differs from the one proposed in [16, 17] in that we
update the ellipse repeatedly during the computations.

It is not important that the ellipse be determined to high accuracy. The
computed ellipse yields the foci for the interval, which determines the Chebyshev
polynomials used. These polynomials are scaled so that each column of the
matrix (23) is of Euclidean norm one. The ellipse, and thereby its foci f1 and
f2, are updated when new Ritz values become available during the solution
process. The foci, together with the normalization of the columns of the matrix
(23), determine the recursion coefficients in (9).

Algorithm 3.2 A Chebyshev basis-GMRES method.
Input: m0, m, x0, r0 := b − Ax0, tolerance ǫ > 0.
Output: approximate solution xj, such that ‖b − Axj‖ ≤ ǫ.

1. Apply Algorithm 1.1 to determine a new approximate solution x1, the asso-
ciated residual error r1, and the m0 × m0 upper Hessenberg matrix Hm0 .

2. Compute the spectrum E := λ(Hm0), determine the smallest ellipse that
contains λ(Hm0), and let f1 and f2 denote its foci.

3. for j := 1, 2, . . . until ‖rj‖ ≤ ǫ do
4. Generate the Krylov subspace basis matrix Zm+1, see (10), with columns

zℓ :=
Sℓ(A)rj

‖Sℓ(A)rj‖
, ℓ = 0, 1, . . . , m,

using a recursion of the form (9), where the Sℓ are Chebyshev polynomials
associated with the interval between the foci f1 and f2. The recursion coef-

ficients
determine the nontrivial entries of the tridiagonal matrix T̂m; see (11).

5. Compute the QR factorization Zm+1 = Wm+1Rm+1, the upper Hessen-
berg

matrix Ĝm in (15), and the leading m × m submatrix Gm of Ĝm.

6. Solve
min

y∈Cm
‖‖rj‖e1 − Rm+1T̂my‖

for yj; cf. (16). Let xj+1 := xj + Zmyj; rj+1 := b − Axj+1;

7. Compute the spectrum λ(Gm), let E := E∪λ(Gm), determine the smallest
ellipse that contains E, and let f1 and f2 denote its foci.

INRIA



Krylov subspaces bases 13

end j. ✷

4 Newton polynomial bases

The scaled Newton polynomial basis can be defined recursively by

φj+1(z) := ηj+1(z − ζj+1)φj(z), j = 0, 1, 2, . . . , (28)

with φ0(z) := 1. Here the ηj > 0 are scaling factors and the ζj+1 are zeros.
Specifically, ζj is a zero of the polynomials φk for all k ≥ j. Let S be a compact
set in C, such that (C ∪ {∞})\S is connected and possesses a Green’s function.
Let ζ1 ∈ S be arbitrary and let ζj for j = 2, 3, 4, . . . , satisfy

k
∏

j=1

|ζk+1 − ζj | = max
z∈S

k
∏

j=1

|z − ζj |, ζk+1 ∈ S, k = 1, 2, 3, . . . . (29)

Any sequence of points ζ1, ζ2, ζ3, . . . which satisfies (29) is said to be a sequence
of Leja points for S. Leja [18] showed that

lim
k→∞

k
∏

j=1

|ζk+1 − ζj |1/k = cap(S),

where cap(S) denotes the capacity of S. This and related results have been
used in [26] to show that the condition number of the Newton polynomial basis
on S with Leja points for S as interpolation points and suitable scaling factors
ηj grows slower than exponentially with the number of basis functions. This
observation motivated the investigations of Krylov subspace bases based on
Newton polynomials [3, 4]. Recent results on polynomial interpolation at Leja
points are reported by Taylor and Totik [34].

The set S is in [4] chosen to be λ(Hm), the spectrum of the matrix Hm

generated during initial computations with Algorithm 1.1. A random initial
vector is used for the Arnoldi process, with the aim of gaining information
about the distribution of the eigenvalues of A. The eigenvalues of Hm are Leja
ordered, i.e., they are ordered to satisfy (29) with S replaced by λ(Hm), and are
used as nodes ζj+1 in the Newton polynomials (28).

A comparison of the formulas (9) and (28) shows that Newton bases for
Krylov subspaces can be generated by the recursion formula (9) with βk+1 :=
ζk+1 for all k, where the ζk+1 are Leja points for some set S. The parameters
γk+1 vanish for all k due to the simple form of the recursion formula (28). The
αk+1 are scaling factor chosen so that ‖zk+1‖ = 1 for all k.

When the dimension of the Krylov subspace to be generated with a Newton
polynomial basis equals the number of distinct eigenvalues of Hm, then all
distinct eigenvalues are used as Leja points. This situation is different from
the one considered by Leja [18], who assumed S to contain infinitely many
points. Therefore, the analysis of the conditioning of Newton bases in [4] is not
applicable and, in particular, Newton bases generated in this manner may be
quite ill-conditioned. Poor conditioning also can be a difficulty when the desired
Krylov subspace is of larger dimension than the number of distinct elements of
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14 B. Philippe & L. Reichel

λ(Hm) and the Newton basis is determined by applying Leja ordered distinct
points in λ(Hm) in a periodic fashion. This approach, which is considered in
[4], works fairly well for generating Newton bases for Krylov subspaces of small
to moderate dimension; however, ill-conditioning may prevent the computation
of bases for Krylov subspaces of high dimension.

This section discusses two approaches to associate sets S containing infinitely
many points with computed Ritz values of A, with the aim of enabling the gener-
ation of useful Krylov subspace bases in Newton form of fairly large dimension.
The zeros ζj+1 in (28) are chosen to be Leja points for S.

We first describe the construction of convex sets S. The Ritz values of A
live in the field of values of A,

F(A) :=
z∗Az

z∗z
, z ∈ C

n\{0},

a convex set whose shape can be important for the performance of iterative so-
lution methods; see [10] for a discussion on the latter. This observation suggests
the use of Krylov subspace bases that are well conditioned on F(A). However,
F(A) generally is difficult to compute for large matrices. We therefore approxi-
mate F(A) by the convex hull of all computed Ritz values of A. This is the set
S.

Let Hm0 be the upper Hessenberg matrix determined by the computation
with Algorithm 1.1 in Step 1 of Algorithm 4.1 below. We initialize S to be
co(λ(Hm0)), the convex hull of λ(Hm0 ). In Step 5 of Algorithm 4.1, new Ritz
values of A are determined as eigenvalues of the matrix Gm. These Ritz values
are used to update the available the set S according to

S := co(S ∪ λ(Gm)). (30)

In order to reduce the computational effort to generate Leja points, we discretize
the sets S similarly as described in [2] and discard previously generated Leja
points. The latter therefore do not influence the distribution of the new Leja
points to be determined.

The set S satisfies the conditions required in the analysis of Leja [18]. More-
over, the analysis in [26] on the conditioning of Newton polynomial bases with
the zeros ζj+1 chosen to be Leja points for S is applicable. The conditioning of
this basis can be related to the conditioning of the associated Krylov subspace
basis similarly as in Section 3; see [4] for further details.

For some matrices large areas of F(A) do not contain any eigenvalues. It
follows that a well-conditioned polynomial basis on F(A) may be poorly con-
ditioned on λ(A). We therefore also present an approach to construct a set S,
which lives in the interior of the convex hull of all computed Ritz values.

Let similarly as above Hm0 be the upper Hessenberg matrix generated in
Step 1 of Algorithm 4.1. Let sp(Hm0) denote the convex set formed by the
spokes from the midpoint of λ(Hm0 ) to the eigenvalues of Hm0 . We refer to
sp(λ(Hm0 )) as a spoke set. The set S is initialized to sp(λ(Hm0 )). Let Gm

denote an upper Hessenberg matrix computed during Step 5 of Algorithm 4.1.
Whenever a new matrix Gm is available, we update the set S according to

S := S ∪ sp(λ(Gm)). (31)

Thus, S is the union of spoke sets. When the set S is updated, previously
generated Leja points are discarded.

INRIA



Krylov subspaces bases 15

The following algorithm describes the computations with Krylov subspace
bases of Newton form with the nodes ζj+1 in (28) chosen to be Leja points for
sets S determined by (30) or (31).

Algorithm 4.1 A Newton basis-GMRES method.
Input: m0, m, x0, r0 := b − Ax0, tolerance ǫ > 0.
Output: approximate solution xj, such that ‖b − Axj‖ ≤ ǫ.

1. Apply Algorithm 1.1 to determine a new approximate solution x1, the asso-
ciated residual error r1, and the m0 × m0 upper Hessenberg matrix Hm0 .

2. Compute the spectrum E := λ(Hm0), determine the smallest ellipse that
contains λ(Hm0), and let S := co(λ(Hm)) or S := sp(λ(Hm)).

3. for j := 1, 2, . . . until ‖rj‖ ≤ ǫ do
4. Generate the Krylov subspace basis matrix Zm+1, see (10), with columns

zℓ :=
φℓ(A)rj

‖φℓ(A)rj‖
, ℓ = 0, 1, . . . , m,

using a recursion of the form (28), where the φℓ are Newton polynomials
determined by m Leja points ζk for S. The recursion coefficients determine
the nontrivial entries of the bidiagonal matrix T̂m, see (11), with γk = 0.

5. Compute the QR factorization Zm+1 = Wm+1Rm+1, the upper Hessen-
berg

matrix Ĝm in (15), and the leading m × m submatrix Gm of Ĝm.

6. Solve
min

y∈Cm
‖‖rj‖e1 − Rm+1T̂my‖

for yj; cf. (16). Let xj+1 := xj + Zmyj; rj+1 := b − Axj+1;

7. Compute the spectrum λ(Gm) and update S according to (30) or (31).

end j. ✷

5 Computed examples

We determine the conditioning of a few polynomial bases. The computed Cheby-
shev polynomials are associated with the ellipse of smallest area containing all
available Ritz values. Other ellipses also could be used; see, e.g., [1]. The ellipse
does not have to be determined with high accuracy.

The matrices A in the computed examples are from Matrix Market [23], see
Table 1, and the right-hand side vector in (1) is b = Ae, where e = [1, 1, . . . , 1]T .
We have chosen examples for which some polynomial bases are fairly well condi-
tioned, and examples for which all of the polynomial bases considered are quite
ill-conditioned. This illustrates both the possibilities and limitation of the poly-
nomial bases discussed. The Krylov subspace bases generated can be applied in
GMRES, to the computation of a few eigenvalues and associated eigenvectors of
the matrix, and to the evaluation of matrix functions, provided that the basis
is not too ill-conditioned. We remark that for the latter applications, it may be
attractive to use Chebyshev or Newton bases to expand an available orthonor-
mal Krylov subspace basei by orthogonalizing the Chebyshev or Newton bases
against the already available orthonormal basis.
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16 B. Philippe & L. Reichel

We display the condition number of several Krylov subspace bases as a func-
tion of the dimension of the subspace, without discussing particular applica-
tions. All computations were carried out in MATLAB with about 16 significant
decimal digits.

Table 1: Test matrices from Matrix Market. The properties “H” and “nH”
stand for Hermitian and non-Hermitian, respectively.

Example Matrix Order Property Application

5.1 E20R0000 4241 H Driven cavity, 20x20 elements, Re=0

5.2 PLAT1919 1919 H Platzman’s oceanographic model

5.3 GRE1107 1107 nH Simulation of computer system

5.4 FS 680 1 680 nH Chemical kinetics problem

Example 5.1. This example determines Krylov subspace bases for the matrix
E20R0000 from Matrix Market; see Table 1. We first apply 10 steps of the
Arnoldi process to compute the decomposition (4) with m = 10. The eigenvalues
of the upper Hessenberg matrix Hm in (4) are the Ritz values shown in Figure
1 (top). Since the matrix is Hermitian, the Ritz values lie on the real axis.

The condition number of the Newton Krylov subspace basis defined by the
Leja ordered Ritz values is depicted by the blue curve marked with ∗ in Figure
1 (bottom). The horizontal axis shows the dimension of the basis. The red
continuous curve shows the condition number of the scaled power basis as a
function of the dimension of the basis. The condition number is seen to grow
rapidly and exponentially with the dimension of the Krylov subspace.

The extreme Ritz values define an interval for which we compute 30 Leja
points. The condition number of the Newton Krylov subspace basis determined
by these Leja points is displayed by the brown dotted graph marked with ∆.
The condition number can be seen to grow fairly slowly with the dimension of
the basis. The Newton bases are much better conditioned than the scaled power
bases for Krylov subspaces of the same dimensions.

Finally, the black dash-dotted graph of Figure 1 (bottom) displays the con-
dition number of Chebyshev polynomial basis. The polynomials are for the
interval between the extreme Ritz values. The conditioning of this basis is
slightly better than for the other bases considered. ✷

Example 5.2. We compute Krylov subspace bases for the matrix PLAT1919
from Matrix Market; see Table 1. Figure 2 is analogous to Figure 1. The relative
performance of the Krylov subspace bases is similar to Example 5.1. However,
the condition number for all bases grows somewhat faster than in Example 5.1.
The Newton basis determined by Leja points yields bases with the smallest
condition number. ✷

Example 5.3. This example illustrates the conditioning of Krylov subspace
bases for the non-Hermitian matrix GRE1107; see Table 1. Figure 3 (top)
displays the 10 computed Ritz values (blue o), 30 Leja points allocated on a
spoke set determined by the Ritz values, as described in Section 4, and the
ellipse of smallest area, containing all Ritz values. This is the ellipse E(f1,f2,r)

of Section 3. The Chebyshev polynomial basis generated is associated with this
ellipse.
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Figure 1: Example 5.1. Top: Ritz values of matrix (blue o) and Leja points (red
∗). Bottom: Condition number as a function of the dimension of the Krylov
basis. Scaled power basis (red continuous curve), Newton basis defined by Ritz
values (blue curve with ∗), Newton basis defined by Leja points (brown dotted
graph with ∆), Chebyshev polynomial basis (black dash-dotted graph).

Figure 3 (bottom) illustrates the growth of the condition number of the
Krylov subspace bases generated. The conditioning of the power bases is the
worst and for Newton bases determined by Leja points the best for large degrees.

We found Newton bases for a spoke set and union of spoke sets (31) for
many matrices were better conditioned than Newton bases for the convex hull
of available Ritz values (30). Therefore, we only report the condition number
for the former. ✷

Example 5.4. We use the matrix FS 680 1 from Matrix Market scaled by
10−11. The results are displayed by Figure 4, which is analogous to Figure 3.
For this matrix the condition numbers for all polynomial bases considered grow
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Figure 2: Example 5.2. Top: Ritz values of matrix (blue o) and Leja points (red
∗). Bottom: Condition number as a function of the dimension of the Krylov
basis. Scaled power basis (red continuous curve), Newton basis defined by Ritz
values (blue curve with ∗), Newton basis defined by Leja points (brown dotted
graph with ∆), Chebyshev polynomial basis (black dash-dotted graph).

fairly rapidly. Nevertheless, Chebyshev or Newton polynomial bases may be
used in Algorithms 3.2 and 4.1 if m is chosen sufficiently small, say, m ≤ 15. ✷

6 Conclusion

The computed examples of the previous section, as well as many other computed
examples, show that the use of Chebyshev or Newton polynomial bases may be
viable alternatives to the Arnoldi process.
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Figure 3: Example 5.3. Top: Ritz values of matrix (blue o) and Leja points
(red ∗). The Chebyshev polynomials generated are for the interval between
the foci of the displayed ellipse. Bottom: Condition number as a function of
the dimension of the Krylov basis. Scaled power basis (red continuous curve),
Newton basis defined by Ritz values (blue curve with ∗), Newton basis defined
by Leja points (brown dotted graph with ∆), Chebyshev polynomial basis (black
dash-dotted graph).
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Figure 4: Example 5.4. Top: Ritz values of matrix (blue o) and Leja points
(red ∗). The Chebyshev polynomials generated are for the interval between
the foci of the displayed ellipse. Bottom: Condition number as a function of
the dimension of the Krylov basis. Scaled power basis (red continuous curve),
Newton basis defined by Ritz values (blue curve with ∗), Newton basis defined
by Leja points (brown dotted graph with ∆), Chebyshev polynomial basis (black
dash-dotted graph).
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