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On the Importane of Bandwidth ControlMehanisms for Sheduling on Large SaleHeterogeneous PlatformsHejer Rejeb, Olivier BeaumontThème : Modélisation, optimisation et ontr�le de systèmes hétérogènesÉquipes-Projets CePageRapport de reherhe n° 7105 � November 2009 � 20 pagesAbstrat: We study three sheduling problems (�le redistribution, indepen-dent tasks sheduling and broadasting) on large sale heterogeneous platformsunder the Bounded Multi-port Model. In this model, eah node is assoiatedto an inoming and outgoing bandwidth and it an be involved in an arbitrarynumber of ommuniations, provided that neither its inoming nor its outgoingbandwidths are exeeded. This model well orresponds to modern networkingtehnologies, it an be used when programming at TCP level and is also imple-mented in modern message passing libraries suh as MPICH2. We prove, usingthe three above mentioned sheduling problems, that this model is tratable andthat even very simple distributed algorithms an ahieve optimal performane,provided that we an enfore bandwidth sharing poliies. Our goal is to assertthe neessity of suh QoS mehanisms, that are now available in the kernelsof modern operating systems, to ahieve optimal performane. We prove thatimplementations of optimal algorithms that do not enfore presribed band-width sharing an fail by a large amount if TCP ontention mehanisms onlyare used. More preisely, for eah onsidered sheduling problem, we establishupper bounds on the performane loss than an be indued by TCP bandwidthsharing mehanisms, we prove that these upper bounds are tight by exhibitinginstanes ahieving them and we provide a set of simulations using SimGRIDto analyze the pratial impat of bandwidth ontrol mehanisms.Key-words: heterogenous platforms, sheduling, performane, multiportmodel , bounded bandwidth, TCP bandwidth ontrol mehanisms



Sur l'importane de ontr�le de bonde pasantedans les platformes hétérogènes à large éhelleRésumé : Dans et artile, nous onsidérons trois problèmes d'ordonnanement(la redistribution des �hiers, l'ordonnanement des tâhes indépendantes et ladi�usion), dans des systèmes hétérogènes à large éhelle sous le modèle multi-port borné.Dans e modèle, haque n÷ud est aratérisé par une bande passante entranteet une bande passante sortante et il peut partiiper à plusieurs ommuniationssimultanées pourvu que ses bandes passantes ne soient pas dépassées. Ce mod-èle orrespond bien aux tehnologies de réseaux modernes. Il peut être utiliséen programmant au niveau TCP et il est même implémenté dans les librairiesmodernes à passage de messages telles que MPICH2.On prouve, en utilisant les trois problèmes d'ordonnanement ités i-dessus,que e modèle permet la oneption d'algorithmes polynomiaux et que mêmedes algorithmes distribués assez simples peuvent atteindre la performane opti-male, pourvu qu'on puisse imposer les politiques de partage de bande passante.Notre but est de montrer l'importane de tels méanismes de partage de bandepassante, qui sont disponibles dans les noyaux des systèmes d'exploitation mod-ernes, pour pour atteindre le débit optimal. On prouve que l'implémentationd'algorithmes optimaux peut onduire à des performanes largement sous-optimalessi seul le méanisme de la gestion de ontention de TCP est utilisé. En par-tiulier, pour haque problème d'ordonnanement traité, on e�tablit des bornessupérieures exates sur la perte de performane que peut engendrer l'utilisationde méanismes de ontr�le de bande passante de TCP. En�n, on présente unensemble de simulation, en utilisant SimGrid, pour illustrer l'impat pratiquede es méanismes de ontr�le de bande passante.Mots-lés : platformes hétérogènes à large éhelle, ordonnanement, perfor-mane, modèle multi-port, bande passante limitée, TCP, méanismes de ontr�lede bande passante
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4 Beaumont & Oivier , Rejeb & Hejerof tasks to be proessed is huge so that makespan minimization does not makesense. Therefore, we rather onsider throughput maximization, where the aimis to maximize the number of tasks that an be proessed within one time unitone steady state has been reahed, as advoated in [3℄.The third sheduling problem we onsider (see Setion 2.3) is related tobroadasting a large size message. Broadasting in omputer networks is thefous of a vast literature [15, 25, 24℄. The one-to-all broadast, or single-nodebroadast, is the most primary olletive ommuniation pattern: initially, onlythe soure proessor holds (or generate) the data that needs to be broadast; atthe end, there is a opy of the original data residing at eah proessor. Parallelalgorithms often require to send idential data to all other proessors, in orderto disseminate global information (typially, input data suh as the problemsize or appliation parameters). The same framework applies for broadastinga live stream of data, suh as a movie. In this paper, we onentrate on asimple senario, where the nodes are organized as a star platform (the sourenode being at the enter), and where all the ommuniations take plae diretlybetween the soure node and the lients.Sine we target large sale distributed platforms, we do not assume that thetopology of the platform is known in advane, sine automati disovery meh-anisms suh as ENV [23℄ or AlNEM [10℄ are too slow to be used in large saledynami settings. Therefore, we rather assoiate to eah node loal properties(namely its inoming and outgoing bandwidths and its proessing apability),whose values an easily be determined at runtime. Thus, the network topologieswe onsider are rather logial overlay networks rather than physial networks.To model ontentions, we rely on the bounded multi-port model, that hasalready been advoated by Hong et al. [13℄ for independent task distributionon heterogeneous platforms. In this model, node Pi an serve any number oflients Pj simultaneously, eah using a bandwidth bi,j provided that its outgoingbandwidth is not exeeded, i.e., ∑

j bi,j ≤ Bout
i . Similarly, Pj an simultane-ously reeive messages from any set of lients Pi, eah using a bandwidth bi,jprovided that its inoming bandwidth is not exeeded, i.e., ∑

i bi,j ≤ Bin
j . Thisorresponds well to modern network infrastruture, where eah ommuniationis assoiated to a TCP onnetion.This model strongly di�ers from the traditional one-port model used in thesheduling literature, where onnetions are made in exlusive mode: the serveran ommuniate with a single lient at any time-step. In the ontext of largesale platforms, the networking heterogeneity ratio may be high, and it is un-aeptable to assume that a 100MB/s server may be kept busy for 10 seondswhile ommuniating a 1MB data �le to a 100kB/s DSL node. In the ontextof large sale distributed platforms, we will assume that all onnetions arediretly handled at TCP level. It is worth noting that at TCP level, severalQoS mehanisms suh as qdis, available in modern operating systems, enablea presribed sharing of the bandwidth [5, 14℄. In partiular, it is possible tohandle simultaneously several onnetions and to �x the bandwidth alloatedto eah onnetion. In our ontext, these mehanisms are partiularly usefulsine in optimal shedules, the bandwidth alloated to a onnetion between Piand Pj may be lower than both Bout

i and Bin
j . Therefore, the model we pro-pose enompasses the bene�ts of both bounded multi-port model and one-portmodel. It enables several ommuniations to take plae simultaneously, whatINRIA



On the Importane of Bandwidth Control Mehanisms 5is ompulsory in the ontext of large sale distributed platforms, and pratialimplementation is ahieved using TCP QoS mehanisms.We prove, using the three above mentioned sheduling problems, that thismodel is tratable and that simple distributed algorithms an ahieve optimalperformane, provided that we enfore bandwidth sharing poliies. Our goal isto assert the neessity of suh QoS mehanisms to obtain a presribed share ofbandwidths, that are now available in the kernels of modern operating systems.More preisely, we prove that implementations of optimal algorithms that donot enfore presribed bandwidth sharing an fail by a large amount if TCPontention mehanisms are used. This result is asserted both by providingtheoretial worst ases analysis and through simulations using SimGRID.The rest of the paper is organized as follows. In Setion 2, we formalizethe sheduling problems we onsider and we desribe how to model the kind offairness TCP implements in presene of ontentions. In Setions 3, 4 and 5, westudy the maximal performane loss that an be indued by TCP bandwidthsharing mehanisms in presene of ontentions. More preisely, for eah shedul-ing problem we onsider, i.e. File Redistribution (Setion 3), Independent TasksSheduling (Setion 4) and Broadasting (Setion 3), we establish upper boundson the performane loss indued by TCP bandwidth sharing mehanisms, weprove that these upper bounds are tight by exhibiting instanes ahieving thesebounds and we provide a set of simulations to analyze the pratial importaneof bandwidth ontrol mehanisms. At last, we provide in Setion 6 some futureworks and onluding remarks.
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6 Beaumont & Oivier , Rejeb & Hejer2 Problems and Communiation Modeling2.1 Data RedistributionIn the ontext of large sale distributed storage systems suh as Vespa [2℄,developed by Yahoo!, we onsider the ase where a disk is added to the system.In Vespa, the set of �les that should be transfered to the added disks is knownin advane and the sheduling problem onsists in �nding for eah �le, amongthe existing replias of it, the one that should be used for the transfer so asto minimize to overall ompletion time. Let us denote by S = {F1, F2, . . . , Fk}denote the set of �les that should be transfered to destination node D and letus denote by xi
k the indiator funtion so that xi

k = 1 if soure node Si holds areplia of �le Fk and 0 otherwise. The size of �le Fk is denoted by sk. In orderto make the problem tratable, we assume that a given �le an be sent partiallyfrom several soure nodes (otherwise, the problem beomes NP-Complete andis analyzed in [4℄). Let us also denote by Bin the inoming bandwidth atdestination node D and by Bout
i the outgoing bandwidth at soure node Di.The following linear program provides a lower bound for the time neessary toomplete all transfersMinimize T subjet to 
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,where zi
k denotes the size of the part of �le Fk transfered from Si to D. Clearly,any solution (if we average bandwidth usages over time) must satisfy aboveonditions, so that the optimal value Topt of the linear program is a lowerbound on the ahievable makespan. On the other hand, let us onsider animplementation suh that eah soure disk Si sends a part of �le Fk to D atonstant rate zi

k

Topt . Suh an implementation would ahieve all �le transfers bytime Topt. We will show in Setion 3 how to ahieve optimality using bandwidthontrol mehanisms and prove that without suh a mehanism, i.e. relying onlyon TCP ontention mehanisms, the performane of suh an implementationmay be as bad as 2Topt.2.2 Independent Tasks ShedulingWe onsider an elementary master-slave platform to proess a huge number ofindependent equal-sized tasks. Initially, the master node M holds (or generateat a given rate) a large number of tasks that will be proessed by a set of slavenodes Pi. The master node is haraterized by its outgoing bandwidth Boutwhereas a slave node Pi, 1 ≤ i ≤ N is haraterized by both its inomingbandwidth Bin
i and its proessing apability wi. Sine all tasks are equal-sized,we normalize all Bout, Bin

i and wi in terms of tasks (transmitted or proessed)per time unit. Let us onsider the following linear programMaximize ρopt =
∑

i ρi subjet to {

∀i ρi ≤ min(Bin
i , wi) and ρi ≥ 0

∑

i ρi ≤ Bout ,INRIA



On the Importane of Bandwidth Control Mehanisms 7where ρi denotes the number of tasks that the master node delegates to Pi pertime unit. If we onsider any valid solution of the independent tasks shedulingproblem over a long time period T and if we denote by xi the average numberof tasks proessed Pi per time unit, i.e. xi = Ni(T )/T , then the xis satisfy theonditions of the linear program, so that ∑

i xi ≤ ρopt and ∑

i Ni(T ) ≤ ρoptT ,what proves that ρopt is an upper bound on the ahievable throughput. Onthe other hand, let us onsider a solution where the master node ontinuouslysends tasks to Pi at rate ρi and tasks are immediately proessed by Pi. Sinethe onditions of the linear program are satis�ed, after an initialization phasewhose duration is a onstant and that orresponds to the neessary time for allthe slaves to reeive their �rst task, this solution is valid and proesses ∑

i ρitasks per time unit. Therefore, if we onsider an arbitrarily large exeutiontime, then the duration of the initialization phase an be negleted and theahieved throughput tends to ρopt. We will show in Setion 4 how to ahieveoptimality using bandwidth ontrol mehanisms and prove that without suh amehanism, i.e. relying only on TCP ontention mehanisms, the performaneof suh an implementation may be as bad as 3/4ρopt.2.3 BroadastingIn the broadast setting, a soure node S holds (or generate at a given rate) alarge �le that must be sent to all lient nodes. Numerous broadast algorithmshave been designed for parallel mahines suh as meshes, hyperubes, and vari-ants (see among others [15, 25℄). In the ontext, of ontent distribution systems,it is at the ore of live streaming distribution systems suh as CoolStreaming [27℄or SplitStream [8℄. In both ases, we are interested in the distribution of a largemessage to all the nodes of a large sale platform. Thus, we are not interestedin minimizing the makespan for a given message size but rather to maximizethe throughput (i.e. the maximum broadast rate, one steady state has beenreahed). In this ontext, the soure node S is haraterized by its outgoingbandwidth Bout whereas a lient node Pi is haraterized by both its inomingbandwidth Bin
i and its outgoing bandwidth Bout

i sine it may be used as anintermediate soure one it has reeived some part of the message. In the mostgeneral ase, the goal is to design an overlay network G = (P, E, c) suh that
Pi sends messages to Pj at rate c(Pi, Pj). The optimal broadast rate on Gan be haraterized using �ows. Indeed, theorems [9, 11℄ relate the optimalbroadast rate with the minimum soure-ut of a weighted graph. ∀j, we andenote as ut(j) the minimum value of a ut of G into two set of lients C1and C2 suh that C1

⋃

C2 = P , S ∈ C1 and Pj ∈ C2. ∀j, ut(j) denotes themaximal value of a �ow between the soure node S and Pj and therefore repre-sents an upper bound of the broadast rate. Moreover, it is proven in [9℄ thatthis bound is atually tight, i.e. that the optimal broadast rate for graph G isequal to minut(G) = minj ut(j). E�ient algorithms [11℄ have been designedto ompute the set of weighted trees that ahieve this optimal broadast ratefrom c(Pi, Pj) values. Therefore, we an use the linear programming approahproposed in proposed in [17℄ to ompute the optimal broadast rate ρ∗ and
∀i, j, c(Pj , Pi), the overall bandwidth used between nodes Pj and Pi. One all
c(Pi, Pj) values have been determined, Massoulié et al. [19℄ reently proposeda deentralized randomized algorithm to implement broadast that ahieves athroughput arbitrarily lose to ρ∗, in the ase where all inoming bandwidthsRR n° 7105



8 Beaumont & Oivier , Rejeb & Hejerhave in�nite apaity. In this ontext, a single ommuniation between Pi and
Pj an reah the maximum outgoing bandwidth of Pi, so that we an fully makeuse of available bandwidth without dealing with ontentions. In this paper, wewill onsider a simpler setting, where lient nodes are organized as a star net-work with the soure node at the enter and lient nodes have no outgoingbandwidth. On the other hand, we do not make any assumption of the inom-ing bandwidth of the lient nodes. In partiular, inoming bandwidths may besmaller than Bout, what requires to do several ommuniations simultaneouslyto aggregate bandwidth up to Bout, and therefore requires to deal with on-tentions. We will show in Setion 5 how to ahieve optimality using bandwidthontrol mehanisms and prove that without suh a mehanism, i.e. relying onlyon TCP ontention mehanisms, the performane of suh an implementationmay be arbitrarily smaller than ρ∗.2.4 TCP Contention ModelingOur goal is to study the in�uene in presene of ontentions of TCP bandwidthsharing mehanisms on the performane of several sheduling algorithm imple-mentations. More preisely, our goal is to prove that TCP mehanisms to dealwith ongestion must be bypassed by assoiating to eah ommuniation a pre-sribed bandwidth so that ontentions are automatially removed. In order tounderstand what kind of fairness TCP implements in presene of ontentions,several sophistiated models have been proposed [20, 22, 18℄. In this paper, wewill model ontentions using the RTT-aware Max-Min Flow-level method thathas been proposed in [6℄ and validated using NS-2 Network Simulator [21℄ in [7℄.Let us onsider the basi platform depited in Figure 1, that will be usedthroughout this paper. Let us denote by Bout the outgoing bandwidth of node
S, by bini the inoming bandwidth of node Pi and by λi the lateny between Sand Pi. Let us onsider the ase where S simultaneously sends messages to all
Pis (the ase where all Pis simultaneously send a message to S gives the sameresults). Then, the bandwidth ci alloated to the ommuniation between S and
Pi using RTT-aware Max-Min Flow-level method is returned by the followingalgorithm (where Brem denotes the remaining bandwidth).

b
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NFigure 1: Bandwidth sharing in presene of ontentions

INRIA



On the Importane of Bandwidth Control Mehanisms 9Set markedi = 0 ∀i; Brem = BoutWhile ∃i, markedi = 0 and bini ≤
1

λi
P

j, markedj=0

1

λj

Brem
ci = bini ;markedi = 1; Brem = Brem − bini ;EndWhileForall i, If markedi = 0 then Set ci =

1

λi
P

j, markedj=0

1

λj

BremEndForAll .

Using this model, in the ase where all bini values are large (for instane largerthan Bout), the bandwidth alloated to the ommuniation between S and Pionly depends on the lateny of the link and is inversely proportional to thelateny of the link. On the other hand, if all bini values are very small, then thebandwidth alloated to the ommuniation between S and Pi is bini . Let us nowprove two basi lemmas related to this model.Lemma 2.1 If ∑

i bini ≤ Bout, then ∀i, ci = bini .Proof: Let us �rst prove that initially ∃i, markedi = 0 and bini ≤
1

λi
P

j, markedj=0

1

λj

Bout.All nodes are unmarked. Let us suppose that ∀i, bini >
1

λi
P

j
1

λj

Bout. Then,
∑

i bini >
P

i
1

λi
P

j
1

λj

Bout = Bout, what is absurd. Therefore, there is at least onenode Pi1 suh that bini1 ≤
1

λi1
P

j, markedj=0

1

λj

Bout.The algorithm marks this node and alloates a bandwidth bini1 to Pi1 and
Brem = Bout − bini1 . Sine initially ∑

i bini ≤ Bout, then ∑

i6=i1
bini ≤ Bremand we an prove laimed result by indution.Lemma 2.2 If ∑

i bini ≥ Bout, then ∑

i ci ≥ Bout.Proof: At the end of the While loop, let us denote by S the set of nodes thathave been marked. Then, ∀Pi ∈ S, ci = bini and Brem = Bout − ∑

Pi∈S ci.At the end of the For loop, ∀Pi 6∈ S, ci =
1

λi
P

Pj 6∈S
1

λj

Brem, so that ∑

Pi 6∈S ci =

Brem and ∑

i ci =
∑

Pi∈S ci +
∑

Pi 6∈S = Bout − Brem + Brem = Bout.
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10 Beaumont & Oivier , Rejeb & Hejer3 Data Redistribution3.1 ImplementationIn this setion, we onsider the pratial implementation of �le redistributionsheduling algorithms desribed in Setion 2.1. In the ase where �les an besplit and sent from several soures to the destination disk, we have seen thata simple linear program provides the set of �le transfers that minimizes themakespan. More preisely, the solution of the linear program provides for eah�le F k the size zi
k of the part of Fk that should be transfered from Si to D.In order to assess the impat of bandwidth sharing mehanisms on the overallperformane of sheduling algorithms, we will onsider two di�erent implemen-tations of the data redistribution algorithm.1. Implementation 1: eah soure disk Si has the list of the part of the�les Fk that it has to send to destination disk D and it sends them syn-hronously to the destination node.2. Implementation 2: Implementation 2 is exatly the same as Im-plementation 1 exept that we bound the outgoing bandwidth of Si to

P

k zi
k

T
.3.2 Simulation Results using SimGRIDWe present the simulation results obtained on random but realisti instaneswith SimGRID. It is worth noting that in the ase of �le redistribution, as in thease of steady state sheduling (Setion 4) and broadasting (Setion 5), we on-sider simple star platforms. In this ontext, the simulation of the bounded Multi-port model in SimGRID has been validated in [7℄ using NS-2 Network Simula-tor [21℄. Sine we are interested in the impat of TCP bandwidth sharing meh-anism in presene of ontention, we onsider the ases where ∑

i Bout
i = 1.2Binand ∑

i Bout
i = 2Bin, that orrespond respetively to low and high level of on-tentions. Sine the lateny has a major impat on the bandwidth sharing whenusing TCP, we also onsider the ase when the lateny are almost homogeneous(random values between 10−5 and 3 × 10−5) or strongly heterogeneous (10−x,where x is a random value between 3 and 7). In order to evaluate the impatof the number of nodes, we onsider the ase where N = 10 and N = 20).The following table represents the ratio between the makespan obtainedwith Implementation 2 and the makespan obtained using Implementation1. All values orrespond to 20 di�erent simulations, and in all ase, we depitthe minimum, maximum and mean ratio over the 20 simulations.

∑

i Bout
i = 1.2Bin ∑

i Bout
i = 2BinHomogeneous ratio min. max. mean

N = 10 1.18 1.45 1.26
N = 20 1.25 1.40 1.30

ratio min. max. mean
N = 10 1.02 1.17 1.11
N = 20 1.05 1.15 1.11Heterogeneous ratio min. max. mean

N = 10 1.30 1.57 1.45
N = 20 1.22 1.64 1.51

ratio min. max. mean
N = 10 1.09 1.26 1.16
N = 20 1.06 1.29 1.13The simulation results prove the impat if the bandwidth ontrol on the per-formane of �le redistribution sheduling algorithms. We an notie that, asINRIA



On the Importane of Bandwidth Control Mehanisms 11expeted, the impat is more important when the heterogeneity is high (in thisase, the bandwidth alloated to some nodes in presene of ontentions may bevery small, thus delaying their transfers) and when the level of ontention is rel-atively low. Indeed, in the ase where ∑

i Bout
i = 2Bin, even if some transfersare almost ompletely delayed �rst, ∑

i Bout
i one the �rst set of transfers hasended is still large so that Bin bandwidth is not wasted (what happens in thease ∑

i Bout
i = 1.2Bin.3.3 Worst ase analysisIn previous setion, we have seen that bounding the available bandwidth out ofsoure nodes an improve the overall makespan. We now prove that the ratiobetween the optimal makespan using bandwidth ontrol and the makespan whenTCP ontention mehanisms are used in presene of ontention is upper boundedby 2. We also prove that this bound is tight by exhibiting a platform where thisratio an be arbitrarily lose to 2.3.3.1 Upper bound for the makespan performane lossLet us onsider a platform with several soure disks Si and a destination disks

D and let us onsider the makespan M2 to omplete all �le transfers usingImplementation 2. To model ontentions, we will rely on the RTT-awareMax-Min Flow-level method that has been introdued in Setion 2.4. We willprove that the makespan M2 using Implementation 2 annot be larger thantwie the makespan M1 obtained using Implementation 1. The proof is basedon the same ideas as the lassial Graham's bound [12℄. Let us distinguish twosets of instants during the exeution of Implementation 2. The �rst phaseonsists in the instants suh that the inoming bandwidth of D is fully usedand the seond phase onsists in all other instants. Let us denote by T1 theduration of the �rst phase and by T2 the duration of the seond phase, so that
T1 + T2 = M2.Theorem 3.1 T1 ≤ M1 and T2 ≤ M1, so that T1 + T2 ≤ 2M1Proof: Let us �rst onsider the �rst phase. During this phase, the inomingbandwidth of D is fully used so that the overall size of data S1 transmittedduring phase 1 is exatly S1 = Bin × T1. By onstrution, S1 ≤ S, where Sdenotes the overall size of data that must be transmitted to D, so that T1 ≤ S

Bin .Moreover, S

Bin is a lower bound for the ompletion time of all �le transfers, sothat T1 ≤ Topt ≤ M1.Let us now onsider the seond phase and more spei�ally a soure disk Slastthat is involved in a �le transfer at the end of Phase 2. During an instant t ofPhase 2, let us denote by U(t) the set of nodes that atually send data to D.Using the notations of Lemma 2.2, ∑Si∈U(⊔) ci(t) < Bin so that ∑

i Bout
i < Binand, beause of Lemma 2.1, ∀Si ∈ U(t), ci(t) = Bout

i . Therefore, sine Slastis still sending data at the end of Phase 2, it has been sending data to D at allthe instants of Phase 2 with rate Boutlast. Therefore, the overall amount of datasent by Slast during Phase 2 is at least Boutlast × T2. Clearly, the overall amountof data sent by Slast is at most Boutlast × M1, so that T2 ≤ M1. This ahievesRR n° 7105



12 Beaumont & Oivier , Rejeb & Hejerthe proof of the theorem.3.3.2 Worst Case ExampleTheorem 3.2 M2

M1

an be arbitrarily lose to 2.Proof: Let us now prove that the bound of 2 in Theorem 3.1 is tight. To obtainthis result, let us onsider the following platform, made of two soure disks S1and S2 and a destination disk D with the following harateristis
S1 : λ1 = ǫ3, Bout

1 = 1; S2 : λ2 = ǫ, Bout
2 = ǫ; D : Bin = 1,where ǫ stands for an arbitrarily small quantity and λ1 and λ2 denote the laten-ies between S1 and D and S2 and D respetively. Sine latenies are arbitrarilysmall, we will not onsider the delays introdued by these latenies but ratheronentrate on their impat on bandwidth sharing using the RTT-aware Max-Min Flow-level algorithm presented in Setion 2.4.Let us assume that S1 has to send to D a �le of size 1 and that S2 has tosend a �le of size ǫ. In the optimal solution, S1 ontinuously sends data duringtime 1 + ǫ to D using bandwidth 1

1+ǫ
and S2 ontinuously sends data duringtime 1 + ǫ to D using bandwidth ǫ

1+ǫ
so that at time 1 + ǫ, D has reeived both�les.Let us now onsider what happens if we rely on TCP bandwidth sharingmehanisms to deal with ontentions.







Bout
1 = 1 >

1

ǫ3

1

ǫ
+ 1

ǫ3

= 1 − ǫ2 + o(ǫ2)

Bout
2 = ǫ >

1

ǫ
1

ǫ
+ 1

ǫ3

= ǫ2 + o(ǫ2)
,so that (ci values are attributed in the Forall loop) c1 = 1 − ǫ2 + o(ǫ2) and

c2 = ǫ2 + o(ǫ2). Therefore, S1 ends up its transfer at time 1 + ǫ2. At this time,
S2 has transfered ǫ2 + o(ǫ2) data so that it needs extra 1− ǫ time to ends up itstransfer using its maximal bandwidth ǫ. Therefore, the overall neessary timeto transfer both �les using TCP bandwidth sharing mehanism is (2 − ǫ), i.e.
(2−3ǫ) times the time neessary to do the �le transfers optimally, what ahievesthe proof of the theorem.
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On the Importane of Bandwidth Control Mehanisms 134 Steady State Sheduling4.1 ImplementationIn this setion, we onsider the implementation of a sheduling algorithm toproess independent equal-sized tasks on a master-slave heterogeneous platform.Initially, the master node holds (or generate at a given rate) a large numberof tasks that will be proessed by a set of slave nodes Pi. The master nodeis haraterized by its outgoing bandwidth Bout whereas a slave node Pi isharaterized by both its inoming bandwidth Bin
i and its proessing apability

wi. Sine all tasks are equal-sized, we normalize all Bout, Bin
i and wi in termsof tasks per time unit. We have seen in Setion 2.2 that a simple linear programprovides for eah slave node Pi the rate ρi at whih the master should send tasksto Pi in order to maximize the overall throughput, i.e. the overall (rational)number of tasks that an be proessed using this platform within one time unit.As in the ase of �le redistribution, in order to assess the impat of bandwidthsharing mehanisms on the overall performane of sheduling algorithm, weonsider two di�erent implementations of the sheduling algorithm.1. Implementation 1: In order to avoid starvation, eah slave node startswith two tasks in its loal bu�er. Eah time Pi starts proessing a newtask, it asks for another task and the master node initiates the ommuni-ation immediately.2. Implementation 2: Implementation 2 is exatly the same as Imple-mentation 1 exept that we bound the bandwidth used by M to sendtasks to Pi to ρi.In what follows, we will denote by T1 the ahieved throughput when usingImplementation 1 and by T2 the ahieved throughput when using Imple-mentation 2.4.2 Simulation Results using SimGRIDWe present the simulation results obtained on random but realisti instaneswith SimGRID. We use exatly the same settings as in Setion 3.2 for the om-muniations. The following table represents the ratio between the throughputobtained with Implementation 2 and the throughput obtained using Imple-mentation 1. All values orrespond to 20 di�erent simulations, and in all ase,we depit the minimum, maximum and mean ratio over the 20 simulations.For eah simulation, to estimate the throughput, we run both implementationson 200 tasks. In order to estimate the impat of ommuniations rather thanproessing, the proessing rate of the proessors are set so that in the optimalsolution, proessors are limited by their ommuniation apabilities.

∑

i Bout
i = 1.2Bin ∑

i Bout
i = 2BinHomogeneous ratio min. max. mean

N = 10 1.01 1.03 1.02
N = 20 1.00 1.02 1.01

ratio min. max. mean
N = 10 1.01 1.04 1.02
N = 20 1.00 1.03 1.01Heterogeneous ratio min. max. mean

N = 10 1.01 1.04 1.03
N = 20 1.01 1.03 1.02

ratio min. max. mean
N = 10 1.01 1.04 1.03
N = 20 1.00 1.03 1.02RR n° 7105
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Figure 2: Bandwidth sharing using TCP and Implementation 1The di�erene between both implementations is muh smaller than for �le re-distribution (and broadasting). This is due to fat that ontrarily to othersituations, ompensation between proessors an take plae. The proessorswith small latenies proess more tasks with Implementation 1 than withImplementation 2. In order to obtain more signi�ant di�erene, we anmake the proessors saturated in omputations in the optimal solution, andform two groups of equivalent aggregated proessing power, one with small la-tenies and one with high latenies. In this ase, the ratio is loser to the 4
3bound proved below.4.3 Worst ase analysisIn previous setion, we have seen that bounding the bandwidth used by a om-muniation between M and Pi improves the ahieved throughput. In this se-tion, we prove that the ratio between the optimal throughput using bandwidthontrol and the throughput when TCP ontention mehanisms are used in pres-ene of ontention is smaller than 4

3 . We also prove that this bound is tight byexhibiting a platform where this ratio an be arbitrarily lose to 4
3 .4.3.1 Upper bound for the throughput performane lossTheorem 4.1 T2 ≤ 4

3T1Proof: Let us onsider the result obtained using Implementation 1 over along period of time and let us denote by xi the average number of tasks proessedby Pi during one time unit. If ∑

xi = Bout, then Implementation 1 ahievesasymptotially optimal throughput and the theorem is true. Otherwise, let usdenote by t1 the average fration of time when the bandwidth of the master isfully used. On the other hand, let us denote byBoutave the average used bandwidthwhen the bandwidth of the master is not fully used, i.e. during fration of time
(1− t1) (see Figure 2). Using these notations, we an �nd a �rst upper bound ofthe throughput W wasted using implementation 1, W ≤ (1− t1)(B

out−Boutave).Let us now onsider the set S1 of slave proessors that are not used at theirbest rate, i.e. suh that xi < min(wi, B
in
i ) and by S2 the set of proessors suhthat xi = min(wi, B

in
i ). Moreover, let us denote by ρ

(k)opt, k = 1, 2 the overallthroughput ahieved by the slaves of set Sk in the optimal solution. We annotie that ∑

Pi∈S2
xi ≥ ρ

(2)opt.Sine the proessors of S1 are not used at their maximal proessing rate,they are ontinuously requesting tasks using Implementation 1. Therefore,INRIA



On the Importane of Bandwidth Control Mehanisms 15at eah instant when the bandwidth of M is not fully used, slave Pi ∈ S1 isreeiving tasks at rate Bin
i . Therefore, Boutave ≥

∑

Pi∈S1
Bin

i and ∑

Pi∈S1
xi ≥

(1 − t1)B
outave. Moreover, by de�nition, ρ

(1)opt ≤ ∑

Pi∈S1
Bin

i . Therefore,
ρ
(1)opt − ∑

Pi∈S1
xi ≤

∑

Pi∈S1
Bin

i − (1 − t1)B
outave

≤ Boutave − (1 − t1)B
outave

≤ t1B
outave .and therefore, W = ρ

(2)opt − ∑

Pi∈S2

xi + ρ
(1)opt − ∑

Pi∈S1

xi ≤ t1B
outave .Using both upper bounds of W , we obtain W ≤ f(t1, B

outave) = min((1 −

t1)(B
out − Boutave ), t1B

outave).If we �rst onsider f(t1, B
outave) as a funtion of Boutave ∈ [0, Bout], we observethat f(t1, B

outave) is minimal when Boutave = (1−t1)B
out and f(t1, (1−t1)B

out) =

t1(1 − t1)B
out so that

∀t1, B
outave , W ≤ Bout

4 , what ahieves the proof of the theorem.4.3.2 Worst Case ExampleTheorem 4.2 T2

T1

an be arbitrarily lose to 4
3 .Proof: Let us now prove that the bound of 4
3 is tight. To obtain this result,let us onsider the following platform, made of two slave nodes P1 and P2 anda master node M with the following harateristis

P1 : λ1 = ǫ3, w1 = 1, Bin
1 = 2; P2 : λ2 = ǫ, w1 = 1, Bin

2 = 1; D : Bout = 2,where ǫ stands for an arbitrarily small quantity and λ1 and λ2 denote the la-tenies between M and P1 and M and P2 respetively. As previously, sinelatenies are arbitrarily small, we will not onsider the delays introdued bythese latenies but rather onentrate on their impat on bandwidth sharingusing the RTT-aware Max-Min Flow-level algorithm presented in Setion 2.4.Using Implementation 2, P1 starts omputing its �rst task at time 0 andends up at time 1. The master starts sending a new task at time 0 usingbandwidth 1 and the ommuniation ends up at time 1. The same proessapplies to P2, so that exatly 2 tasks are proessed every time unit, hene
T2 = 2.Let us now onsider what happens if we rely on TCP bandwidth sharingmehanisms to deal with ontentions.







Bout
1 = 2 >

1

ǫ3

1

ǫ
+ 1

ǫ3

× 2 = 2 − 2ǫ2 + o(ǫ2)

Bout
2 = ǫ >

1

ǫ
1

ǫ
+ 1

ǫ3

× 2 = 2ǫ2 + o(ǫ2)
,so that (ci values are attributed in the Forall loop) c1 = 2 − ǫ2 + o(ǫ2) and

c2 = 2ǫ2 + o(ǫ2). Therefore, P1 reeives its �rst task at time 1
2 + 2ǫ2 + o(ǫ2)and P2 reeives only ǫ2 + o(ǫ2) tasks at time 1

2 + 2ǫ2 + o(ǫ2). Between time
1
2 + 2ǫ2 + o(ǫ2) and time 1, P2 reeives tasks at rate 1 sine it is the only oneRR n° 7105



16 Beaumont & Oivier , Rejeb & Hejerrequiring tasks. Thus, at time 1, P2 has reeived 1
2 + O(ǫ2) tasks. At time 1,the same sheme applies sine P1 requires a new task and will reeive it by time

3
2 + O(ǫ2) while P2 reeives extra O(ǫ2) tasks. Thus, P2 will end up reeivingits �rst task at time 2 − ǫ2. Then, the same sheme applies during eah timeperiod of size 2.Therefore, Implementation 1 proesses 2 tasks every time unit while Imple-mentation 2 proesses 3 tasks every 2 time units, what ahieves of the proofof the theorem.
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On the Importane of Bandwidth Control Mehanisms 175 Broadast under Bounded Multiport Model5.1 ImplementationIn the broadast problem under the bounded multiport model, we are given asoure node S whose outgoing bandwidth is Bout and a set of lients Pi. Wedenote by Bin
i the inoming bandwidth of the Pi. Moreover, we assume that Sholds (or generate) a large size message and that all lient nodes should reeivethe whole message. In this ontext, our goal is to maximize the throughput, i.e.the average size of the message reeived by any lient during one time unit. Inthe ase where ∀i, Bin

i > Bout
j , a simple randomized and distributed algorithmhas been reently proposed by Massoulié et al. [19℄: during the exeution, a nodeompares the set of pakets that it has reeived with the set of pakets reeivedby its neighbor nodes. Then, it sends a paket to the node that has reeivedthe less pakets yet. Remarkably enough, it has been proved in [19℄ that thisalgorithm ahieves quasi-optimal performane in the ase of a omplete graph.Unfortunately, the proof strongly relies on the assumption that ∀i, Bin

i > Bout
jsine it requires that any single ommuniation between Pi and Pj onsumesbandwidth Bin

i . Therefore, there is no need to use several ommuniations toaggregate bandwidth and thus to use the whole apaity of S. Then, the wholeexeution takes plae without ontentions.Therefore, we onentrate in this setion on a simpler setting, where theplatform is a star-shaped platform with the master at the enter. On the otherhand, we do not make any assumption on the values of Bin
i and Bout (sine theplatform is a star, the lient nodes do not have any outgoing bandwidth). In thissimple ase, if N denotes the number of lients, the ahievable throughput ρ∗ isgiven by ρ∗ = min(Bout

N
, mini Bin

i ). We onsider two di�erent implementationsof the broadast operation.1. Implementation 1: Every time unit, the soure S initiates simultane-ously a ommuniation with eah lient node, and sends a message of size
ρ∗ ontaining last generated pakets to eah lient.2. Implementation 2: Implementation 2 is exatly the same as Imple-mentation 1 exept that we bound the bandwidth used by S to send themessage to Pi to ρ∗.In order to ompare both implementations, we will exeute both programs fora long time period T . Let xk

i (T ) denote the size of the message reeived attime T by Pi using Implementation k. The performane of Implementation kis given by ρk = limT→+∞
mini xk

i (T )
T

. In what follows, we prove that ρ1 an bearbitrarily smaller than ρ∗.5.2 Simulation ResultsWe present the simulation results obtained on random but realisti instaneswith SimGRID. We use exatly the same settings as in Setion 3.2 for theommuniations. The following table represents the ratio between ρ2 and ρ1,the throughput obtained with Implementation 2 and the throughput obtainedusing Implementation 1. All values orrespond to 20 di�erent simulations,and in all ase, we depit the minimum, maximum and mean ratio over theRR n° 7105



18 Beaumont & Oivier , Rejeb & Hejer20 simulations. For eah simulation, to estimate the throughput, we run bothimplementations for time 500.
∑

i Bout
i = 1.2Bin ∑

i Bout
i = 2BinHomogeneous ratio min. max. mean

N = 10 1.01 1.03 1.02
N = 20 1.00 1.02 1.01

ratio min. max. mean
N = 10 1.01 1.22 1.07
N = 20 1.00 1.09 1.03Heterogeneous ratio min. max. mean

N = 10 1.01 1.09 1.04
N = 20 1.00 1.04 1.03

ratio min. max. mean
N = 10 1.01 1.79 1.47
N = 20 1.00 1.33 1.19The simulation results prove that the throughput ahived by Implementation1 may be muh smaller than the troughput ahived by Implementation 2,espeially when the latenies are strongly heterogeneous. Indeed, in this ase,when several ommuniations take plae simultaneously, the proessors withhigh latenies get a very small part of the bandwidth. Sine new ommuniationsare launhed every time step, the size of data reeived by these proessors issigni�antly lower, espeially in the ase of high ontentions ∑

i Bout
i = 2Bin.5.3 Worst Case AnalysisTheorem 5.1 ρ1 an be arbitrarily smaller than ρ2 and ρ∗.Proof: Let us onsider the following platform onsisting of N lients. Thesoure node S has outgoing bandwidth Bout = N . The �rst N − 1 lients

Pi, i = 1 . . .N − 1 have inoming bandwidth Bin
i = N

N−1 and the latenybetween S and Pi, i = 1 . . .N − 1 is given by λi = ǫ2. At last, lient PNhas inoming bandwidth 1 and the lateny between S and PN is ǫ. At last,we assume that ǫ is arbitrarily small and in partiular ǫ × N << 1. Usingthis platform, Implementation 2 ahieves optimal throughput ρ2 = ρ∗ = 1.Indeed, all lients are simultaneously served every time step with bandwidth ρ∗and all transfers �nish within one time unit.Using Implementation 1, the sum of the bandwidths of the lient nodesinvolved in ommuniations with S at time 0 is given by N + 1, so that on-tentions take plae at the soure node. Using the algorithm presented in Se-tion 2.4 to model TCP bandwidth sharing in presene of ontentions, we obtain
∀i = 1, . . . , N − 1, ci = N

N−1 (1 + O(ǫ)) and cN = Nǫ
N−1 + o(ǫ).Therefore, all Pis, i ≤ N − 1 reeive the �rst message at time 1 − 1/N + O(ǫ)whereas at that time, PN has only reeived a message of size O(ǫ). During theinterval between 1 − 1/N and 1 (instant when a new message is broadast toall lients), PN is the only node ommuniating with S and CN = 1. Thus, attime 1, PN has reeived a message of size 1/N +O(ǫ). The same sheme appliesbetween time 1 and 2 and it will take a time N to PN to ompletely reeive thevery �rst message. Hene, the overall performane is ρ1 = 1/N , what ahievesthe proof of the theorem.
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On the Importane of Bandwidth Control Mehanisms 196 ConlusionsIn this paper, we have studied the in�uene of bandwidth ontrol mehanisms onthe performane of several sheduling algorithms on large sale distributed plat-forms. In this ontext, the topology is not known sine Internet is the underlyingnetwork, and the volatility of resoures and the hanges in their performanemake automati disovery tools ine�ient. We have therefore proposed to modelommuniation osts and ontentions using a very limited set of parameters, thatan be determined at runtime (inoming and outgoing bandwidths and laten-ies). Rather than relying on traditional one-port model, that is not well suitedto very heterogeneous resoures sine it may indue important waste in per-formane, we modeled ommuniations using the Bounded Multi-port Model,where several inoming and outgoing ommuniations an be done simultane-ously provided that bandwidth apaities are not exeeded. More spei�ally,we have ompared on three lassial sheduling problems (namely �le redistribu-tion shemes, independent tasks and olletive ommuniation sheduling) theperformane obtained with implementations using bandwidth and implementa-tions relying on TCP bandwidth sharing in presene of ontention. For eahproblem, we have a proved an upper bound on the maximal performane lossthat an be indued by TCP bandwidth sharing, we have proved that this boundis tight by exhibiting instanes ahieving it and we have ompared the perfor-mane of implementations using bandwidth sharing ontrol or relying on TCPbandwidth sharing mehanisms in presene of ontentions on random realistiinstanes. This work shows that in the ontext of large sale distributed plat-forms, where latenies are strongly heterogeneous, the use of bandwidth ontrolmehanisms, that are available in modern operating systems, is ompulsory toahieve good performane.Referenes[1℄ D.P. Anderson. BOINC: A System for Publi-Resoure Computing and Storage. In 5thIEEE/ACM International Workshop on Grid Computing, pages 365�372, 2004.[2℄ R. Baeza-Yates and R. Ramakrishnan. Data hallenges at Yahoo! In Proeedings of the11th international onferene on Extending database tehnology: Advanes in databasetehnology, pages 652�655. ACM New York, NY, USA, 2008.[3℄ C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. ShedulingStrategies for Master-Slave Tasking on Heterogeneous Proessor Platforms. IEEE TPDS,2004.[4℄ C. Banino-Rokkones, O. Beaumont, and H. Rejeb. Sheduling Tehniques for E�etiveSystem Reon�guration in Distributed Storage Systems. In IEEE ICPADS'08, pages80�87, 2008.[5℄ Martin A. Brown. Tra� Control HOWTO. Chapter 6. Classless Queuing Disiplines.http://tldp.org/HOWTO/Tra�-Control-HOWTO/lassless-qdiss.html, 2006.[6℄ H. Casanova. Network modeling issues for grid appliation sheduling. InternationalJournal of Foundations of Computer Siene, 16(2):145�162, 2005.[7℄ H. Casanova and L. Marhal. A network model for simulation of grid appliation. RR-40-2002, 40, 2002.[8℄ M. Castro, P. Drushel, A.M. Kermarre, A. Nandi, A. Rowstron, and A. Singh. Split-Stream: high-bandwidth multiast in ooperative environments. ACM SIGOPS Operat-ing Systems Review, 37(5):298�313, 2003.[9℄ J. Edmonds. Edge disjoint branhings. In Combinatorial Algorithms: Courant ComputerSiene Symposium 9: January 24-25, 1972, page 91. Algorithmis Press, 1972.RR n° 7105
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