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Abstract

We present a new algorithm for computing the topology of a real algebraic surface S
in a ball B, even in singular cases. We use algorithms for 2D and 3D algebraic curves
and show how one can compute a topological complex equivalent to S, and even a
simplicial complex isotopic to S by exploiting properties of the contour curve of S.
The correctness proof of the algorithm is based on results from stratification theory.
We construct an explicit Whitney stratification of S, by resultant computation.
Using Thom’s isotopy lemma, we show how to deduce the topology of S from a
finite number of characteristic points on the surface. An analysis of the complexity
of the algorithm and effectiveness issues conclude the paper.

Key words: meshing, implicit algebraic surfaces, isotopy, Thom’s lemma, Whitney
stratification, singularity

1 Introduction

The study of algebraic surfaces is a fascinating area where important devel-
opments of Mathematics such as singularity theory interact with visualiza-
tion problems and the rendering of mathematical objects. The classification
of singularities [5] provides simple algebraic formulas for complicated shapes,
which may be difficult to handle geometrically. Such models can be visualized
through techniques such as ray-tracing 1 in order to produce beautiful pictures
of these singularities. Unfortunately, this approach does not allow to exploit
the singularity models in applications other than static visualization.

1 see e.g. http://www.algebraicsurface.net/



The aim of this paper is to describe an algorithm which produces a mesh of
an algebraic surface S, with the guarantee that the topology of the surface is
caught correctly. Such a piecewise linear model of a singular surface can be
used in geometric modeling, coupled with refinement methods, for approxima-
tion or simulation purposes. As a by-product, it yields important topological
information such as the number of connected components of the surface in a
ball or a box, the Euler characteristic, . . .

The related problem of determining the connected components of a semi-
algebraic set and a path between two points of the same connected compo-
nent has been investigated for instance in [11], [33]. Properties of the polar
variety or silhouette curve of the semi-algebraic set and non-explicit Whitney
stratifications were used to define these so-called roadmaps which provide a
path between two given points.

The problem of triangulating a (semi)-algebraic set has been studied in the
literature [23], [24], mainly from a theoretical point of view. See also [8], [13],
[6] for a more introductory and computational point of view.

The special case of surfaces in R3 already received a lot of attention: we refer in
particular to [18], [17], [9], [1], but these works deal only with smooth surfaces.

Another trend for tackling this triangulation problem is via Cylindrical Alge-
braic Decomposition [12]. It consists in decomposing a semi-algebraic set S
into cells, defined by sign conditions on polynomial sequences. Such polyno-
mial sequences are obtained by (sub)-resultant computations, corresponding
to successive projections from Rk+1 to Rk. The degree of the polynomials in
these sequences is bounded by O(d2n−1

) and their number by O((md)3n−1

),
where m is the number of polynomials defining the semi-algebraic set S, d
is a bound on the degree of these polynomials and n the number of different
variables appearing in these polynomials [6]. For the case of implicit surfaces
in R3 (m = 1, n = 3), this yields a bound of O(d4 × d9) = O(d13) points to
compute in order to get the topology of the surface. This Cylindrical Alge-
braic Decomposition does not directly yield a triangulation, nor any global
topological information on the set S because the representation lacks infor-
mation about the adjacency of the cells. Additional work is required to obtain
a triangulation of S (see [13], [6], [29]). See also [7] for a new variant of the
adjacency algorithm. Recently, this Cylindrical Algebraic Decomposition ap-
proach has been further investigated in [3]. It is shown how to analyze the
topology of critical sections of an implicit surface, by exploiting the properties
of delineability.

Our aim here is to describe an effective (and efficient) method for the triangu-
lation of the part of a real algebraic surface S of R3 that lies inside a sphere. It
can be generalized to other bounding shapes than spheres such as boxes, but
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for the sake of clarity we will stick to a spherical bounding shape throughout
the rest of the article. The method is based on the computation of characteris-
tic points on this surface. As we will see, it requires the computation of O(d7)
points. We follow a sweeping plane approach and exploit the following idea:
after choosing a generic sweeping plane direction, the topology of the sections
of the surface with this plane only changes for a discrete set of positions C.
Computing this set of critical values (or more precisely a sup-set C ′ ⊃ C) and
the topology of the sections at these critical values, will allow us to recover the
topology of the surface. For this purpose, we will use the contour curve of S,
which is a 3D curve on S. Our approach exploits results from stratified Morse
theory. We give an explicit Whitney stratification of S, involving resultant
computation and prove its correctness using equi-singularity arguments. This
ensures the cylindrical structure of the surface between the critical sections
that we have computed and yields a way to connect them, by “following” the
contour curve.

The paper is organized as follows. In the next section, we recall basic defi-
nitions and describe the set of interesting points on the surface that we use
to deduce its topology. In section 3, we describe how we treat the critical
section of surface. In section 4, we describe how we compute the topology
of the polar curve. In part 5, we describe the algorithm for surfaces and in
particular how to connect two consecutive sections and obtain a triangulation
of this connection while keeping safe the topology. We will see, in particular,
how a discrete description of the polar variety allows us to recover the two
dimensional faces of a triangulation of the surface. In section 6, we prove the
correctness of the algorithm, showing as a new result, how a resultant compu-
tation yields a Whitney stratification of the surface. The proof of correctness
of the connection algorithm is given and the isotopy between the surface S and
its triangulation is made explicit. An example is given in section 7. Finally,
we detail effectiveness and complexity issues in section 8.

2 Notations

We consider an algebraic surface S defined by the equation f(x, y, z) = 0
(with f ∈ R[x, y, z]) in a given ball B for the Euclidian distance (instead of
a ball B, we could also consider a box, but the description of the method is
less simple). Hereafter, to simplify the presentation, we will assume that the
boundary of B is not included in S. We denote by SB = S∩B the intersection
of S with the closed volume defined by the ball B. Our objective is to compute
a simplicial complex, isotopic to the surface SB.

We denote by πy (resp. πz, πy,z), the projection of R3 along the y direction
(resp. the z direction, the (y, z) plane) on the (x, z) plane (resp. the (x, y)
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plane, the x axis). A (x, y) plane section of a variety V of R3 will be the
intersection of V , with a plane parallel to the (x, y) plane (and similarly for
the other variables).

A point p ∈ V for which the matrix [∇(f1)(p), . . . ,∇(fs)(p)] is not of maximal
rank is called a singular point of V , where ∇(f) = [∂x1

(f), . . . , ∂xn
(f)].

The notion of critical point for a projection is a key notion of our approach,
this is how we define it.

Definition 2.1 (Critical point) For any algebraic variety V in Rn defined
by equations f1 = 0, . . . , fs = 0 and any linear map π : Rn → Rm, a point p of
V is said to be critical for the map π if the matrix [∇(f1)(p), . . . ,∇(fs)(p), π]
is not of maximal rank.

A point p ∈ R3 of an algebraic variety V ⊂ R3 is x-critical (resp. (x, y)-critical)
if it is critical for the projection πy,z (resp. πz) on the x axis (resp. (x, y) plane).
If V ⊂ R3 is defined by the polynomial equations f1 = 0, . . . , fs = 0, a x-
critical point of V is either a singular point or a point where the tangent space
of V at this point is in a plane parallel to the (y, z) plane i.e the multiplicity
of the intersection of the plane with the ideal (f1, . . . , fs) at p is greater or
equal to 2. The corresponding x-coordinate of p is called a x-critical value. If
a value is not x-critical, it is called x-regular. We use similar notations for the
other variables.

2.1 The contour curve

Hereafter, we will use the properties of the contour curve of SB = S ∩B. The
contour curve is in fact a polar curve of S augmented with information to take
into account the interference of S with the ball B.

Definition 2.2 The polar curve of S for the projection πz in the z-direction
is the locus of the critical points of S for the projection along the direction z.

If S is defined by f(x, y, z) = 0, this polar curve is defined by the equations
f(x, y, z) = ∂zf(x, y, z) = 0.

In order to take into account the restriction of S to B, we use the following
definition for the contour curve:

Definition 2.3 We denote by C := Cz(SB) the union of

• the set of points p ∈ B on the polar curve of S in the z-direction,
• the intersection of S with the boundary ∂B of the ball B.
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In other words Cz(SB) = (V (f, ∂zf) ∩ B) ∪ (V (f) ∩ ∂B). We will call it the
contour curve of S.

The equations of the intersection of S with the boundary ofB are f(x, y, z) = 0
and q(x, y, z) = 0, where q is the quadratic polynomial of the sphere associated
to B. How to compute the topology of the contour curve is described in section
4. If we had used a box instead of a ball for the domain B, it would have been
necessary to use the restrictions of f(x, y, z) to the faces of the box B and the
2D algorithm (see section 3) to compute the topology of the corresponding
planar curves.

2.2 Characteristic points on the surface

Let f ∈ R[x, y, z] be a square-free polynomial and let S = V (f) be the surface
it defines. Let q(x, y, z) be the quadratic polynomial associated to the ball B.
We denote by R(x, y) = Resz(f(x, y, z), q(x, y, z) ∂zf(x, y, z)) and by ∆(x, y)
its square-free part. Let Cx,y ⊂ R2 be the planar curve defined by ∆(x, y) = 0.
For any x0 ∈ R, the points of Cx,y ∩V (x−x0) are the projections on the (x, y)
plane of the points of S ∩ V (x − x0) that are either singular or smooth with
a vertical tangent or in ∂B.

The algorithm for computing the topology of S will isolate the real solutions
of the following system:
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∆(x, y′) = 0

∂y∆(x, y′) = 0

f(x, y, z′) = 0

q(x, y, z′) ∂zf(x, y, z′) = 0

f(x, y, z) = 0

(1)

We denote by Ξ(f) the set of real solutions of this system. This system can
be assumed to be 0-dimensional over the complex field (since V (q) is not in
S) as we can perform a change of coordinates to put it in general position. An
alternative way to say this, is that one can use a coordinate system different
from x, y and z. The invariance of the sphere under rotations makes this step
easy, but there is no substantial obstruction to developing the same algorithm
with another bounding shape provided one is able to take into account the
effect of the coordinate change on the bounding shape.

Notice that if (α, β, γ, β ′, γ′) ∈ Ξ(f), then

• (α, β, γ) is a point on S,
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• (α, β, γ′) is a point on the contour curve of S,
• (α, β ′) is a critical point of Cx,y ⊂ R2 for the projection to the x axis.

We associate to a solution (α, β, γ, α′, β ′) of the system (1) the following index:

• x if γ = γ′ and β = β ′,
• c if γ = γ′ and β 6= β ′,
• r otherwise.

A point (α, β, γ, α′, β ′) has index x if and only if (α, β, γ) is a point of the
contour curve of S, which projects onto a x-critical point of Cx,y.

A point (α, β, γ, α′, β ′) has index c if and only if (α, β, γ) is a point of the
contour curve C of S, which projects onto a regular point of Cx,y. Thus it is
also smooth on C.

For a point (α, β, γ, α′, β ′) with index r, (α, β, γ) is a smooth point of S, on
the same vertical line as a point of Cx,y but not on the contour curve.

The intersection of the surface S with a plane x = α where α is the first
coordinate of a solution of the system (1), will be called a x-critical section of
S (at x = α) and denoted by Sα.

3 Topology of the x-critical sections

In this section, we describe how we compute the topology of the x-critical
section Sα = S ∩ V (x − α) at a x-critical value α. We use the subdivision
approach presented in [2] to determine the topology of Sα. In the following we
outline shortly the strong points of the method and how it proceeds.

The algorithm works on a square-free polynomial and f(α, y, z) will always
be square-free in our algorithm. Otherwise the contour curve C would contain
the x-critical section Sα, but this can’t happen in the generic positions we
allow (see definition 5.1 later to see how we enforce that condition). To make
explanations clearer in the rest of this section we drop the first component of f ,
and consider it as function in the y and z variables (i.e. “f(y, z) = f(α, y, z)”).
The algorithm works by covering the disk (V (x − α) ∩ B) where we want
the topology, with rectangular boxes in which we know how to compute the
topology. An important feature of this subdivision approach is that, unlike
sweeping methods, it does not require any genericity assumptions, and will
work in the given coordinate system, taking advantage of the potential sparsity
of its input. This feature is important for our usage because when cutting over
a singular point of ∆(x, y) there is no need for an additional change of variables
(over such points there are often two singular points with same y coordinate).
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The two categories of boxes for which we can determine the topology are the
following:

• Regular boxes where either ∂yf(α, y, z) or ∂zf(α, y, z) does not vanish.
• Star-singular boxes where the topology in the box is star like. This means

that to triangulate the portion of curve inside the box it suffices to pick any
point in the interior of the box and to connect by a straight line to all the
points of the curve that lie on the boundary of the box.

For the algorithm to be complete, we need to explain how we can effectively
cover the disk with such boxes and explain how we manage to recover the
topology for a box when it falls into one of the two above categories.

In the first step, we consider the points of Ξα(f) of index c, x and refine their
isolating boxes until all the extremal points of f which are not on S lie outside
the box. To determine that a box is star-singular we use the following criterion:

Lemma 3.1 (Star-singular box) Let deg(F1, F2, D) denote the topological
degree of a continuous map F : R2 → R2 in a connected domain D ⊂ R2 [27].
If D is a box containing a singular point p such that p is the only extremal
point of f in the box (i.e. ∀u ∈ D, ∂yf(u) = ∂zf(u) = 0 ⇒ p = u and
f(p) = ∂yf(p) = ∂zf(p) = 0) and if in addition the number of zeros of f on
the boundary of D is 2(1 − deg(∂yf, ∂yf,D)), then the topology in D is star
like.

This stems from the fact that 2(1 − deg(∂yf, ∂yf,D)) is the number of half-
branches at p [26]. Computing the topological degree is made possible by a
formula that expresses it as a function of the values of f on the boundary of D,
therefore it is possible to compute it using univariate solving on the segments
of the boundary of D.
The second step is then to refine the isolation of the singular points until
the topological degree in the box matches the number of zeros of f on the
boundary.
The third step is quite straightforward, we refine the star-singular boxes so
that they do not intersect the boundary of the disk where we want the topology
and then we create a subdivision that contains all the isolation boxes we have
computed so far. Therefore we end up with a set of regular boxes and star-
singular boxes. If a singular point unluckily happens to be on the boundary
of the disk, it is not a problem as it is possible to handle this case by counting
the number of half-branches that lie inside the disk.
In the final step, we compute the topology in star-singular boxes by connecting
a point inside the box to the point of the curve on the boundary. For regular
boxes, we explain how the connection algorithm works if ∂zf does not vanish,
the treatment of the case where ∂yf does not vanish is symmetrical. If ∂zf

does not vanish, then there is no vertical tangent, therefore we can orient the
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curve segments that lie in the box from left to right (i.e. according to their
y component). This gives a formal meaning to “entering” the box (leftmost
endpoint) and “exiting” the box (rightmost endpoint). Finally, because the
curve segments cannot intersect each other, if we take the leftmost exit point,
the corresponding entry point has to be the first point encountered to its left
on the boundary of the box (because there are only entry points to its left).
So we just connect these two points together, remove them from the list of
points to be connected, and repeating this process recursively eventually gives
the topology of the curve in the box. For more details, see [2].

4 Topology of the contour curve

The algorithm to compute the topology of the contour curve, exploits the 2D
algorithm [2] described in the previous section, combined with the algorithm
in [19]. We use two projections of the 3D curve to recover the connection of the
points above these projected planar curves and the points in Σ(f) to analyze
the critical points of the projected curves. The restriction in [19] that (f, ∂zf)
has to be a radical ideal can be removed, since we deduce the critical points
of the 3D curve from the points of Σ(f).

Other approaches can be used here to compute the topology of the 3D contour
curve. One can use for instance the algorithm in [4] (if (f, ∂zf) is radical), the
main difference being the genericity conditions which are required and the
technique used to lift points from the (x, y) or (x, z) plane to 3 dimensional
space. In [19], the genericity conditions are related to the projection of the
curves on the x axis, whereas in [4] they are related to the projection on the
(x, y) plane and to the projection of this projection on the x axis (which is more
restrictive). The effective techniques described in [4] to check this genericity
condition involve delicate computation such as approximate gcd or absolute
factorization, in particular in the presence of singularities. In another recent
approach [16], the 3D curve is described by its projection on the plane (x, y)
and by a reduced “monoid” equation a(x) z − b(x, y) = 0. This allows to lift
the planar curve and to deduce the connection above the critical points, under
some genericity conditions. The polynomial a(x) is obtained from an iterated
resultant and may be huge. In another recent work [30], non-reduced curves are
treated using rational lifting maps deduced directly from the decomposition
of subresultants with respect to the variable z.

As opposed to the aforementioned methods, the approach that we are going
to describe here does not require genericity conditions on the projected curves
but only pseudo-generic conditions (two branches of the contour curve do not
project on the same branch in the (x, y) or (x, z) plane).
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The general idea is to project the contour curve onto the (x, y) plane and
(x, z) plane, and to compute the topology of the projected curves in order to
recover the topology of the 3D contour curve.

We will use the subset ΞC(f) of points of Ξ(f) that have index c or x. Points
of Ξ(f) ∈ R5 naturally project to points of S by taking their first three
components. The role of the fourth and fifth components is to allow us to
label them as x, c, and r points. Once we have this information we can discard
the two last components, and to simplify the discussion we will in the following,
consider the points in ΞC(f) as the points on S ⊂ R3 to which they project.
In this way, points with index c are smooth points on C (since their projection
to Cx,y is smooth). We will also use the points of C at intermediate sections
x = µ, chosen adequately as we describe now.

Let ∆(x, y) be the square-free part of Resz(f, q ∂zf) and Cx,y the curve it
defines in the plane (x, y). We also denote by Ψ(x, z) be the square-free part
of Resy(f, q ∂zf) and by Cx,z the curve it defines in the plane (x, z).

In a first step, we compute the topology of the curve Cx,y (see section 3) in the
projection of the bounding ball B where we want to determine the topology.

Let Σ be the x-critical values of Cx,y and Σ′ the x-critical values of Cx,z:
Σ = {σ1, . . . , σs} with σ1 < · · · < σs. For each σi ∈ Σ, we compute two
(rational) values µi, µ

′

i such that σi−1 < µi < σi < µ′

i < σi+1 and Σ′ ∩ [µi, σi[=
Σ′∩]σi, µ

′

i] = ∅. Note that Σ and Σ′ can have points in common, that’s why
the intervals are open in σi (in fact if there is a y, z-critical point they will
have a σi in common).

In the following, we denote by Cµi
the section C ∩ V (x−µi). By construction,

above the interval [µi, σi[ the curves Cx,y and Cx,z have no x-critical points. If
two points of Cµi

have the same y-coordinate, and if the projection Cx,y has no
critical point at x = µi, then two branches of C project onto the same branch
of Cx,y. By a generic change of coordinates, we can avoid this situation. We
proceed similarly, if two points of Cµi

have the same z-coordinates. Thus we
can assume that Cµi

projects injectively on the (x, y) and (x, z) planes.

In order to connect the points of Cµi
to those of Cσi

, we also compute the
topology of Cx,z above the interval [µi, µ

′
i] using Σ(f) (see section 3). Notice

that by construction of µi, µ
′

i, the projection of Σ(f) on the (x, z) plane con-
tains the z-critical of the projected curve, above the interval [µi, µ

′

i]. Using the
computed topological graph of Cx,y and Cx,z, we proceed as follows.
Given a point p = (µi, v, w) ∈ Cµi

, its projection (µi, v) is connected to a point
(σi, β) by the topological graph that we have computed for Cx,y. Its projection
(µi, w) is connected to a point (σi, γ) by the topological graph of Cx,z. As the
projections of Cµi

onto the planes (x, y) and (x, z) are injective, there is a
(unique) branch of C, which connects p to the point (σi, β, γ) ∈ Cσi

.
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The connection above the interval [µ′

i−1, µi] proceeds similarly by using only
the topological graph of the curve Cx,y, which has no x-critical values in
[µ′

i−1, µi], since Cµ′

i−1
and Cµi

project injectively to the (x, y) plane.

Let us summarize the main steps of this algorithm:

Algorithm 4.1 (Topology of C defined by f1(x, y, z) = 0, f2(x, y, z) = 0)

Input: Polynomials f1, f2 ∈ Q[x, y, z] and a box D0 ⊂ R3

• Compute the square-free part ∆(x, y) of Resz(f1, f2), defining the projected
curve Cx,y ⊂ R2.

• Compute the square-free part Ψ(x, z) of Resy(f1, f2), defining the projected
curve Cx,z ⊂ R2.

• Compute the topology of Cx,y in the projection of D0 on the plane (x, y).
• Compute the x-critical values Σ := {σ1, . . . , σk} with σ1 < · · · < σk. of Cx,y

and the critical values Σ′ of Cx,z.
• Choose a (rational) µi ∈]σi−1, σi[ (resp. µ′

i ∈]σi, σi+1[) such that [µi, σi[∩Σ′ =
∅ (resp. ]σi, µ

′

i] ∩ Σ′ = ∅).
• Compute the topology of Cx,z above [µi, µi] in the projection of D0 on the

plane (x, z).
• Compute the set Cµi

of real points of C at x = µi and check that it is finite
and that two points do not have the same y-coordinates (resp. z-coordinates).
If this is the case, raise the exception “non-generic position”.

• Use the topology of Cx,y and Cx,z above [µi, σi] (resp. [σi, µ
′

i] to connect the
points of Cσi

to Cµi
(resp. Cµ′

i
).

• Use the topology of Cx,y above [µ′

i−1, µi] to connect the points Cµ′

i−1
to Cµi

.

Output: The graph of 3D points of the curve connected by segments, isotopic
to the curve C or the exception “non-generic position”.

This algorithm is applied for f1 = f , f2 = q ∂zf where q(x, y, z) = 0 is the
equation of the boundary of B, to get the topology C = Cz(SB). We need the
topology of the contour curve because there are topology changes that come
from the interference of the bounding sphere B with S, and this is taken into
account by adding S∩B into the contour curve. The way this comes into play
is explained in the next section.

Since we are interested in the topology of S ∩B, we only need to compute the
topology of the curves Cx,y or Cx,z in boxes of R2 which are the projection of
a box in R3 containing B.
In order to compute the x-critical values of Cx,y or Cx,z, we apply iterated
resultant computations. Though the degree of these resultant polynomials can
grow quickly, they can be decomposed into explicit factors in order to simplify
the computation (see [10]).
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5 The algorithm for singular algebraic surfaces

5.1 The algorithm

We will assume hereafter that the surface is in a generic position:

Definition 5.1 We say that the surface is in generic position if

• the system (1) has a finite number of (complex) solutions.
• two distinct arcs of the contour curve do not have the same projection in

the (x, y) (resp. (x, z)) plane.

The first point is checked while solving system (1). If it is a zero dimensional
system, we assume that the polynomial solver over the complex field yields iso-
lating boxes containing one and only one real root of Ξ(f). The second point is
checked while applying the algorithm 4.1 to f(x, y, z) and q(x, y, z) ∂zf(x, y, z).
If these conditions are not fulfilled, we perform a random change of coordi-
nates and restart the algorithm. There is a high probability to be in generic
position after a change of coordinate, and therefore this process eventually
stops and yields a surface in generic position.

Let us first outline briefly the algorithm, before going into the details.

The first step consists in computing the contour curve for the projection in
the z-direction. We apply algorithm 4.1 for 3D-curves with f1 = f , f2 = q ∂zf ,
which computes a polygonal approximation of the contour curve which is iso-
topic to it. Doing this, the algorithm computes x-critical values corresponding
to x-critical points of the 3D curve and singular points of the projection of
the contour curve on the (x, y) plane and the (x, z) plane. Let us call Σ this
set of x-critical values.

For each σ of Σ, we compute the topology of the corresponding sections of the
surface, by applying algorithm for the topology of 2D curves (see section 3).

Next, we compute regular values between two critical values and the topology
of the corresponding sections. Here again, we use the 2D algorithm for implicit
curves (see section 3).

The following step consists in connecting two consecutive sections, using the
topology of the contour curve (see details in section 5.2).

Finally, we mesh the resulting patches of the surface, by computing a set of
points, open segments and open triangles, which are not self-intersecting, and
which defines a simplicial complex isotopic to the surface (see details in section
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Fig. 1. Polar variety and first connections for the union of a sphere and a line defined
by one equation.

5.3).

We summarize the algorithm as follows:

Algorithm 5.2 (Topology of an algebraic surface S in a ball B)
Input: A polynomial f(x, y, z) defining S and a ball B.

• Compute the topology of the contour curve for the projection in the z-
direction, using algorithm 4.1.

• Compute the topology of the sections, using algorithm 3.
• Connect two consecutive sections, by exploiting the topology of the contour

curve.
• Triangulate the resulting surface patches, avoiding self-intersection of seg-

ments and triangles.

Output: A simplicial complex isotopic to SB.

Let us now detail the two last steps of this algorithm.

5.2 Connection algorithm

We denote by V the topological description of C = Cz(SB) and K := V the
initial value of the topological complex describing S. The initial value for K
is the result of the curve topology computation done for Cz(SB) by algorithm
4.1. We are going to update this complex by explaining how we define the
connections between the points of two successive sections of S, a regular one
which is regular Sr and a critical one Sc which contains a x-critical point of
Cz(SB). By section of S we mean a set S ∩ V (x − α) where α is such that
V (x − α) contains no x-critical point of Cz(SB) for regular sections Sr and
does contain such a point for critical sections Sc.

Let us denote by p1, . . . , pr (resp. q1, . . . , qs) the points of πz(V ∩ Sr) (resp.
πz(V ∩Sc)) ordered by increasing y-coordinates, which are also on the projec-
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Fig. 2. Order on the arcs.

tion of an arc of V connecting Sr and Sc.

Hereafter, we use the convention that p0, pl+1, q0, qm+1 are points on the bound-
ary of the ball B. We denote by Ai (i = 0, . . . , l) the set of arcs of Sr which
projects onto [pi, pi+1]. We denote by Bj (j = 0, . . . , m) the set of arcs of Sc,
which connect a point projecting at qj to a point projecting at qj+1. If, more-
over there is a critical point U in between, we require that if this arc is to the
kth branch arriving at U on the left, then it is also the kth branch starting
from U on the right, if this branch exists.

The arcs in Ai (resp. Bj) are naturally ordered according to their z-position:
an arc is bigger than another if it is above the other (see Figure 2). We treat
incrementally the points pi, starting from p0. Let us denote by qν(i) the point
connected to pi by an arc of πz(K) ⊃ πz(V).

• If pi+1 is connected to qν(i) by an arc of πz(K), for any arc γ = (P, P ′) of
Ai, such that P is connected by K to Q, we add the arc (P ′, Q) and the
face (P, P ′, Q) to K.

• If pi+1 is not connected to qν(i), it is connected to qν(i)+1. We consider the
smallest arc γ = (P, P ′) of Ai, and the smallest arc η = (Q,Q′) of Bν(i). The
arc (P,Q) is in K. We add the arc (P ′, Q′) and the face (P, P ′, Q′, Q) to K.
Then we remove these smallest arcs γ and δ, respectively from Ai and Bν(i)

and go on until Ai is empty.

This procedure is applied iteratively, until we reach the point pr, so that we
move to the next section S ′

r, S
′
c.

5.3 Triangulation algorithm

The final step is the triangulation of the different faces computed previously.
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Assume that in the connection algorithm (section 5.2), we have connected an
arc γ = (P1, P2) of Sr to an arc (or point) η = (Q1, Q2) in Sc, by a face of K.

The triangulation algorithm works as follows (see Figure 3):

If Q1 = Q2 then we connect successively all the points between P1 and P2 to
Q1, creating the triangles of our triangulation.

If Q1 6= Q2, there can exist at most one critical point U on η. The situation to
avoid is described in Figure 4. If we do not pay attention to the connections
that are created during the triangulation, we can create intersection curves
between two faces that do not exist. We will quickly explain on an example
what we have to do to avoid that before going back to the general algorithm.
We see on Figure 4 a situation where the arc γ1 (resp. γ2) is connected to an
arc η1 (resp. η2). The two patches defined respectively by γ1 and η1 and by γ2

and η2 connects to the arcs P1Q1 and P2Q2 but do not intersect. To create an
intersection, we would need to connect a point shared by γ1 and γ2 to a point
shared by δ1 and δ2. This case corresponds to the drawing in Figure 4. So
what has to be done is simply to connect the point U (the only point different
from Q1 and Q2 belonging to the two arcs η1 and η2) to a point different from
P1 and P2. This can always be done because there exist intermediate points
between P1 and P2.
If there exists a y-critical point U on the arc η = (Q1, Q2) then, we connect the
point U to an intermediate point T1 of γ between P1 and P2 (see Figure 4). Let
us now consider the two sub-arcs (P1, T1) and (Q1, U). We start simultaneously
from P1 and Q1. The two points are connected by an arc of K. We consider
the next point on the arc (P1, U) and the next point on the arc (Q1, U). We
connect them. This process goes on until there are no more points on one of
the two arcs. If there is less points on an arc than on the other, we connect
the remaining points on one arc by adjacent triangles sharing the same vertex
(see Figure 5). After this step, we obtain triangles or quadrangles, which we
subdivide in order to obtain the final triangulation.

6 Why we get the topology

As mentioned previously, the general idea of this sweeping algorithm is to de-
tect where some topological changes in the intersection of S with the sweeping
plane happen so that in-between the topology is fixed. We are going to prove
that in-between the events that we have computed in the previous section,
the topology is locally trivial and we use this result to describe explicitly the
isotopy between the mesh and the surface.

To prove the correctness of the algorithm we will use results from stratified
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Morse theory. We refer to [22], [14] for more details.
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6.1 Local triviality

The fundamental notion is of Whitney stratification. It is a decomposition
of the variety into smooth parts that fit together “regularly”. Here are some
definitions:

Definition 6.1 [14, Def. 1.5, p.3] A stratification of a (semi-algebraic) vari-
ety A ⊂ Rn is a locally finite partition of A into smooth submanifolds.

Definition 6.2 [14, Def. 1.6, p.3] Let (X, Y ) be two strata and p ∈ X ∩ Y ⊂
Rn. X is Whitney-regular at p along Y if for any sequences xn ∈ X, yn ∈ Y

converging to p, l = limn→+∞ xnyn ⊂ T = limn→+∞ Txn
X, where TxX is the

tangent space of X at the point x.

A Whitney stratification of a variety S is a stratification of S so that all pairs
of strata are Whitney-regular.

Remark 6.3 The Whitney condition implies what is usually referred to as the
boundary condition. That is, if the closure of two strata intersect, then one is
included in the boundary of the other (see [28]).

Theorem 6.4 [14, Cor. 1.12, p.6] All semi-algebraic varieties A ⊂ Rn admit
a Whitney stratification.

Proposition 6.5 Any semi-algebraic stratum S is Whitney regular along a
zero-dimensional stratum.

See [14, Lemma 1.10, p.5] for a proof, using the Curve Selection Lemma.

Definition 6.6 For Z and W two stratified sets, a differential map f : Z →
W is a stratified submersion at a point p of Z if the differential map at p of
f , Df : Tp(Zσ) → Tf(p)(Wτ ) is surjective. Where Zσ and Wτ are the strata of
Z and W containing p and f(p).

Definition 6.7 If Z and W are two stratified sets, a continuous map f : Z →
W is proper if the inverse image of any compact set of W is a compact of Z.

The main theorem that we will use is Thom’s lemma [22, Sec. 1.5, p.41].

Theorem 6.8 (Thom’s first isotopy lemma) Let Z be a Whitney strati-
fied subset of Rm and π : Z → Rn be a proper stratified submersion. Then
there is a stratum preserving homeomorphism

h : Z → (π−1(0) ∩ Z) × Rn

which is smooth on each stratum and such that π factorizes via the projection
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to the second component Rn.
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This means that Z is homeomorphic to the cylinder with base π−1(0) ∩ Z.

In our case, we will apply the theorem with Z = SB, m = 3, n = 1 and π the
projection on the x axis which is automatically proper as we work in a ball B
which is compact.

6.2 Computation of a Whitney stratification

For a projection πz in the direction z on the (x, y) plane, we recall that ∆(x, y)
is the square-free part of the resultant Resz(f, q ∂zf) and that its associated
zero set V (∆(x, y)) is Cx,y.

Theorem 6.9 For a generic projection πz, let

• S0 be the set of points of Cz(SB) that projects by πz onto singular points of
Cx,y, each point is considered as a stratum,

• S1 the set of the connected components of Cz(SB) − S0, (each connected
component is a stratum),

• S2 the set of the connected components of S−Cz(SB) (each connected com-
ponent is a stratum).

• S3 the set of connected components of R3 −S (each connected component is
a stratum).

Then (S0, S1, S2, S3) is a Whitney stratification of R3 compatible with S.

From Proposition 6.5 and as the Whitney regularity of any stratum of S1

or S2 along a stratum of S3 is always fulfilled, we deduce that showing that
(S0, S1, S2, S3) is a Whitney stratification of R3 compatible with S boils down
to showing that (S1, S2) is Whitney-regular.

Depending on whether we consider the polynomial f defining S over R or C,
we obtain a real variety S = SR or a complex variety SC, as the set of zeros of
f . We will use the results of equi-singularity along C and the notion of “per-
missible” projection to prove the proposition. Speder gave in [32] a definition
of permissible projection, stronger than the original one of Zariski [35]. We will
consider only the case of codimension 1, for which both definitions coincide,
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so hereafter we will just consider the definition of permissible projection of
Zariski:

Definition 6.10 A permissible direction of projection for the pair (X, Y ) with
Y ⊂ X at Q ∈ Y is an element of PC3 so that the line passing through Q

defined by this direction is neither included in a neighborhood of Q nor in the
tangent space to Q at Y .

Proposition 6.11 For a given algebraic surface S, a generic direction of pro-
jection is permissible for (S1, S2) at every point of S1.

Proof. For an algebraic variety, the local inclusion of a line into the surface is
equivalent to a global inclusion. We deduce that the directions of projection
to avoid are included into the union of:

• directions of lines included into the surface
• directions of the tangents to the smooth part of the singular locus of the

variety.

We consider the first set of directions of lines included in the surface S, defined
by one equation f(x, y, z) = 0. We consider the surface embedded in projective
space. The directions of lines included in S considered as points of projective
space are included in the intersection of S with the hyperplane at infinity
which is a projective curve. Thus the directions corresponding to the first set
are included in a set of dimension 1 and are generically avoided.

Now let us consider the second set. We consider an arc of the smooth part
of the contour curve (there exists a finite number of such arcs for an al-
gebraic surface). We consider a semi-algebraic parameterization of this arc
(x(s), y(s), z(s)). Thus we obtain a semi-algebraic parameterization (x′(s), y′(s),
z′(s)) of a set of unit vectors corresponding to the directions of the tangents
to the curve. We deduce that the set to avoid (for the tangency condition) cor-
responds to a semi-algebraic curve on the unit sphere of R3 and is generically
avoided. 2

Proposition 6.12 If the surface S is in generic position (see definition 5.1)
then the projection πz along the z axis is a permissible projection.

Proof. First, there is no line parallel to the z axis in S because if this were the
case, all the vertical line would be included in the contour curve and we would
not be in generic position. The second point to check is that the z-direction
is not a direction of a tangent of S1. This is the case as by construction the
points of the contour curve with vertical tangents project onto singular points
of Cx,y and are thus in S0. 2

We also recall the notion of equi-singularity (which is defined inductively):
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Definition 6.13 [32, p. 577], [35, Def. 4.1 p.981]. Let X ⊂ Cn a hypersur-
face, Y a smooth submanifold of X of codimension c, P be a point of Y . We
say that X is equi-singular at P along Y if either c = 0 and X is smooth at P
or c > 0, Y ⊂ Xsing and there exists a so-called permissible projection π such
that the critical locus of π|X is equi-singular at πz(P ) along πz(Y ).

The main result that we use is the following:

Proposition 6.14 [32, Def. 4.1 p.981] If the hypersurface X ⊂ Cn is equi-
singular along Y and if the codimension of Y in X is 1, then the pair (Xsmooth, Y )
fulfills the Whitney conditions along Y .

This allows us to check the Whitney condition over the complex field. We need
to check it on R:

Proposition 6.15 If X and Y are two strata of a Whitney stratification of
SC with dimX = 2 and dimY = 1, then (XR, YR) is Whitney regular, where
XR = X ∩ R3 and YR = Y ∩ R3.

Proof. Let P be a point in YR∩XR. Consider a sequence xn of points ofXR and
yn of points of YR, both sequences converging to P . Note these sequences exist
because P is in YR∩XR which means there are points of XR in a neighborhood
of P (and P ∈ YR). Of course YR and XR are disjoint sets because Y and X

were already disjoint. We assume that the sequence of secants xnyn converges
to a limit l ∈ R3 and the sequence of tangent planes Txn

XR converges to a
limit T . If we consider xn and yn in C3, the sequence of secants converges
also to a complex line lC because xn ∧ yn converges to a limit L in P(Λ2R4)
which is embedded in P(Λ2C4). The convergence of the sequence Txn

XR is
equivalent to the convergence of Txn

X : the sequence of normals defined by the
orthogonal vectors ∇f converges equivalently in R or C. Thus limn→∞ xnynR ⊂
limn→∞ xnynC ⊂ limn→∞ Txn

X (since (X, Y ) is Whitney regular). We deduce
that limn→∞ xnynR ⊂ limn→∞ Txn

X ∩ R3. We know that limn→∞ Txn
XR ⊂

limn→∞ Txn
X ∩R3. As xn is a sequence of real points, limn→∞ Txn

X is defined
as the orthogonal in C of a real vector. We deduce that limn→∞ Txn

X ∩ R3 is
a real space of dimension less or equal to 2 containing limn→∞ Txn

XR which
is of dimension 2, thus the two linear spaces are equal. So we deduce that
limn→∞ xnynR ⊂ limn→∞ Txn

XR and that (XR, YR) is Whitney regular. 2

Proof of Theorem 6.9. The stratification defined in (6.9) over the complex
field, yields a stratification of SC. We consider its restriction to R3. By Propo-
sition 6.5, we only need to check the Whitney condition for the 1-dimensional
strata S1

R
and the 2-dimensional strata S2

R
of SR. Let p ∈ S1

R
∩ S2

R
. If p is a

smooth point of S, the Whitney condition is trivially satisfied. If p is singular,
by Proposition 6.14, we have the Whitney condition for (S2

C
, S1

C
) at p. And

by Proposition 6.15, we deduce the Whitney condition for (S2
R
, S1

R
) at p. This

proves that (S0
R, S

1
R, S

2
R, S

3
R) is a Whitney stratification of R3 compatible with
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SR. 2

6.3 Connection of the sections

We have described in section 5 an algorithm to connect two successive sections.
Now we are going to justify what this algorithm does.

By Theorem 6.9 and using Thom’s lemma (Theorem 6.8), we deduce that
in between two consecutive critical sections, the topology of the sections is
constant. We have computed the topology of regular sections, in between two
successive critical ones. So now, in order to prove the isotopy of the surface
and the mesh, we have three things to verify:

a) From a topological point of view, we define the good connections between
the sections.

b) The triangulation that we construct is valid (i.e. the simplices of the complex
do not intersect). Or in other words, the embedding in R3 of the simplicial
complex we have constructed is injective.

c) The mesh is isotopic to the surface.

The point c) will be made explicit in subsection 6.4. We now prove the first
two points:

a) We are going to justify the connection algorithm described in section 5.2.
Let us recall the notations of section 5.2.

We denote by p1, . . . , pl (resp. q1, . . . , qm) the points of πz(V∩Sr) (resp. πz(V∩
Sc)) ordered by increasing y-coordinates, which are on the projection of an
arc of V connecting Sr and Sc. Notice that we have s ≤ r.

We denote by Ai (i = 0, . . . , l) the set of arcs of Sr which project onto [pi, pi+1]
and by Bj (j = 0, . . . , m) the set of arcs of Sc which project onto [qj , qj+1],
with the convention that p0, pl+1, q0, qm+1 are on the boundary of the ball B.

The point pi is connected to qν(i) by an arc δi of the projection of K. We note
Θi the open planar domain between δi and δi+1 (dashed part in Figure 6).

Proposition 6.16 If the topology of π−1
z (δi) ∩ S, Sr, Sc is determined, then

algorithm 5.2 computes the topology of π−1
z (δi+1) ∩ S and of π−1

z (Θi) ∩ S.

Proof. Let us consider an arc γ in Ai connecting a point P to a point P ′. If we
apply Thom’s lemma to S∩π−1

z (Θ), we deduce that S∩π−1
z (Θ) is topologically

trivial (i.e. made of a family of patches lying one above the other) and that
the boundary of each patch contains an arc θi in π−1

z (δi) and an arc θi+1 in
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Fig. 6. Projection of the contour curve

π−1
z (δi+1). We denote hereafter by F the patch associated to γ.

There are two cases to consider:

(1) δi and δi+1 intersect in qν(i).
(2) δi and δi+1 do not intersect.

In the first case, we denote by Q = θi∩θi+1 the point of F which projects onto
qν(i). By induction hypothesis, as the topology of Fi∩π

−1
z (δi) is determined by

algorithm 5.2, the arc θi is represented in K as the connection of P to Q. The
arc θi+1 corresponds to the connection (P ′, Q), produced by the algorithm, as
well as the face (P, P ′, Q) corresponding to F .

We have

π−1
z (δi+1) ∩ S =

(

Cz(SB) ∩ π−1
z (δi+1)

)

∪
(

π−1
z (Θi) ∩ S ∩ π−1

z (δi+1)
)

According to the previous paragraph, the arcs of π−1
z (Θi) ∩ S ∩ π−1

z (δi+1) are
thus obtained by algorithm 5.2. The arcs of Cz(SB) ∩ π−1

z (δi+1) are obtained
by algorithm 4.1. Thus the algorithm 5.2 compute the topology of π−1

z (δi)∩S.

In the second case, we denote again by Q = θi ∩ Sc the point of F which
projects onto qν(i) and by Q′ = θi+1 ∩ Sc the point of F which projects onto
qν(i)+1. The intersection F ∩ Sc is an arc connecting Q to Q′, which exists in
K, by hypothesis.

Conversely, as the surface is in generic position (see definition 5.1), an arc of
Sc ∩ π−1

z ([qν(i), qν(i)+1]) = Bν(i) is in the closure of only one patch defined by
an arc in Sr ∩ π−1

z ([pi, pi+1]) = Ai. So there is a one to one correspondence
between the arcs in Ai and the arcs in Bν(i). Moreover, this correspondence
respects the z-order on the arcs, since there is no point of Cz(SB) above Θi.
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In particular, the smallest arc γ = (P, P ′) in Ai is connected to the smallest arc
η = (Q,Q′) in Bν(i) by a face (P, P ′, Q′, Q) corresponding to F , as computed
by algorithm 5.2.

The arc θi+1 connects the point P ′ to Q′, as computed by the algorithm 5.2,
so that the topology of π−1

z (δi+1) ∩ S is determined by the algorithm.

This proves that if the topology of π−1
z (δi) ∩ S, Sr, Sc are determined, then

algorithm 5.2 compute the topology of S above Θi. 2

b) We have to ensure that our triangulation is valid. It is clear that the trian-
gulation we compute does not create holes, because the triangulation refines
the topological complex K. Let us check now that we do not create intersection
of the open segments and open triangles.

As the algorithm proceeds iteratively on the cylinders π−1
z (Θi), we have only

to check this property above Θi. By construction, the projection by πz of open
segments and open triangles are either disjoint or included one in the other.

If these projections are disjoint, they cannot self-intersect.

Otherwise, since these are linear objects, their intersection would imply an in-
version of the z-position of the corresponding arcs (resp. points) in the section
Sr and Sc, which is not possible by Thom’s isotopy lemma.

This shows that the triangulation of S is valid.

6.4 The isotopy

We are going to detail an explicit isotopy between the original surface and its
polygonal approximation.

Definition 6.17 We say that two surfaces S and S ′ are isotopic if there exist
an application F : R3 × [0, 1] −→ R3 such that:

(1) F is continuous
(2) F(.,0) = Identity
(3) F(S,1) = S ′

(4) ∀t ∈ [0, 1], F(.,t) is a homeomorphism onto its image.

We have seen that the projection of the contour curve on the (x, y) plane
(parallel to the z-direction), partitions the part of the (x, y) plane between Sr

and Sc (see Figure 6).
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The region Θi is defined by the projection of two arcs of the contour curve.
We will call δi−1 and δi the two projected arc. They correspond to graphs of
semi-algebraic functions of x on [a, b], as the restriction of πy,z to Cz(SB) is
submersive over [a, b[ and the arcs are of dimension 1.

The vertical cylinder with base Θi, cuts the variety along a family of patches
and possibly curves which are not included in the closure of a dimension 2
patch. By construction, to each patch corresponds a sub-part of the trian-
gulation with the particular property that the set of all those parts of the
triangulation has also a cylindrical structure. More exactly, the patches of the
original surface are projected onto Θi and the corresponding triangulations
project on the same quadrangle or triangle that will be denoted by ∆i. This
is a consequence of the division of the space with vertical walls that we have
made (see Figure 3).

Let us now consider two families φk, k = 1, . . . , n and ψk, k = 1, . . . , n of graphs
of continuous functions defined on the interval [0, 1]. Those graphs verify :

(1) ∀x ∈]0, 1[ φ1(x) < · · · < φn(x) , ψ1 < · · · < ψn(x).
(2) For x ∈ {0, 1}, if φk(x) = φk+1(x) then ψk(x) = ψk+1(x).

Then there exists an isotopy from [0, 1]×R that send each φk, k = 1, . . . , n on
ψk. One can easily verify that the following application is suitable: (x, y, t) 7→
(x, g(x, y, t)) with:

g(x, y, t) = 1]−∞,φ1(x)](y + t(ψ1(x) − φ1(x)))

+1]−Φ1(x),φ2(x)]((1 − t)y + t( y−φ1(x)
φ2(x)−φ1(x)ψ2(x) + φ2(x)−y

φ2(x)−φ1(x)ψ1(x))) + · · ·

+1]−Φn−1(x),φn(x)]((1 − t)y + t( y−φn−1(x)
φn(x)−φn−1(x)ψn(x) + φn(x)−y

φn(x)−φn−1(x)ψn−1(x))))

+1]φn(x),+∞[(y + t(ψn(x) − φn(x))).

For a fixed x, the application sends intervals on intervals.

Let us consider for φk, the family of arcs defining the Θi and for ψk, those
defining the ∆i. We deduce from the previous result that applying an isotopy

of the form : (x, y, z, t)
H17→ (x, g(x, y, t), z), we make the projections of the

patches and their triangulations on the plane (x, y) coincide. As illustrated
in Figure 8, we have transformed the Θi into the ∆i. Moreover, applying this
result on each interval between a regular and a critical section, the isotopies
glue together into a global one.

More precisely :

(1) In the first step, we have considered a transformation of the form (x, y, z, t)
H17→ (x, g(x, y, t), z) which does not modify the coordinates x and z. This
transformation makes the projections on the plane (x, y) of φk (patches
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of surfaces) and of ψk (patches of triangulation) coincide. This transfor-
mation does not modify the relative order of the graphs.

(2) The second step of the isotopy is a vertical transformation of the form

(x, y, z, t)
H27→ (x, y, h(x, y, z, t)) which sends H1(φk) on ψk. It is similar to

the previous one, we will not go into any further details here. Above Θi,
there are patches and possibly isolated arcs of the contour curve. If such
an isolated arc γ is in between two patches H1(φk) and H1(φk+1), we add
a term in the isotopy transformation, corresponding to a virtual patch F
with γ on its boundary and which lies between the two patches H1(φk)
and H1(φk+1).

7 Example

In this section, we illustrate what the algorithm does on two examples. The
first example we chose is known as Whitney’s umbrella and the classical normal
form for it is zx2 − y2. We ask the algorithm to compute the topology of this

24



surface in the unit ball.

In the first step the algorithm determines that z x2 − y2 is not in generic
position because the line x = 0, y = 0 is included in the surface. It performs
a random change of variable and the surface is now in generic position. The
algorithm then computes the projection of the intersection of the unit ball
and the umbrella and of the polar variety in the new coordinate system and
identifies the x-critical points. Then it performs the connection between the
points on the surface. These points have been plotted in green on the pictures
below, the blue lines show the polar variety (the vertical z axis is in it, but
it is hidden by the red line), and the red lines that connect the green points
illustrate the arcs that connect the green points in the output of the algorithm.
In other words, two critical points are connected by a red line if there is a
direct path that connect them in the output of the algorithm. We have only
represented the critical points in the picture to keep it clear. As a matter
of fact on this example the algorithm has to compute more points but the
underlying connection structure is the one represented here. The structure
has two symmetrical “chip”-like parts, and the stick of the umbrella separates
them. Notice that the isolated part of the stick is correctly handled by the
algorithm, but the lower “chip”-like part partially hides its endpoint, so one
has to look carefully to see the whole stick.
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The second example comes from the following equation:

4 z4x4 + 8 z4x2y2 + 4 z4y4 + 8 z3x4 + 16 z3x2y2 + 8 z3y4 + 19 z4x2 + 19 z4y2

+8 z2x4 + 8 z2y4 + 16 y2 z2x2 − 72 z3x2 − 72 z3y2 + 4 zx4 + 8 zx2y2 + 4 zy4

+121 z4 − 28 z2x2 − 28 z2y2 + x4 + 2x2y2 + y4 − 308 z3 + 20 zx2 + 20 zy2

+262 z2 − 3x2 − 3 y2 − 84 z + 9 = 0.

The first picture shows what the surface looks like. The second picture is an
illustration of the connections. The green points are the same as in the previous
picture: they are the characteristic points that the algorithm uses to recover
the topology. They have been computed by the algorithm then displayed. The
red lines were added to show the topology of the slices. The blue line represent
some of the connections between the slices, drawing them all would have made
the picture too messy.
From the output of the algorithm one sees that the surface is self-intersecting
with a cone, which was not obvious on the first picture.

8 Complexity and effectiveness

The algorithm of Cylindrical Algebraic Decomposition (CAD) computes in
the case of a polynomial f(x, y, z) = 0, at most O(d32

) polynomials of degree
at most O(d22

) [6, Chap. 11], which yields at most O(d13) points to compute.

With our algorithm, we have the following result.

Proposition 8.1 At most O(d7) points on an algebraic surface S of degree d
are enough to determine a simplicial complex isotopic to it.

Proof. As described in the previous sections, we are able to deduce the topol-
ogy of the surface from the solution of system (1) and from the intersection
points of the polar curve with planes V (x − α) where the α’s lie in between
the x-critical values of the planar curves defined by the polynomials ∆(x, y) =
Resz(f(x, y, z), q(x, y, z) ∂zf(x, y, z)), Ψ(x, z) = Resy(f(x, y, z), q(x, y, z) ∂zf(x, y, z)).
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As deg(f) = d and deg(q ∂zf) = d + 1, the degree of ∆(x, y) is bounded by
d (d+ 1). By Bezout theorem, the number of (real) solutions of the system 1
is bounded by

d (d+ 1) (d (d+ 1) − 1) d (d+ 1) d = O(d7).

As there are at most O(d4) critical values for ∆(x, y) and Ψ(x, z) (which are
of degree d2), and as the polar curve is of degree d (d− 1), there are at most
O(d6) additional points to insert to get the topology of the polar curve and
to deduce an isotopic triangulation of the surface. 2

Notice that this bound is bigger than the size of a minimal cell decomposition,
since several non-isotopic curves or surfaces yield the same size for the minimal
decomposition (eg. just take distinct configurations of ovals in the plane) and
does not compare with the bounds on connected components (see eg. [8]) or
the complexity of the semi-algebraic set [34] or with output size bounds in [7].

From an effectiveness point of view, we have to compute an approximate
or exact representation of the real roots of system (1) and then to compare
their coordinates in order to deduce the connections. This can be performed
effectively by using a rational univariate representation of the roots and Sturm
(Habicht) sequences [21], [6], [15].

In [31], [25] an analysis of the number of isotopy types of a smooth plane alge-
braic curve of degree d is given. It is shown that this number is exponentially
weakly equivalent 2 to ed2

when d→ ∞.

Using the sweeping algorithm in 2D [20], we can prove that the number of
isotopy classes for general planar curves of degree d is exponentially weakly
bounded by ed3

. The proof is similar to the one that we detail now for surfaces:

Proposition 8.2 The number of isotopy types of an algebraic surface of de-
gree d is exponentially weakly bounded by ed7

.

Proof. Assume the surface is in generic position (see definition 5.1) and that
moreover the projected curve Cx,y has at most one x-critical point for each x

and that the number of points on C above a x-critical point of Cx,y is ≤ 2.
These conditions can be satisfied by a generic change of coordinates.

As the degree of Cx,y is ≤ d2, it as at most d4 x-critical points. We consider d4

x-critical sections which intersect Cx,y in at most d2 points, above which we
have at most d points on S. This yields a total of d7 points. To each of these
points, we associate the value

2 A function f is said to be exponentially bounded by (resp. weakly equivalent to)
g if log(f) = O(log(g)) (resp. log(f) = O(log(g)) and log(f)−1 = O(log(g)−1)).
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• 0 if it is not in the section of S,
• r if it is a regular point of the section of S,
• c if it is on the contour curve C and projects onto a regular point of Cx,y,
• x if it is on the contour curve and projects onto a x-critical point of Cx,y.

By the genericity assumption, there is at most two points with index x on a x-
critical section. Similarly, we insert regular sections in-between these x-critical
sections and regular vertical lines in between the points of Cx,y at x-critical
section. This gives O(d7) additional points to which we associate the index 0
if the point is not on S and r otherwise.

From this information, the algorithm determines in a unique way the connec-
tions between the points of x-critical section and a consecutive regular section,
if there is only one point with index x in the x-critical section. Otherwise, there
are O(d) choices to connect the two points of index x with the other in the x-
critical section and O(d2) choices to connect them in the next regular sections
of C. Once these connections are chosen, they determine a unique topologi-
cal complex equivalent to the surface. This shows that the number of isotopy
classes of algebraic surfaces of degree d is bounded by d3 4O(d7), which proves
the proposition. 2
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