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Does Life resist desynchronisation?

Nazim Fatès1

INRIA Nancy Grand-Est – LORIA , Nancy, France. nazim.fates@loria.fr

1 Introduction

Undoubtedly, Conway’s Game of Life – or simply Life – is one of the most
amazing inventions in the field of cellular automata. Forty years after its
discovery, the model still fascinates researchers as if it were an inexhaustible
source of puzzles. One of the most intriguing questions is to determine what
makes this rule so particular among the quasi-infinite set of rules one can
search. According to W. Poundstone, “Conway wanted to create a game that

would be as unpredictable as possible, yet with the simplest possible rules” [18].
Still, what kind of intuition struck Conway when he designed the model? Was
it mere chance or is a method for designing a simple rule which yet leads to a
surprising behaviour? Is the Life rule somewhat related to real life, and if it
so, can we discover models of equal richness by observing natural phenomena?

Our long-term objective is to analyse how the properties of the Life rule
are related to the properties of natural systems. In other words, we ask whether
Conway’s Life resists structural perturbations, where structural means that
the perturbations modify the interactions of the components interaction in-
stead of modifying their states. In this paper, our aim is to examine whether
the Life rule verifies an important property of living organisms: their robust-
ness to desynchronisation, i.e., their ability to keep a constant behaviour when
the updating of their components is modified. We thus study the behaviour
of an asynchronous version of Life on a regular and an irregular topology.

To date, these issues haven’t received much attention. One reason to ex-
plain this lack of interest is that Conway’s model is generally considered as a
simple metaphor without any serious connection to real life. It is thought of as
an example which illustrates how basic local rules can produce a complex and
unpredictable behaviour. However, even if the model is metaphor, we want to
know if asynchronism allows us to discover novel interesting properties. The
next section introduces some bibliographical landmarks to see how this issue
has been tackled so far.
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2 A brief History of the Problem

The idea to test how Life resists noise dates from as early as 1978 with
paper by Schulman and Seiden [20]. They examined how the introduction of
a stochastic element in the local evolution rule would perturb the long term
evolution of the system. They replaced the deterministic transitions pk,s -
which are equal to 0 or 1 if a cell in state k with s lives neighbours dies or
leaves - by pk,s(T ) which are the probabilities to be in state 1 at the next
iteration. They take pk,s(T ) = (pk,s + d.T )/(1 + T ) , where d is the current
density and T is the stochastic parameter, named ”temperature” by analogy
with the physical parameter. Interestingly, this parameter is chosen such as not
to influence the evolution towards increasing or decreasing the density. The
main drawback with this approach is that the definition of the probabilities
of transition pk,s is not local: the density should first be computed using the
state of the whole grid before the transitions are determined. Nevertheless, the
authors analyse the perturbed model with first order and improved mean-field
analysis. Their findings can be summarised by saying that: (a) the mean-field
analysis fails to predict the evolution of the classical deterministic Life but
succeeds with high-temperature models ; (b) more surprisingly, the analysis
shows that a phase transition exists which separates two regimes: depending
on the value of T , the system is either attracted to the null density or to
an attractor of density d∗ = 0.37. However, a deeper analysis of this phase
transition remains yet to be achieved.

Adachi et al. also proposed a modified version of Life. Their model takes
into account a “temperature” as a stochastic parameter and uses continuous
values for the cells’ state [2]. The authors show that there are some stable
patterns, such as gliders, which resist a finite amount of noise.

Tackling the question of how Life is affected by asynchronous updating,
Bersini and Detours [4] proposed a qualitative study of the model under fully
asynchronous updating, i.e., when the updating is sequential and cells are
chosen randomly and uniformly without any memory (see [12] for a classifi-
cation of rules with this updating scheme). The authors observed that Life’s
behaviour was qualitatively altered by the change of updating. They deduced
that asynchrony had a stabilising effect since they could observe the emergence
of “labyrinth” patterns that would eventually allow the system to reach a fixed
point. However, no systematic study of the phenomenon was conducted, in
particular the authors did not examine how this stabilising effect scales with
the size of the grid.

The first quantitative study of the change of behaviour was conducted
by Blok and Bergersen [5]. They examined Life with the α-asynchronous
updating, i.e., when each cell has a probability α to be updated at each
time step. They identified a continuous change of behaviour of the model
depending on α. More precisely, they found that Life displays a second-order
phase transition which belongs to the directed percolation universality class
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(see below). In this paper, we will proceed to similar experiments but with a
different protocol.

Finally, let us mention the stochastic variant of Life which was introduced
by Monetti and Albano: they modified the local rule by adding probabilities ps

and pb for survival and birth, respectively [17]. This change produces a first-
order irreversible phase transition between an “extinct” state where no cell is
alive and a “live” state where some structures persist. An improved mean-field
analysis was developed to support the experimental observations [16].

We now present formally our model, where, in a first step, the perturba-
tions apply only to the updating procedure (and not to the transition rule).
Our starting point is thus similar to the study by Blok and Bergersen, we
then extended our scope of analysis to a greater range of conditions.

3 Asynchronous Life

Let us consider the square grid L = {1, . . . , L} × {1, . . . , L} with periodic
boundary conditions (the space is a torus). The state of a cell c ∈ L at time
t is denoted by σt

c ∈ {0, 1}.
Each cell c ∈ L is associated with its neighbourhood N (c) ⊂ L. We use the

8-nearest neighbours topology: N (c) = {c′ ∈ L, |c′x − cx| = 1 or |c′y − cy| = 1}.
The local rule is the function which gives the next state of a cell according

to the state of its neighbours. In the case of Life and its variants, it is defined
as an outer-totalistic function, i.e., the application of the local rule on a cell
c is a function of only two variables: σt

c and s =
∑

c′∈N (c) σt
c′ . A general

expression of the local transition rule of Life is stated with two threshold
rules:

• birth rule: a cell in state in state 0 becomes a 1 iff s ∈ [Bl, Bh];
• survival rule: a cell in state in state 0 remains a 1 iff s ∈ [Sl, Sh];

where the thresholds Bl, Bh, Sl, Sh are non-zero integers. The original Life is
defined with the thresholds Bl = 3, Bh = 3, Sl = 2 and Sh = 3.

Classically, the model isdefined with a synchronous updating, i.e., all cells
are updated at each time step. In this paper, we will also consider the asyn-

chronous updating, i.e., only a fraction of cells are updated at each time
step. There are various ways of considering asynchronous updating in cellular
automata. Here, we will consider two simple schemes:

(a) the α-synchronous updating [11]: at each time step, each cell will be up-
dated with probability α or left unchanged with probability 1-α.

(b) the fully asynchronous updating [12]: at each time step, one cell is chosen
uniformly at random and updated, the other cells are left unchanged.

The probability α is called the synchrony rate. When α = 1 we have the
classical synchronous updating, the system is deterministic. For α < 1, the
system becomes stochastic. In order to compare the different simulations, we
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use the rescaled time τ defined as τ = t/α for the α-asynchronous updating
and τ = t · n for the fully-asynchronous updating. Intuitively, for α → 0, the
α-synchronous updating and the fully-asynchronous updating become equiv-
alent under the time rescaling. Indeed, the probability that two neighbouring
cells are simultaneously updated becomes negligible, which allow the two pro-
cesses to be mapped one onto the other given the appropriate transformation.
However, note that this is valid only for a bounded rescaled simulation time ;
if we consider infinite-time evolutions of the system, the equivalence may not
hold any more.

Formally, we model the asynchronism by specifying the set of cells which
are updated at each time t. This is done by using a function ∆ : N → P(L).
For a fixed updating scheme ∆, the global transition function F∆ : {0, 1}L →
{0, 1}L associates a configuration σt

c to its successor σt+1
c according to:

∀t ∈ N, ∀c ∈ L, σt+1
c =

{

f(σt
c, s) if c ∈ ∆(t)

σt
c otherwise

where
s =

∑

c′∈N (c)

σt
c′ ,

and f(q, s) is the local transition function defined with:

f(0, s) =

{

1 if s = 3

0 otherwise
and f(1, s) =

{

1 if s ∈ [2, 3]

0 otherwise
.

Using this formalism, we reformulate our objective as an analysis of the
behaviour of global transition rule F∆ depends on the updating scheme ∆.
The word “behaviour” has yet to be defined more precisely ; in this article we
will mainly use two functions for quantifying changes of behaviour:

• the density d(x) , i.e., the ratio of 1s in a configuration x.
• the activity χ(x), i.e., the ratio of unstable cells in a configuration x.

These two parameters are only rough projections of the state of the system
and clearly, they capture only a small part of what one generally expects by
saying “behaviour”. However, we will see that they give enough information
to observe interesting phenomena, especially when qualitative changes of the
behaviour of the system need to be detected.

4 Assessing Life’s Robustness to Desynchronisation

We now turn our attention to the evaluation of the robustness of the Life

rule. We proceed in three steps: (1) an informal observation of the changes
induced by asynchrony, (2) a quantification of these changes, (3) an analysis
of the phase transition with the tools from statistical physics.
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synch. upd. α = 0.5 fully-asynch. upd.

Fig. 1. Snapshots of configurations obtained with 3 updating schemes: synchronous
(left), α-asynchropnous (middle), fully asynchronous (right). Configurations are
taken at time τ = 100 (top) and τ = 200 (bottom).

4.1 First Experiment

Figure 1 shows Life’s steady state typical configurations for three different
updating schemes. It illustrates the influence of the updating on the behaviour
of the system: we see that for the asynchronous updating, a new type of
pattern has emerged. We call these patterns labyrinths ; their presence on
the grid depends on the synchrony rate α: for α > 0.9, no labyrinth pattern
appears, for α < 0.9, the lower the synchrony rate, the denser the labyrinth
patterns. How can we explain this modification?

We repeated the previous experiment by decreasing α by steps of 5% and
we observed that the labyrinth shapes progressively appears when α < 0.9.
For α < 0.8, the system rapidly reaches a steady state where the density
becomes stable. As α decreases, blank spaces in the steady state disappear
in favour of the labyrinth shapes; for α < 0.5, these shapes almost cover the
whole grid (see Fig. 1).

4.2 A Quantification of the Changes

How does this steady state vary as a function of the synchrony rate? A possible
method for quantifying the variation is to measure the average activity of the
steady-state. Figure 2 shows the steady state activity χ∞ as a function of α.
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The values are obtained by running a system for a transient of 1000 steps and
then averaging the activity of the system for another 1000 steps. It confirms
that a qualitative change of behaviour occurs for α ∼ 0.9.

Fig. 2. Steady state activity χ∞ as a function of the synchrony rate α. Grid size is
100 × 100. Averages obtained with 12 samples.

As noted by Blok and Bergersen, there also exists a “jump” near α = 1.
This discontinuity is the consequence of a modification of behaviour which
occurs as soon as a small amount of noise is introduced: some patterns with
a short cycle stability (e.g., the blinkers) are destroyed by the asynchronous
updating. Noteworthy is the analogy with similar phenomena observed in 1D
Elementary Cellular Automata (ECA), see [11]. Although for Life, the jump
is relatively small (of the order of 0.01), it can be much larger in the case of
other cellular automata [10].

If it is easy to explain the change of behaviour near α = 1, the modification
which occurs near α = 0.9 is rather puzzling at first sight. What kind of
transformation the system undergoes at this critical value?

4.3 A Second-order Phase Transition

The first quantitative study of the abrupt change of behaviour in the asyn-
chronous Game of Life is due to Blok and Bergersen [6]. The authors showed
that the phenomenon was a second-order phase transition: the macroscopic
functions that describe the global behaviour as a function of α are continu-
ous but their derivative are discontinuous at the critical point αc ∼ 0.9. The
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critical threshold αc separates two well-distinguished macroscopic behaviours
called phases. The first phase (α > αc) is the frozen phase, in which the sys-
tems evolves with low-density patterns and quickly stabilises to a fixed point.
The second phase (α < αc) is the labyrinth phase, it is characterised by a
steady state with higher density and the absence of a stabilisation on a fixed
point (at least for large grid sizes, e.g., for L > 20).

Note that this description is ideal in the sense that it only applies to infinite
systems. As simulation imposes to deal with finite systems, how do we then
know that we are in presence of a phase transition? This problem is delicate
and there exist a great range of methods to answer it. In general, the system
is observed near the critical threshold and we measure how a macroscopic
description, the order parameter, varies as a function of the lattice size L.
Ideally, one should observe that the effect of the lattice size become less and
less important, i.e., the order parameter tends to converge to an asymptotic
value with regard to the lattice size.

Concomitantly, we should also observe that the order parameter obeys
power laws as it gets closer to the threshold. The origin of these power laws
comes from the divergence of the system’s spatial length scale at the criti-
cal point: the system becomes self-similar and its structure follows a fractal
pattern. A major discovery in statistical physics is that the power laws that
describe the system are not arbitrary: it was observed that very different sys-
tems are described by power laws with the same critical exponents. The set
of systems which exhibit the same critical exponents is called a universality

class. The identification of a universality class is thus a trusted method to
show that a brutal change of behaviour is a phase transition (and thus not a
mere continuous change in the system’s behaviour).

By measuring the value of the steady state activity χ∞ as a function of
the synchrony rate α, Blok and Bergersen demonstrated that asynchronous
Life’s phase transition belonged to the universality class of directed percola-

tion (see [14] for a detailed description). Their protocol consisted in measuring
a single critical exponent, i.e., they showed that near criticality, the system
obeys:

χ∞(α) ∼ (α − αc)
β

with β being predicted by the directed percolation theory. Although this al-
lowed them to locate the critical threshold at αc = 0.9083, it is well-known in
the literature that this method alone does not give precise results [14]. Indeed,
the closer we get to the critical threshold, the longer we need to wait for the
system to stabilise to a steady state. This phenomenon, known as the criti-

cal slowing down, is difficult to counterbalance. It often introduces systematic
biases in the measures, which can not be “seen” by merely computing the un-
certainties in the statistical data. In order to avoid the biases of this method,
we follow another protocol which was for instance used by Grassberger for
linear stochastic cellular automata [13].
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The protocol consists of an interactive process: (a) we fix α and start with
a random configuration, (b) we monitor the evolution of the order parameter
for a long simulation time until we observe a sub-critical or super-critical
behaviour ; (c) we repeat the experiment with a value closer to the critical
point until we are not able to observe the difference between sub- and super-
critical behaviour.

As we expect the evolution of the order parameter to be a power law near
criticality, its evolution should thus appear as straight line on a log-log plot.
The value of threshold is not known advance, the values we test are thus
either sub-critical or super-critical. The critical threshold is approximated by
observing the changes of convexity in the plots displayed in log-log scale: a
plot with a positive or negative curvature corresponds to a super-critical or a
sub-critical behaviour, respectively.

Fig. 3. Evolution of the activity χ as a function of time ; grid size is 800 × 800,
averages are taken with 50 samples. the straight line has slope −δ = −0.451.

We tested both the density and the activity as an order parameter and
observed that the activity gave much better results. Figure 3 displays differ-
ent evolutions of the steady state activity χ for different synchrony rates. We
find that for α = 0.912, the curve bends downwards, which indicates an sub-
critical regime (“frozen phase”); while for α = 0.910, the curve bends upward,
which indicates a super-critical regime (“labyrinth phase”). We thus locate
the phase transition at the point αc = 0.911 ± 10−3. Note that this value,
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although close to value given by Blok and Bergersen is not in agreement with
their uncertainty range. As said before, we believe that the small discrepancy
comes from the biases which exist in the method they have used. Other exper-
iments are now needed in order to settle this value with greater precision. This
could be done for example by measuring the dynamical exponents, starting
from an initial condition close to the absorbing phase. In any case, for the
critical synchrony rate αc ∼ 0.911, we observe a good agreement between the
measured slope and the expected value δ = 0.451 which corresponds to the
directed percolation critical exponent.

5 Influence of the Initial Condition on the Asymptotic

Behaviour

So far we used only uniform random initial conditions, i.e., configurations
where each cell had a probability dini = 1/2 to be in state 1. For the great
majority of dynamical systems, the choice of the initial condition generally has
an effect in the outcome of a trajectory. What about the asynchronous Life?
For α < αc, do we always observe the labyrinth phase regardless of the initial
condition? To deal with this question, we first observe the system behaviour
from an experimental point of view. Part of this behaviour is then explained
using a mean-field analysis and another part is explained with a close-up on
how the labyrinth phase develops from specific parts of the lattice.

5.1 Experimental Approach

Bagnoli et al. were among the first authors to examine in details the impor-
tance of the initial condition in the evolution of the Game of Life [3]. For the
classical synchronous updating, they detected two sharp transitions in the
asymptotic density d∞ as a function of the initial density dini. Fig. 4 shows
d∞ = f(dini) for the synchronous and asynchronous case (α = 0.5). The
asymptotic density is approximated by taking a 100×100 grid and measuring
the average density during 1000 steps after a transient time of 5000 steps.

The curve obtained for the synchronous case α = 1 displays two sharp
transitions. The first one is for a small dini: there exists a threshold which
separates the initial conditions which lead to the “extinct” state (d = 0)
from the initial conditions which lead to the “frozen” state (d > 0). Above
this threshold, we observe a saturation phenomenon which indicates that the
initial density might not have a great importance in the evolution of the
system. A symmetrical situation is observed for dini > 0.8 where the system is
again lead to the “extinct” state. Now, if we have a look at the asynchronous
updating for α = 0.5, we notice that: (a) the sharp transition for low dini

is still present, which shows that the labyrinth phase is not always attained,
even for α < αc, (b) the sharp transition for high dini has disappeared. How
can we explain these two phenomena?
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Fig. 4. Asymptotic density as a function of initial density ; grid size is 100 × 100.

5.2 Mean-field Analysis

Since the evolution of many cellular automata is difficult or impossible to
predict analytically, one might need some approximations to make such a
mathematical analysis possible. One of the simplest approximations is the
mean-field method, which consists in neglecting all spatial correlations. The
mean-field analysis is equivalent to considering an infinite system were the
cells would be redistributed randomly at each time step.

Let us assume that the density is d at time t and let us calculate the
density d′ at time t + 1. Since the updating is asynchronous only a fraction α
of the cells will be updated. In this subset of updated cells, a cell in state 0

will transform into a 1 (proba. p01) if and only if it has 3 neighbours (among
8) in state 1. Similarly, a cell that in state 1 will turn into a 0 (probability
p10) if and only if it has not 2 or 3 neighbours. Consequently, we obtain the
following set of equations:

d′ = d + α[(1 − d).p01 − d.p10]

We have
p01 = C3

8 d3 (1 − d)5

and
p10 = 1 − [C3

8 d3 (1 − d)5 + C2
8 d2 (1 − d)6]

This results in:

d′ = d + α d [84 d2 (1 − d) + 56 d3 (1 − d)5 − 1]
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We can remark that the solutions points of this equation (d’ = d) are the
same in the synchronous or asynchronous regime. This implies that the mean-
field analysis does not give us any information on how the system is affected
by the asynchronous updating! Intuitively, we can observe that if the system
is at equilibrium, no matter how many cells are updated since the density
of the set of updated cells will not vary. From the mean-field viewpoint, the
synchrony rate α acts only as a dilution factor and this why we need to study
experimentally the effect of α.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

alpha=0.25
alpha=0.50
alpha=0.75

alpha=1

Fig. 5. Mean-field analysis : d′ = f(d) for different values of α.

Figure 5 displays the curve d’= f (d) for different values of α. For α=1, we
obtain the well-known mean-field analysis with two solutions: d− = 0.19 is a
unstable point while d∗ = 0.37 is a stable one. In the limit α → 0, we simply
obtain the identity function; intermediate values result in a “hybrid” function
between these two extremal cases. Obviously, the decrease in the synchrony
rate mainly affects the evolution of initial configurations with high densities.
This observation explains the difference in behaviour between low and high
values of α: for a small α, only a small fraction of the cells are updated,
the density progressively decreases until it reaches the first stable point. By
contrast, when α is large, the density goes in one step below the stability limit
d∗ and the system is attracted to the frozen state d = 0.

Now that we have explained what happens for high densities, let us turn
our attention to the other side of the curve. Is there a phase transition for small
values of dini? Recall that a necessary condition for having phase transitions
is to observe a threshold whose position is independent of the grid size.
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5.3 A Close-up on Small Initial Densities

Figure 6 displays the scaling behaviour of d∞ = f(dini) for different grid sizes
and for α = 0.5. The estimation of d∞ is obtained by averaging 200 samples
for which we let the system evolve during 1000 time steps as a transient time
and then take the average value of the density for another 1000 steps. The
curves obtained for the fully-asynchronous updating are similar, although the
density saturates at dmax = 0.43 instead of dmax = 0.38.

The observations confirm the existence of a strong increase of the asymp-
totic density d∞ as a function of dini. However, there is here no clear “signa-
ture” of the presence of phase transition as we see no infinite slope appearing
for a given threshold value of dini. Instead, as the size increases, the slope of
the curve also increases but threshold simultaneously seems to be “translated”
to the left. Moreover, starting from low-dini initial conditions, it is possible
to observe that the labyrinth phase develops from very specific parts of the
lattice that we call germs, by analogy with crystallography where the germs
refers to the elements which can initiate a crystal growth. In order to sup-
port our claim that there is no phase transition here, let us analyse how the
labyrinth phase develops onto the grid.

Fig. 6. d∞ = f(dini), close up for small initial densities with α = 0.5. Averages
obtained with 200 samples.
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5.4 When Germs Colonise the Grid

τ = 0 τ = 150 τ = 250

Fig. 7. Colonisation of the grid by a germ. The grid size is 50×50, the synchrony rate
is α = 0.5, the random configurationw was obtained wityh initial density dini = 0.10.

In a previous paper, we showed that it was possible to predict the shape
of the curve d∞ = f(dini) by studying how the germs developed on an empty
grid [10]. We considered all 3×3 germs and examined what was the probability
of seeing each germ expand and fill the whole grid, i.e., be the source of
the labyrinth phase. The probability of seeing the labyrinth phase was then
obtained by grouping the germs according to their number of 1s, and by
relating this number to their probability of presence on the grid as a function
of the initial density dini.

We now propose a slightly different method, which is less demanding in
simulation time. Instead of studying the 23∗3 = 512 germs one by one, we
will simply set the initial density dini and then initialise a 3× 3 block of cells
with the central cell set in state 1 and the 8 neighbouring cells initialised
randomly with initial density dini. All the other cells of the grid are left in
state 0. We then let the system until it either stabilises on a fixed point or it
reaches the labyrinth phase. To decide if the labyrinth phase is reached, we
use the following criterion: the activity should be higher than the threshold
value 0.1. We verified experimentally that this criterion was fulfilled when the
labyrinth phase appeared on the grid. The ratio of labyrinth phases attained
over the number of samples gives us Pgerm(dini). From this (local) probability,
we derive the global probability PLP to observe the emergence of the labyrinth
phase as a function of the initial density dini. To calculate PLP, we assume
total decorrelation between the 3×3 patterns. The emergence of the labyrinth
phase is then obtained if at least one of the germs is the source of the labyrinth
phase. As there are dini · L

2 such germs in average, an approximation of the
probability of emergence of the labyrinth phase PLP is given by:

PLP(dini) = 1 − [ 1 − Pgerm(dini) ]diniL
2
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Fig. 8. Estimated probability PLP to observe the labyrinth phase as a function of
the initial density dini using the “germ” approximation for α = 0.5 (see text).

.
Figure 8 displays PLP = f(dini) for the fully asynchronous updating scheme

and for different lattice sizes. We see that the shape of the curves obtained
are similar to the curves of Fig. 6. The curves can be divided into three
parts a slow increase for small dini, followed by a sharp increase for a small
range of dini and then a saturation for higher values of dini. As the steady
state density reached for α = 0.5 is close to 0.38, we observe a qualitative
agreement between the plots of Fig. 6 and those of Fig. 8.

This agreement pleads in favour of the non-existence of a phase transition:
indeed, if the germ hypothesis is correct, as soon as we have dini > 0, the
probability that the labyrinth phase appears and from a germ which “invades”
the whole lattice is non-zero, and this probability increases (non-linearly) as a
function of the lattice size. These observations can be extended to any α < αc:
the probability to observe the labyrinth phase tends to 1 as the grid size tends
to infinity. In short, for α < αc, there exists no phase transition with regard
to the variation of dini. We leave the question open for α > αc, in particular
for the synchronous case α = 1 (the question was raised by Bagnoli et al. [3]).
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6 Extensions of the Asynchronous Game

Our examination so far was limited to a Life rule with a desychronised up-
dating but with a regular topology and with its classical definition. In this
section, we examine how the behaviour of the asynchronous Life model is
affected either by a change of topology or by a change in the thresholds which
define the local rule.

6.1 How important is a regular topology?

In a similar way that perfect synchrony is not a realistic assumption, it is also
possible to question if a perfectly connected grid where each cell has exactly
the same number of neighbours is “realistic” (see [8] for a short survey related
to this question). In a previous paper, we tackled the question and examined if
Life’s phase transition was still present if we removed links randomly between
a cell and its neighbours. We observed that this operation had a surprising
effect: the location of the critical threshold αc was lowered as the rate of
missing links ǫ− was increased. Simultaneously, the phase transition became
less and less visible and for ǫ ∼ 10%, the phase transition was no longer
observable [10].

Following the same protocol as described in Sec. 4.3, we performed sim-
ulations to test how the phase transition was modified for the missing links
perturbation. We verified than the directed percolation was conserved, at least
for ǫ− < 6%. For this range of perturbation, the critical threshold αc decreases
linearly with ǫ−. For a greater amount of perturbations (ǫ− > 6%), we face a
“blurring effect”, i.e., the phase transition becomes more and more difficult to
observe and the critical threshold is hardly located. Similar phenomena were
recently observed on a stochastic version of the Greenberg-Hasting cellular
automaton [9]. It is an open question to explain how this loss of precision
results from the lattice perturbations.

We observed that the phase transition was also perturbed when links were
randomly added in a local way, i.e., when some neighbours are counted twice.
Similarly, Huang et al. observed that rewiring the links randomly in the lattice
(a link has a given probability to be rewired to a cell chosen uniformly in
the lattice) produces the same type of phase transition as the asynchronous
updating [15]. It is an interesting problem to determine how the non-local
topological perturbations and the asynchronous updating combine.

6.2 How “Frequent” is the Sensibility to Desynchronisation?

It is now time to go back to our initial question: what is there so special
about the Life rule? We saw that it displayed a great sensitivity to its up-
dating scheme and that the evolution of the synchronous and asynchronous
systems strongly depended on the initial density. Can this be considered as a
“signature” of a complex behaviour? If this is the case, then we would have a
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novel method to search the infinite space of CA rules for Life-like behaviour.
We leave the question open to stimulate further research, but before coming
to the conclusion of this paper, let us indicate a few facts.

t = 100 t = 200 t = 500

Fig. 9. Three snapshots from the evolution of Kaleidoscope Life : (top) α = 0.90
critical synchrony rate ; (bottom) α = 0.50 super-critical rate

The Kaleidoscope of Life rule, which was identified by Adachi et al.
as being a Turing-universal rule [1] also has a second-order phase transition
which is produced by asynchronous updating. The critical threshold appears
at αc ∼ 0.89 and separates an “extinct” phase were patterns tend to disap-
pear and an “active-sparse” phase with more or less regularly dispersed live
sites (see Fig. 9). For this rule, the presence of a phase transition induced
by asynchronism raises a challenging question: is it a mere coincidence or is
there some possibility of establishing an “equivalence” of behaviour between
the two models? (Also note the proximity of the two thresholds.)

To have a larger panel of rules, we briefly explored the larger space of Life-
like rules, where the thresholds are varied. Let us denote by L abcd the CA
rule defined with birth thresholds Bl = a and Bh = b and survival thresholds
Sl = c and Sl = d. We found out numerous rules which display asynchrony-
induced phase transitions. We indicate for instance the rules: L 1756 , L 3643 ,
L 3312 , L 3636 , L 3666 , etc. although there seems to be some “regions” in the
rule space where phase transitions are more densely found, we have no clue yet
whether there exists a common property shared by these rules. Figure 10 shows
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L 3312 , α = 50% L 3312 , α = 20% L 3312 , α = 0%

L 3666 , α = 100% L 3666 , α = 95% L 3666 , α = 80%

L 1756 , α = 100% L 1756 , α = 98% L 1756 , α = 50%

L 3636 , α = 100% L 3636 , α = 50% L 3636 , α = 20%

Fig. 10. Snapshots from the steady-state of Extended Life rules.
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different snapshots which display the qualitative changes of behaviour when
varying the synchrony rate α. We observe that various type of transitions are
seen. For L 1756 , we even observe two phase transitions: from a “sparse” phase
to a “dense-labyrinth” phase and then to an “order-striped” phase. Interested
readers may consult the paper by Regnault et al. [19] for similar observations
and the study by de la Torre and Mártin [7] for other Extended-Life behaviour
in the synchronous case.

7 Discussion & Openings

We studied an asynchronous version of Conway’s Game of Life where the
cells were updated with partial of full asynchronism. We showed that the
variation of the synchrony rate α and initial density dini leads to the evolution
of the system into qualitatively different steady states, the phases, which we
identified as the extinct, the frozen and the labyrinth phases. There exists a
critical synchrony rate αc, which separates the frozen phase (α > αc) from
the labyrinth phase (α < αc). This change of behaviour was identified as
belonging to the directed percolation universality class, a sign which indicates
that the behaviour near the critical point is difficult to predict analytically.
Using numerical simulations, the critical threshold αc was estimated to αc =
0.911.

We also analysed the dependence of Life on the initial condition and
showed that the initial density dini was a key factor for predicting the evolution
of the system. Here also, for a given lattice size, there exists an abrupt change
which depends on the value of dini: for α < αc, the emergence of the labyrinth
phase is a random process which depends on a complex mechanism that is
only partially understood. We proposed to analyse this mechanism by focusing
on the “germs”, i.e., small “islands” of cells in state 1 in a “sea” of cells in
state 0. The analysis allowed us to understand qualitatively how the labyrinth
phase emerges from the germs, but the quantitative predictions have still to be
improved. At any rate, these results suggest – by contrast with asynchrony –
that the abrupt change of behaviour for dini is not a phase transition, i.e.,
there exists no critical initial density that would separate the labyrinth phase
from the frozen phase. Finally, we examined how these observations could be
generalised to other systems close to the asynchronous Life. As a first step,
we indicated that perturbing the topology affected the phase transition by
shifting the value of the critical threshold and by making it more difficult to
observe (the “blurring effect”). We also provided a list of a few other rules
similar to Life where asynchrony also induced phase transitions.

In short, examining the robustness of Life to desynchronisation led us
to discover many non-linearities in its behaviour depending on the degree of
synchrony and on the initial condition. The mystery of Life is still out there
and it is an open question to determine if similar rules can be found in the
infinite space of CA rules.
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