
HAL Id: inria-00345669
https://hal.inria.fr/inria-00345669v3

Submitted on 21 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Call Scheduling in Wireless Networks
Jean-Claude Bermond, Dorian Mazauric, Vishal Misra, Philippe Nain

To cite this version:
Jean-Claude Bermond, Dorian Mazauric, Vishal Misra, Philippe Nain. Distributed Call Scheduling in
Wireless Networks. [Research Report] RR-6763, INRIA. 2008. �inria-00345669v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50129305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00345669v3
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
67

63
--

FR
+E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Distributed Call Scheduling in Wireless Networks

Jean-Claude Bermond — Dorian Mazauric — Vishal Misra — Philippe Nain

N° 6763

October 2009

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Distributed Call Scheduling in Wireless Networks

Jean-Claude Bermond∗†, Dorian Mazauric∗‡† , Vishal Misra§ , Philippe
Nain∗‡†

Thème COM — Systèmes communicants
Projets Mascotte and Maestro

Rapport de recherche n° 6763 — October 2009 — 29 pages

Abstract: This work investigates distributed transmission scheduling in wireless networks.
Due to interference constraints, “neighboring links” cannot be simultaneously activated,
otherwise transmissions will fail. Here, we consider any binary model of interference. We
follow the model described by Bui, Sanghavi, and Srikant in [5, 21]. We suppose that time is
slotted and during each slot we have two phases: one control phase which determines what
links will be activated and send data during the second phase. We assume random arrivals
on each link during each slot, therefore a queue is associated to each link. Since nodes do
not have a global knowledge of the network, our aim (like in [5, 21]) is to design for the
control phase, a distributed algorithm which determines a set of non interfering links. To be
efficient the control phase should be as short as possible; this is done by exchanging control
messages during a constant number of mini-slots (constant overhead).
In this article we design the first fully distributed local algorithm with the following prop-
erties: it works for any arbitrary binary interference model; it has a constant overhead
(independent of the size of the network and the values of the queues); and it needs no
knowledge. Indeed contrary to other existing algorithms, we do not need to know the values
of the queues of the “neighboring links”, which are difficult to obtain in a wireless network
with interference. We prove that this algorithm gives a maximal set of active links (in each
interference set, there is at least one active edge). We also give sufficient conditions for

This work has been partially supported by région PACA, ANR AGAPE and DIMAGREEN, and
European project IST FET AEOLUS.

∗ MASCOTTE, INRIA, I3S, CNRS, Univ. Nice-Sophia Antipolis, Sophia Antipolis, France.
† firstname.lastname@sophia.inria.fr
‡ MAESTRO, INRIA, Sophia Antipolis, France.
§ Dept. of Computer Science, Columbia University.

2 Bermond, Mazauric, Misra, and Nain

stability under Markovian assumptions. Finally the performance of our algorithm (through-
put, stability) is investigated and compared via simulations to that of previously proposed
schemes.

Key-words: wireless network, transmission scheduling, interference, distributed algo-
rithm, stability.

INRIA

Algorithmes distribués d’ordonnancement des appels
dans les réseaux sans-fil

Résumé : Nous considérons dans cet article le problème d’ordonnancement distribué dans
les réseaux sans-fil. En raison des interférences dans ce type de réseau, les liens “voisins”
ne peuvent pas être activés simultanément, sinon les transmissions interfèrent. Nous con-
sidérons ici des modèles d’interférences binaires, comme ceux utilisés par Bui, Sanghavi et
Srikant dans [5, 21]. Nous supposons que le temps est divisé en “slots” et que chaque slot
comporte deux phases distinctes : une phase de contrôle qui détermine quels liens vont
être activés et enverront des données durant la seconde phase. Nous supposons de plus que
les arrivées de messages sur chacun des liens du réseau sont aléatoires. Comme les noeuds
n’ont pas une connaissance globale du réseau, notre objectif (comme dans [5, 21]) est de
concevoir pour la phase de contrôle, un algorithme distribué calculant un ensemble de liens
n’interférant pas deux à deux entre eux. Pour être efficace, la phase de contrôle doit être
aussi courte que possible; cela est réalisé par des échanges de messages de contrôle durant
un nombre constant de “mini-slots” (“overhead” constant).
Dans cet article nous proposons le premier algorithme entièrement local vérifiant les pro-
priétés suivantes : il est valable quelque soit le modèle d’interférence binaire utilisé; il a
un overhead constant (indépendant de la taille du réseau et des valeurs des files d’attente
associées aux liens du réseau); et il ne requiert pas de connaissance particulière de l’état du
réseau. En effet contrairement aux algorithmes existants, nous n’avons pas besoin de con-
naître les valeurs des files d’attente des liens dans un “certain voisinage”, une information
difficile à obtenir dans un réseau sans-fil avec interférence. Nous prouvons que notre algo-
rithme permet d’obtenir à chaque étape un ensemble maximal de liens actifs (dans chaque
zone d’interférence, il y a au moins un lien activé). Nous donnons également des conditions
suffisantes de stabilité sous des hypothèses markoviennes. Enfin les performances (débit, sta-
bilité) de notre algorithme sont étudiées via des simulations, et comparées aux algorithmes
existants.

Mots-clés : réseau sans-fil, ordonnancement des transmissions, interférences, algorithme
distribué, stabilité.

4 Bermond, Mazauric, Misra, and Nain

1 Introduction

Transmission scheduling is a main problem in telecommunication networks. It has received
a lot of attention both for wired and for wireless networks (radio, ad hoc, sensor network).
In a wireless network a difficulty comes from interference problems. During a step or time
slot, only transmissions which do not interfere can be scheduled. In this paper we consider
any binary interference model. However for computations, examples, and simulations, we
will use the so called d-interference model, where two transmissions which are within some
interference distance d from each other interfere. In the particular case d = 0 (see [16]), we
have the primary node interference model, where two transmissions interfere if their links
intersect (one node can communicate with at most one another node); therefore, a set of
transmissions can be activated together in the same time slot only if they form a matching
in the corresponding undirected graph. The case d = 1 is known as the 802.11 interference
model or distance-2 matching problem (see [1, 3, 14, 25]): here two links interfere if the first
one contains a vertex adjacent to one of the second link. In that case a set of non interfering
transmissions form an induced matching (see examples for d = 0 in Figure 3(a) and for
d = 1 in Figure 3(b)).

The traffic is single-hop and the arrival process to each link of the network is assumed
to be stochastic, with characteristics not necessarily known by the network designers. The
goal is to schedule active links at each step in order to insure the stability of the system and,
in particular, to activate links which are the most loaded. In the primary node interference
model this corresponds to finding a maximum matching or a large matching. Centralized
algorithms have been proposed to solve this problem both for random arrivals in [23, 24]
and deterministic arrivals in [13]. As example, if the network is a square grid of 4 nodes
(Figure 1) with the primary node interference model (d = 0), we can activate at one step
either vertical links (Figure 1(a)) or horizontal links (Figure 1(b)). It is also possible to
have a single active link in the network but we consider only the two previous sets of active
links (maximal sets). A good scheduling algorithm has to insure the stability of the system
(stability of the four queues associating to the four links in Figure 1). For example if the
capacity of each link is 1 (if a link is active during a step, it sends 1 message), and if
the average number of arrival messages per step is Av = 2

7 for the two vertical links and
Ah = 4

7 for the two horizontal links, we get a simple scheduling algorithm for the system.
Indeed if we choose to activate vertical links 5 steps over 14 and activate horizontal links
9 steps over 14, we get trivially the stability of the queueing system because Ah < 9

14 and
Av <

5
14 . Since arrival processes are not necessarily known a priori by network designers,

thus in practice algorithms have to compute the set of active links as a function of current
and past arrivals. However only distributed algorithms with limited local knowledge can
be used. Indeed, centralized algorithms are based on a total knowledge of the network
(i.e. link backlogs) at each step, an information which is very difficult to acquire because
of the interference. Actually, acquiring this information is at least as much complicated

INRIA

Distributed Call Scheduling in Wireless Networks 5

(a) Matching 1 (b) Matching 2

Figure 1: scheduling algorithm for grid for d = 0.

than solving the scheduling problem. In addition, for the sake of energy saving, decisions
have to be made locally, without exchanging messages with a central station. In [4, 10, 18]
distributed algorithms are described but they all lead to communication overheads which
increase with the size of the network. In particular [12] presents a distributed algorithm valid
for any binary interference model but at the expense of a non-constant overhead (increasing
with the size of the network). The need for distributed algorithms with a small constant
overhead has been emphasized in [21, 5], where a distributed algorithm with a constant
overhead depending on the quality of the desired approximation is described; however it is
only valid for the primary node interference model (d = 0). Recently, in [20] a randomized
(aloha-like) contention resolution protocol was proposed that is conjectured to be throughput
optimal.

It is worth noting that in the general case (i.e. interference model different from the pri-
mary node interference model) the problem of finding a set of links fulfilling the interference
constraints and maximizing the sum of the weights (i.e. the total backlog on the links) is
NP-Complete. For instance the problem of finding a maximum induced matching in a graph
(case d = 1 in the d-interference model) is NP-Complete [22, 6] and it remains NP-Complete
even for very special graphs (for 3-regular planar graphs for instance). Furthermore it is
proved in [19] that the problem of finding a maximum induced matching in a graph cannot
be approximated in polynomial time within a factor of n 1

2−c for any constant c > 0 (unless
P = NP), where n is the number of vertices in the graph (associating to the network).

Under these considerations, we make the following contributions to the general problem:

• We design the first, to our knowledge, distributed transmission algorithm which holds
for any binary interference model while simultaneously having a communication over-
head independent of the network size (Section 4).

RR n° 6763

6 Bermond, Mazauric, Misra, and Nain

e

d = 0

d = 1

Figure 2: interference sets of e for d = 0 and d = 1.

• We formally prove properties of our algorithm and compute design tradeoffs. In par-
ticular, our overhead grows logarithmically with the maximum degree1 of a node in the
network and requires no explicit knowledge of queue size information between nodes
(Section 5).

• We characterize the stability region of our algorithm under standard Markovian as-
sumptions (Section 6) and validate our design via simulations (Section 7).

• Finally, we propose extensions to our algorithm in the multi-hop case (Section 8).

We begin by describing our model and some related work in the next two sections.

2 Modeling

We model the network by an undirected transmission graph G = (V,E), where there is an
edge (link) e = uv ∈ E between two nodes u ∈ V and v ∈ V if they can communicate. We
suppose that the relation is symmetric that is if u can transmit a packet to v, then v can
transmit a packet to u and also that during a transmission both links are used as there are
acknowledgment messages; so we have a symmetric directed graph; but for simplicity we use
the undirected associated graph.

Interference can be modeled in different ways. We can use SINR (Signal-to-Interference-
Noise Ratio) models [8] but that makes both the algorithms and the analysis hard. We choose
to use a binary symmetric interference model like in [5, 12, 25]. We define the interference set
of a link e ∈ E, denoted by ε(e), as the set of edges interfering with e. Our algorithm is valid
for any set ε(e), but in the computations, examples, and simulations, we use a model based on
an interference distance d ≥ 0 as follows. Two edges interfere if one vertex of the first edge is

1From a practical standpoint, this presents a more attractive design tradeoff since node degree is bounded
by physical layer characteristics whereas the network size can be unbounded.

INRIA

Distributed Call Scheduling in Wireless Networks 7

(a) Matching (b) Induced matching

Figure 3: two sets of active (blue straight) links.

at distance in G at most d from a vertex of the second edge. More precisely, the interference
set of an edge e = (u1, u2) ∈ E is ε(e) = {(v1, v2) ∈ E,∃i, j ∈ {1, 2}, d(ui, vj) ≤ d}, where
d(u, v) is the distance between u and v in G, that is the length of a shortest path between
these two nodes in G. Two examples of interference sets are represented in Figure 2 for the
two interference models defined by d = 0 and by d = 1.

We suppose that time is slotted and synchronized in the network. Our algorithm consists,
like in [5, 12], of a sequence of steps or time slots, all of the same size. One step contains
two different phases: a control phase itself divided into mini-slots which consists of finding a
valid set of active links for the sending (second) phase. We will say that a set of active links
at step t ≥ 1 is valid if the edges activated during this step do not interfere. The interference
model defined by d = 0 is a particular case, commonly used, and it is known as the primary
node (or node exclusive) interference model. In that case two edges interfere if they are
incident and a valid set of active links, at some step, is a matching of the transmission graph
G. The case d = 1, more realistic, is known as the 802.11 interference model. In that case
two nodes can exchange data only if their neighbors are not involved in a communication.
Said otherwise a valid set of active links is what is called an induced matching of G. Two
examples of sets of active links are represented in Figure 3 for a square grid graph (network)
of 16 nodes for interference models defined by d = 0 (Figure 3(a)) and defined by d = 1
(Figure 3(b)).

We introduce for each edge e ∈ E of the transmission graph G = (V,E) and for each step
t ≥ 1, the variable at(e) such that at(e) = 1 if edge e is an active link, allowed to send data
during step t (at(e) = 0 otherwise). The interference constraints imply that ∀e, e′ ∈ E, if
at(e) = at(e′) = 1, then e′ /∈ ε(e) (and e /∈ ε(e′)). Otherwise there are interference problems
and so messages are not received correctly.

RR n° 6763

8 Bermond, Mazauric, Misra, and Nain

Traffic is dynamic and is assumed in this article to be single-hop, like in [5], that is to
say one packet sent through a communication link leaves the network just after. However
we can deal with multi-hop traffic with few changes in our algorithm (see Section 8). To
each edge (link) e ∈ E is associated a queue. We denote by qt(e) the number of messages
in the queue of link e ∈ E at the beginning of step t ≥ 1. We will say that the weight of e
at step t ≥ 1 is qt(e). At each step, new packets arrive in the links of the network (edges of
the transmission graph) according to some arrival processes. These ones are specific to each
link e ∈ E and not necessarily known by the designers of the network. Let At(e) be the
number of packets arriving in edge e ∈ E during step t ≥ 1. The capacity of an edge e ∈ E,
denoted by c(e), is the number of packets that e can serve during one time slot t ≥ 1 if the
link is active (that is if at(e) = 1). Thus we have qt+1(e) = (qt(e)−at(e)c(e))+ +At(e) with
(y)+ = max(y, 0).

3 Previous Works

We briefly describe in this section two algorithms respectively proposed in [12] and [5]
because we use the same modeling. They are both distributed but the algorithm in [12]
does not admit a constant overhead, whereas the one described in [5] is valid only for the
primary node interference model (d = 0).

In the algorithm described in [12], for each step t ≥ 1 there are a control phase and
a data phase, like in our modeling (Section 2). Before each control phase, composed of T
mini-slots, each edge e ∈ E is undetermined, and chooses a backoff value t(e), 1 ≤ t(e) ≤ T .
In this context undetermined means that the edge does not know if it will be active or
inactive during the data phase of the current step. If edge e receives a message (from an
edge in ε(e)) during a mini-slot t, 1 ≤ t ≤ t(e) − 1, then e is inactive. Otherwise e sends a
control message during mini-slot t(e) and if it does not receive a message, then e is active
(e is inactive otherwise). At the end, a valid set of active links is computed, allowed to send
messages during the data phase. This simple algorithm is valid for any interference set, but
the choice of the backoff value t(e), for any edge e ∈ E, is a function of the weights of edges
located in its interference set ε(e) and function of the weights of edges located in interference
set of each e′ ∈ ε(e). More precisely t(e) depends on the weights of edges belonging to the
following set S = {e′, e′ ∈ ε(e)} ∪ {e′′, e′′ ∈ ε(e′), e′ ∈ ε(e)}. Thus at each time slot t ≥ 1,
each edge has to update the weights of edges located in its 2d − neighborhood (edges at
distance ≤ 2d from e), if we have an interference model based on distance d. Therefore the
overhead is not constant and furthermore one has to obtain this information, which, due to
interference, is a problem as difficult as the transmission scheduling problem.

The algorithm described in [5], Augmenting Paths Algorithm, has a constant overhead
but it is specific to the primary node interference model (d = 0). It uses the “augmenting
path tool” developed for matching theory [15] and which is used to find polynomial central-
ized algorithms to determine maximum matchings. In that case, at each time slot t ≥ 1,

INRIA

Distributed Call Scheduling in Wireless Networks 9

a valid set of active links is a matching of the transmission graph G = (V,E). The main
idea of Augmenting Paths Algorithm, is to compute, at a step t+ 1 > 1, a matching of G
from the matching of G found at step t. In [5], it is proved that, if 2k + 1 is the maximum
length of the augmenting paths, the algorithm needs a constant overhead of order 4k + 2
and achieves k

k+2 of the capacity region (we can improve via a careful analysis this value to
k
k+1).

Moreover at the beginning of each time slot t ≥ 1, each node v ∈ V becomes seed with
a constant probability p. A seed is a node allowed to start an alternating path. In [5], it is
not described how to compute p analytically.

Finally it is necessary to precise that Augmenting Paths Algorithm is specific to the
primary node interference model (d = 0), not the more realistic one. Indeed the augmenting
paths technical is a property of the notion of matching in graphs. Recall that the problem
of determining a maximum matching (if the interference model is defined by d = 0) can be
done in polynomial time with a centralized algorithm, but for interference models defined
by d ≥ 1, determining a maximum valid set of active edges is an NP-complete problem. In
Section 7.2.2 we compare via simulations the performance of Augmenting Paths Algorithm
to the performance of our distributed algorithm, proposed in Section 4, for a square grid
composed of 121 nodes.

4 Our Distributed Algorithm

We propose in this section a distributed link scheduling algorithm, valid with a constant
communication overhead, whereas the algorithm proposed in [12] has an overhead increasing
with the size of the network, and valid for any binary interference set, whereas Augmenting
Paths Algorithm, proposed in [5], is valid only for the primary node interference model (d =
0). Furthermore algorithms proposed in the literature like those in [5, 12] require exchange
of weights between some edges (the acquisition of this information is, due to interference, a
difficult and costly problem and needs itself a control phase). Here, in contrary, during each
mini-slot of the control phase, any edge either sends a control message composed of 1 bit
or nothing. The main idea of Algorithm Log is to use interference as information. More
precisely during each mini-slot the only important thing for an edge e ∈ E is to determine
if an edge e′ ∈ ε(e) has sent a control message through this mini-slot. Based on that and on
its own bit the edge will decide to be active or inactive or postpone the decision to another
mini-slot. As two edges e ∈ E and e′ ∈ ε(e) do not exchange their respective weights
during the control phase, the number and size of mini-slots, and therefore the overhead, are
minimized.

As previously described in Section 2, the network is modeled by an undirected trans-
mission graph G = (V,E) and time is slotted into steps of same size. At any step t ≥ 1, a
set of active links is chosen through a control phase and during the data phase, these links
send their messages. We precisely describe in this section, the control phase for any time

RR n° 6763

10 Bermond, Mazauric, Misra, and Nain

slot t ≥ 1. We propose a distributed algorithm, Algorithm Log, which will compute a valid
set of active links at step t, with a sum of weights of edges belonging to this set as large as
possible. Recall that the weight qt(e) of an edge e ∈ E is the number of messages in the
queue associated to this link (Section 2). Finally only edges with weight greater than their
capacity will participate to Algorithm Log, that is if qt(e)c(e) ≥ 1. We call this set of edges E1.

Another idea consists in associating to each edge a virtual weight (see Section 4.1) in
such a way that two edges interfering have different virtual weights (Lemma 1). Then
each edge computes the binary control vector associated to the virtual weight; the bits
1 will indicate the mini-slots when the edge will send a control message if it is not yet
inactive (Section 4.2). In Section 4.3 we describe precisely Algorithm Log, before giving
two examples in Section 4.4. We then analyze Algorithm Log in Section 5.

4.1 Virtual Weights

The idea consists in splitting the values of the queues into a small number K of disjoint
intervals (classes) I0, . . . , IK−1 with the constraint that the largest class IK−1 contains all
the values greater than some value L: IK−1 =]L,∞[. As K will be small, many edges
interfering might belong to same interval. To differentiate them we also give to each edge
a color (integer) γ(e) in such a way that two edges interfering have different colors. Let
C be the number of colors. For example if G is a path, in the d-interference model, we
can use only d + 2 colors by giving to the edges values 1, 2, . . . , d + 2, 1, 2, . . . , d + 2, . . .
Figure 4(b) shows a coloring for a cycle of length 9 with C = 3 within the primary node
interference model (d = 0). We will see in Section 5.3 how to determine C. This coloring
will give a ranking between the edges in a same interval. In order to get different rankings
in consecutive slots, we will permute the colors. For that we associate in the slot t the value
γt(e) = (γ(e) + t − 2)modC + 1. From definition of γ(e), γt(e) 6= γt(e′) for each e ∈ E,
e′ ∈ ε(e), t ≥ 1. For example, with C = 3 an edge with color 1 will get a value 1 at slot 1,
2 at slot 2, 3 at slot 3, 1 at slot 4, 2 at slot 5 and so on.

Now we can assign to each edge e ∈ E a virtual weight q′t(e) as follows. Let f be the
mapping f : [1,∞[→ {0, . . . ,K − 1} defined by f(x) = i if x ∈ Ii for i = 0, 1, . . . ,K − 1.
Then

q′t(e) = Cf

(
qt(e)
c(e)

)
+ γt(e) (1)

See Figure 4 and Figure 5 for examples of computations. Note that

0 < q′t(e) ≤ CK ∀e ∈ E1, t ≥ 1. (2)

The discussion of the choice of constants C, K and L is deferred to Section 5.3 and
Section 5.4.

The motivation for introducing these virtual weights is threefold. First, and most im-
portantly, virtual weights have the property that two interfering links have different virtual

INRIA

Distributed Call Scheduling in Wireless Networks 11

weights (see Lemma 1 below). This property will be a key ingredient for ensuring that our
scheduling algorithm determines a maximal set of active links in each time slot (see Section
5.1). Second, the scaling in (1) (i.e. the fact that qt(e) is divided by c(e)) will ensure that
our algorithm will work with absolute delays in terms of time and not favor links with high
capacities. Finally our algorithm will use the ranking induced by the virtual weights to
determine the active edges; an edge with a high virtual weight and in particular with a high
queue will have more chances to be chosen.

Lemma 1. Let e, e′ ∈ E be two edges in E1 such that e′ ∈ ε(e) (and e ∈ ε(e′)). Then,
q′t(e) 6= q′t(e′).

Proof. If qt(e)c(e) and qt(e
′)

c(e′) belong to two different intervals, that is f(qt(e)c(e)) 6= f(qt(e
′)

c(e′)), then
|C(f(qt(e)c(e)) − f(qt(e

′)
c(e′)))| ≥ C and as 1 ≤ γt(e), γt(e′) ≤ C, q′t(e) 6= q′t(e′). Otherwise, if

f(qt(e)c(e)) = f(qt(e
′)

c(e′)), then by the choice of γ(e) and γ(e′), γt(e) 6= γt(e′) and so q′t(e) 6=
q′t(e′).

4.2 Control Vector

We assign to each edge e ∈ E1, a control vector vt,e = (vt,e(1), . . . , vt,e(T)) where vt,e(i),
1 ≤ i ≤ T , corresponds to the ith bit of q′t(e). Recall that q′t(e) ≤ CK for each e ∈ E,
and so T = dlog2(CK) + 1e. Remark that an edge e /∈ E1 (that is not participating to
the control phase) can be considered as having a virtual weight q′t(e) = 0 and so having a
control vector vt,e only composed of 0, and we do not consider anymore this kind of edges
in our algorithm (we could have included them with this control vector but they will never
become active). In Table 1, all possible virtual weights and corresponding control vectors of
an edge e ∈ E1 are represented for each possible pair (qt(e), γt(e)) according to the following
parameters: d = 0 (primary node interference model), C = 3, K = 5, and for example
L = 4. It corresponds to a cycle graph with an odd number of nodes. An example of such
a graph G = (V,E) is depicted in Figure 4(b), where values located on edges correspond to
a valid assignment of γ(e) for each e ∈ E. Indeed, any such assignment requires at least
3 different integers, and so C ≥ 3 (see Section 5.3). Remark that for a cycle with an even
number of nodes, 2 integers are sufficient to assign γ(e) for each edge e ∈ E. We could have
chosen another value for L for example L = 100 and take as intervals I4 =]100,∞[and for
example I0 = [1, 10]; I1 =]10, 30]; I2 =]30, 60]; I3 =]60, 100] or any other splitting of the
values of the queues. The control vector is the same as that given.

4.3 Algorithm Log

Given the following inputs : the binary interference model, K, L, and a valid integer C
respecting previous constraints, Algorithm Log will compute a maximal set of active edges.

RR n° 6763

12 Bermond, Mazauric, Misra, and Nain

Table 1: (q′t(e), vt,e) for every possible pair (qt(e), γt(e)) for Algorithm Log (C = 3, K = 5,
L = 4).

Control Vector: v = vt,e

f(qt(e)c(e)) γt(e) q′t(e) v(1) v(2) v(3) v(4)
1 1 1 0 0 0 1
1 2 2 0 0 1 0
1 3 3 0 0 1 1
2 1 4 0 1 0 0
2 2 5 0 1 0 1
2 3 6 0 1 1 0
3 1 7 0 1 1 1
3 2 8 1 0 0 0
3 3 9 1 0 0 1
4 1 10 1 0 1 0
4 2 11 1 0 1 1
4 3 12 1 1 0 0
≥ 5 1 13 1 1 0 1
≥ 5 2 14 1 1 1 0
≥ 5 3 15 1 1 1 1

At each mini-slot of Algorithm Log, an edge can be active, inactive, or still undetermined.
All the edges e ∈ E1 active at the end of Algorithm Log will send data after. The control
phase is itself divided into α subphases. We first explain subphase 1 before motivating and
describing subphases 2, . . . , α. We will see in Section 5.1 how to determine α.

4.3.1 Subphase 1

Let us describe subphase 1 composed of T mini-slots. Before mini-slot 1, each edge is
undetermined. During a mini-slot i, 1 ≤ i ≤ T , e ∈ E sends a control message if and only if
e is still undetermined and vt,e(i) = 1. If e is still undetermined at the beginning of mini-slot
i, 1 ≤ i ≤ T , we have the following three cases (see lines 4-14 of Algorithm 1):

(a) if e sends a control message and e does not receive one from an edge in ε(e), then e
becomes active;
(b) if e receives a control message (therefore coming from an edge in ε(e)) and does not
send a control message, then e becomes inactive;
(c) otherwise e remains undetermined.

INRIA

Distributed Call Scheduling in Wireless Networks 13

At the end of subphase 1 (after T mini-slots), we get a valid set of active links (edges),
respecting interference constraints. For example if the interference model is defined by
d = 0 (primary node interference model), we get a matching of G. If the interference model
is defined by d = 1, we get an induced matching of G. Furthermore at the end of subphase
1, an edge e ∈ E is either active or inactive (see Lemma 2).

Lemma 2. At the end of subphase 1 of Algorithm Log, there is no undetermined edge.

Proof. From Lemma 1, q′t(e) 6= q′t(e′) for any e, e′ ∈ E such that e′ ∈ ε(e). Suppose e is
undetermined at the end of subphase 1 of Algorithm Log. During the last mini-slot where
e sends a control message (mini-slot T if q′t(e) is odd, mini-slot T − 1 if q′t(e) is even), it
stayed undetermined if another edge e′ ∈ ε(e) sends a message during this mini-slot. But
as q′t(e) 6= q′t(e′) there is a preceding mini-slot where the edge with the biggest weight was
sending a control message and the other not; but the edge with the smallest weight would
have become inactive at this time slot, a contradiction.

Definition 3. An edge e ∈ E1 is a local maximum edge at step t ≥ 1 if ∀e′ ∈ ε(e),
q′t(e′) ≤ q′t(e). Remark that if an edge is maximum then we have the strict inequality from
Lemma 1.

From Lemma 2, it follows that a maximum local edge e is necessarily active at the end
of subphase 1.

Corollary 4. A local maximum edge e ∈ E is always active at the end of subphase 1 of
Algorithm Log.

Thus edges with large weights (in a local point of view) are chosen as active and belong
to the set of active links. Recall that one of the main objectives of transmission scheduling
algorithms is to insure stability of queues associated to links, and so if the set of active links
contains edges with large weights, queues with many messages decrease.

After subphase 1, it might happen that the set of active links was not maximal (edges
can be added to this set without removing current edges in this one). For instance Figure 4
describes subphase 1 of Algorithm Log for a cycle composed of 9 edges with d = 0. For
such a network it is the worst case in terms of cardinality of the set of active links (matching
of G). Indeed after subphase 1, only the central link is active. One possibility is to add extra
mini-slots to get more active links with a random process. Another solution is to repeat
this subphase α − 1 times, and so get α subphases in Algorithm Log. We describe it in
Section 4.3.2.

4.3.2 Other Subphases

As described in Section 4.3.1, it might happen that the set of active edges was not maximal
after subphase 1. To deal with this problem, we apply α−1 times the protocol described for

RR n° 6763

14 Bermond, Mazauric, Misra, and Nain

2 3 9 9 9 9 8 3 2 uu

(a) qt(e)

2 3 1 2 3 2 1 3 1u u

(b) γt(e)

5 9 13 14 15 14 13 9 4u u

(c) q′t(e)

0 1 1 1 1 1 1 1 0u u

(d) mini-slot 1 and vt,e(1)

1 0 1 1 1 1 1 0 1u u

(e) mini-slot 2 and vt,e(2)

0 0 0 1 1 1 0 0 0u u

(f) mini-slot 3 and vt,e(3)

1 1 1 0 1 0 1 1 0u u

(g) mini-slot 4 and vt,e(4)

Figure 4: subphase 1 of Algorithm Log for a cycle of 9 edges (d = 0, C = 3, K = 5, L = 4).

subphase 1, but only with edges which can be added that is inactive edges without active
links in their interference sets. After each subphase each edge is either active or inactive
(Lemma 2). So, we add a re-initialization mini-slot after each subphase j, 1 ≤ j ≤ α − 1,
where each active edge sends a control message and inactive edges become undetermined
if they do not receive any message (lines 15-20 of Algorithm 1). The next subphase will
involve only those undetermined edges. In Theorem 5 of Section 5.1, we will see that, if we
fix the value of the parameter α to be T , we insure that at the end of each control phase,
Algorithm Log always computes a maximal set of active edges in E1.

Finally we define Algorithm Log composed of α subphases as described above. A formal
algorithm for each edge e ∈ E is described in Algorithm 1, where s(e) = 1 if e is active,
s(e) = 0 if e is undetermined, and s(e) = −1 if e is inactive.

INRIA

Distributed Call Scheduling in Wireless Networks 15

Algorithm 1 Distributed Algorithm of an edge e ∈ E
Require: qt(e), γt(e).
Ensure: return active or inactive
1: e computes q′t(e) and vt,e
2: s(e) = 0
3: for j = 1, . . . , α do
4: for i = 1, . . . , T do
5: if s(e) = 0, and vt,e(i) = 1 then
6: e sends a message (to edges in ε(e))
7: if e does not receive a message then
8: s(e) = 1
9: end if
10: end if
11: if s = 0, vt,e(i) = 0, and e receives a message then
12: s(e) = −1
13: end if
14: end for
15: if s(e) = 1 then
16: e sends a message (to edges in ε(e))
17: end if
18: if s(e) = −1, and e does not receive a message then
19: s(e) = 0
20: end if
21: end for
22: if s(e) = 1 then
23: return active
24: else
25: return inactive
26: end if

4.4 Examples

We present here two examples of applications of Algorithm Log. In Section 4.4.1 Algorithm
Log is applied to a square grid graph with the interference model defined by d = 0 and in
Section 4.4.2 Algorithm Log is applied to a graph (generated randomly as in Section 7.2.3)
with the interference model defined by d = 1.

RR n° 6763

16 Bermond, Mazauric, Misra, and Nain

4.4.1 Square Grid with d = 0

Let G = (V,E) be a square grid graph composed of |V | = 16 nodes and |E| = 24 edges
(Figure 5). The interference model is defined by d = 0, and so a valid set of active links is a
matching of G. In our example the smallest C respecting constraints described in Section 4.1
is 4 (See Figure 5(b) for an example of such optimal assignment of γ(e) for each e ∈ E and
see Section 5.3 for details). In this example K = 15 and L = 140. Given a time slot t ≥ 1,
the weight qt(e), the value γt(e), and the virtual weight q′t(e) are respectively represented
in Figure 5(a), in Figure 5(b), and in Figure 5(c) for each edge e ∈ E. For example for
the top-left edge e ∈ E with weight qt(e) = 94 and γt(e) = 1, q′t(e) = 37 using Equation 1.
Thus the associated control vector vt,e(e) = (1, 0, 0, 1, 0, 1). Let us describe subphase 1 of
Algorithm Log composed of 6 mini-slots. At the beginning (before mini-slot 1), each link is
undetermined. During mini-slot 1, each edge e such that vt,e(1) = 1 sends a control message
and:

(a) if e sends a control message and e does not receive one from an edge in ε(e), then e
becomes active;
(b) if e receives a control message (therefore coming from an edge in ε(e)) and does not
send a control message, then e becomes inactive;
(c) otherwise e remains undetermined.

Figure 5(d) shows the state of the edges after mini-slot 1. For example the horizontal
edge on the bottom-left (with q′t(e) = 53) becomes active. Furthermore there are three
connected components of undetermined edges, respectively composed of 5, 3, and 2 edges.
Repeating the same protocol during mini-slot 2, there are three connected components of
undetermined edges, respectively composed of 2, 3, and 2 edges (Figure 5(e)). After mini-slot
3, a second edge becomes active and there are three connected components of undetermined
edges, respectively composed of 2, 1, and 2 edges (Figure 5(f)). After mini-slot 4, there
are two additional active links, and there is one connected component of undetermined
edges composed of 2 edges. After mini-slot 5, one more edge becomes active and there
is no undetermined edge (Figure 5(g)). Thus after T = 6 mini-slots (after subphase 1 of
Algorithm Log), a set of active links is found. But it is easy to show that this matching
is not maximal. Thus at the beginning of subphase 2, inactive edges without active link in
their interference sets become again undetermined (it is possible with one re-initialization
mini-slot at the end of the previous subphase). We repeat the same protocol than before, and
in this example we get a maximal set of active links (maximal matching) after the subphase
2. From Theorem 5 of Section 5.1, α = T subphases is sufficient to insure a maximal set of
active links (∀d ≥ 0).

INRIA

Distributed Call Scheduling in Wireless Networks 17

94 45 37

2578

128 28 21

114 21 26

13922

13127135

184

12

18101

49

27

6

106

(a) qt(e)

1 2 1

1

1

12

2

2

1

1

1

3

4

3 3 3 3

4

333

4 4

(b) γt(e)

37 18 13

9

42

29

51 11 11

48 12 12

5511

531053

59

6

541

19

12

3

(c) q′t(e)

1 0 0

0

0

10

0

1

1

0

1

0

0

0 0 1 1

0

001

1 0

(d) mini-slot 1 and vt,e(1)

0 1 0

0

0

10

0

0

1

1

0

1

0

0 0 1 1

0

001

1 0

(e) mini-slot 2 and vt,e(2)

0 0 1

0

1

01

0

1

0

1

1

0

1

0 1 0 1

1

110

0 1

(f) mini-slot 3 and vt,e(3)

1 0 1

1

0

10

1

0

1

1

0

0

1

1 0 1 0

1

000

0 1

(g) mini-slot 4 and vt,e(4)

0 1 0

0

0

01

1

1

0

0

0

1

0

1 1 1 1

0

111

0 0

(h) mini-slot 5 and vt,e(5)

1 0 1

1

1

10

0

0

1

1

1

1

0

1 1 1 1

0

111

0 0

(i) mini-slot 6 and vt,e(6) (j) After subphase 1 (k) Before subphase 2 (l) After subphase 2

Figure 5: Algorithm Log for a grid (d = 0, C = 4, K = 15, L = 140).

4.4.2 Random Graph with d = 1

Let G = (V,E) be a random graph composed of |V | = 33 nodes and |E| = 56 edges (Figure
6). G has been generated using method described in Section 7.2.3. The interference model
is defined by d = 1, and so a valid set of active links is an induced matching of G. Figure 6
shows the four first mini-slots of subphase 1 of Algorithm Log. We get after mini-slot 4 a
maximal induced matching and so the set of active links for this time slot.

RR n° 6763

18 Bermond, Mazauric, Misra, and Nain

1

1

0

1

1

1

1

1

1

1

1

1

0 1

0

1

111

1

1

1

1

0

1

0

0

1

1
1

1

1

0

1

1

00

1

1

11

1

1

0

1

1

1

1

1

1

1 1

0

0

0

1

(a) mini-slot 1 and vt,e(1)

0

1

1

1

1

0

0

0

1

1

1

1

1 1

0

0

110

0

0

0

1

0

0

0

0

0

1
0

1

0

0

1

0

01

0

0

11

1

0

0

0

0

1

1

0

1

1 1

1

0

0

1

(b) mini-slot 2 and vt,e(2)

0

0

0

1

0

0

1

0

1

0

0

0

0 1

1

0

000

0

0

0

1

0

0

0

1

1

0
0

1

0

0

0

0

00

1

1

00

0

0

0

1

1

1

1

1

0

0 0

0

0

0

1

(c) mini-slot 3 and vt,e(3)

1

0

0

1

0

0

1

0

0

0

0

1

0 1

0

1

001

0

0

0

1

0

0

0

1

0

0
0

0

1

1

0

0

01

0

1

00

0

1

0

1

0

0

0

0

0

0 0

0

0

0

1

(d) mini-slot 4 and vt,e(4)

Figure 6: four first mini-slots of subphase 1 of Algorithm Log for a random graph with
d = 1.

5 Analysis

We analyze in this section Algorithm Log, fixing the value α to ensure that for any time
slot t ≥ 1, the set of active links is maximal in Section 5.1, computing the overhead (number
of mini-slots of the control phase) in Section 5.2, and finally describing how to choose the
different parameters C,K,L of Algorithm Log in Section 5.3 and in Section 5.4.

5.1 Maximality

After the control phase of Algorithm Log for any step t ≥ 1, we prove that the set of active
links is always maximal,if we choose α = T = dlog2(CK) + 1e.

Theorem 5. If we choose α = T = dlog2(CK) + 1e in Algorithm Log, then for all e ∈ E1
(set of edges with positive virtual weight), there exists one edge e′ ∈ ε(e) ∪ {e} such that e′
is active at the end of Algorithm Log.

INRIA

Distributed Call Scheduling in Wireless Networks 19

Proof. Let T = dlog2(CK) + 1e. Let e1 be any edge of E1. Either e1 is active at the end
of subphase 1 of Algorithm Log, and the theorem is proved. Or e1 is inactive due to an
edge e2 ∈ ε(e1) (with q′t(e2) > q′t(e1)) which has sent a control message at some mini-slot
t1. Either e2 is active and the theorem is proved or e2 is inactive due to an edge e3 ∈ ε(e2)
which has sent a control message at some mini-slot t2 > t1, and so on. Let k be the largest
index of a sequence of inactive edges e1, e2, . . . , ek such that edge ei (1 ≤ i ≤ k) is inactive
due to ei+1 ∈ ε(ei) which has sent a control message at mini-slot ti and edge ek+1 is active.
As T ≥ tk > . . . > ti > ti−1 > . . . > t1 ≥ 1, we have k ≤ T .

We will now prove by induction that, at the end of the subphase j of Algorithm Log, the
longest sequence of edges e1, e2, . . . , ekj such that edge ei (1 ≤ i ≤ kj) became inactive due
to ei+1 ∈ ε(ei) and edge ekj+1 is active, satisfies kj ≤ T −j+1. As we have seen, that is true
for j = 1. Suppose it is true till j−1. Note that ekj+1 was not active at the end of subphase
j − 1, otherwise ekj would have been definitively inactive at the end of the subphase j − 1
and would not participate to the subphase j . As the edges e1, e2, . . . , ekj are also inactive
at the end of subphase j − 1, we have a sequence of inactive edges of length kj + 1 and by
induction hypothesis the length of this sequence satisfies kj + 1 ≤ T − (j − 1) + 1 and so
kj ≤ T −j+1. Therefore, for some j0 ≤ T , kj0 ≤ 1 implying that at the end of the subphase
j0 any edge e is either active or is inactive due to an active edge e′ ∈ ε(e) ∪ {e}.

5.2 Overhead (Complexity)

We compute here the number of mini-slots required for the control phase of Algorithm Log
according to K and C.

Theorem 6. The number of mini-slots of the control phase of Algorithm Log is Tlog =
dlog2(CK) + 1e2 + dlog2(CK) + 1e − 1.

Proof. Subphase 1 of Algorithm Log is composed of T mini-slots where T = dlog2(CK)+1e.
From Theorem 5, α = T subphases are sufficient to insure maximality. Furthermore at the
end of subphase i, 1 ≤ i ≤ T −1, one re-initialization mini-slot is needed. Indeed each active
edge sends a control message and some inactive edges become undetermined if they do not
receive any message. Thus T − 1 extra mini-slots are added. Finally Tlog = T 2 + T − 1.

5.3 How to Compute the Constant C?

In order to minimize the overhead of Algorithm Log (number of mini-slots of the control
phase), we have to minimize the constant C, insuring that γ(e) 6= γ(e′) and 1 ≤ γ(e), γ(e′) ≤
C for all e, e′ ∈ E such that e′ ∈ ε(e) (and so e ∈ ε(e′)). Recall that if γ(e) 6= γ(e′), then
∀t ≥ 1, γt(e) 6= γt(e′) (Section 4.1).

Given a graph G = (V,E), our problem consists in assigning an integer (a color) γ(e) to
each edge e ∈ E such that the integers assigned to two edges e, e′ ∈ E with e ∈ ε(e′) are

RR n° 6763

20 Bermond, Mazauric, Misra, and Nain

different, minimizing the total number of integers (colors) used to do it. For our problem, the
integer (color) assigned to an edge e corresponds to γ(e) and the minimum total number of
colors needed corresponds to the minimum C respecting previous constraints. There exists a
simple greedy algorithm to do it in linear time using 2∆(G)d+1 different integers (colors) [9]
where ∆(G) is the maximum degree in G with the interference model defined by d.

A particular case is when the binary interference model is defined by d = 0. In that case,
the problem of minimizing C remains to compute the Edge Chromatic Number, denoted by
χ′(G), of G (see [11]). Theorem 7 proves a better bound to the optimal number of colors
needed. A proof of this theorem can be found in [11] and a constructive proof in [17]. Finally
there exists a polynomial time algorithm to get a (+1)-approximation for this particular
problem. More precisely this algorithm computes a valid coloring of the edges using at most
∆(G) + 1 colors and in the worst case, the optimal value is ∆(G) colors.

Theorem 7 (Vizing’s Theorem). Given a graph G = (V,E), ∆(G) ≤ χ′(G) ≤ ∆(G) + 1
where ∆(G) is the maximum degree in G.

Furthermore, if G is bipartite, χ′(G) = ∆(G), and in particular for the grid χ′(G) = 4.

5.4 How to Choose K and L?

If the number Tlog of mini-slots allowed is constant and fixed, it is possible to compute the
maximum value of K respecting this constraint. More precisely we choose the largest K
such that dlog2(CK)+1e2 +dlog2(CK)+1e−1 ≤ Tlog (C is a constant previously computed
by algorithms described in Section 5.3). Furthermore we choose L large enough. Recall that
the number of mini-slots Tlog of Algorithm Log is constant when L increases.

6 Stability

We analyze the stability of Algorithm Log in this section. Note that since Algorithm
Log produces a maximal match in every timestep, it is guaranteed to achieve a fraction
of the maximum throughput capacity in an arbitrary wireless network [7]. However, the
capacity region for Algorithm Log is larger than this minimum bound, and we now proceed
to calculate it.

Let At(e) ∈ {0, 1, . . .} be the number of arrivals on link e in slot t.
Recall that qt(e) is the number of packets waiting to be transmitted on link e (called

queue e) at the beginning of slot t.
For the sake of simplicity we assume that arrivals on link e ∈ E during slots sC+1, sC+

2, . . . , (s+ 1)C (s = 0, 1, . . .) join queue e at the end of slot (s+ 1)C.

INRIA

Distributed Call Scheduling in Wireless Networks 21

Let Bs(e) :=
∑(s+1)C
t=sC+1 At(e) be the cumulated number of arrivals on link e ∈ E during

slots sC + 1, sC + 2, . . . , (s+ 1)C. We have

q(s+1)C(e) = qsC+1(e)− xsC+1(e) +Bs(e), e ∈ E,

where xsC(e) ∈ [c(e), qsC+1(e)] is the number of packets transmitted on link e during slots
sC + 1, sC + 2, . . . , (s + 1)C. The requirement that xsC(e) ≥ c(e) is a consequence of the
property that Algorithm Log activates a link only if its backlog is at least equal to the link
capacity (see Section 4.1).

Assumption 1. For each e ∈ E, {Bs(e), s ≥ 0} is an independent and identically distributed
(iid) sequence of random variables. Furthermore {Bs(e), s ≥ 0}, e ∈ E, are mutually
independent sequences.

Assumption 1 and the definition of the virtual weights in Section 4.1 imply that X :=
{((qsC(e), γsC(e)), e ∈ E), s ≥ 0} is a Markov process with state-space IN|E| × {1, . . . , C},
where C is the number of colors needed so that two interfering edges have different colors.

We will assume that this Markov chain is irreducible. Under Algorithm Log this prop-
erty will hold, in particular, if P (At(e) = k) > 0 for all k.

The stability of Algorithm Log is defined as the stability of the Markov chain X. In
words, when Algorithm Log is stable then queues “will not build up”.

Let {Ij}j be the set of all admissible schedules. A schedule Ij = (Ij(e), e ∈ E) is a binary
vector where Ij(e) = 1 if link e is active and Ij(e) = 0 otherwise. A schedule is admissible
if it will not produce any interference among active links.

Define the so-called capacity region C [24] (with λj > 0 for all j)

C =

v =

∑
j

λjIj

M with
∑
j

λj < 1

 .

with M = diag(c(e), e ∈ E).
Let c = (c(e), e ∈ E) be the link capacity vector. Let H(e) be the maximum number of

links that can be scheduled if link e is not scheduled and let H = max(1,maxe∈E H(e)).
We define the load vector as the vector b = (E[Bs(e), e ∈ E).
The following result holds:

Theorem 8. Under Assumption 1 and if E[Bs(e)Bs(e′)] is bounded for all e, e′ ∈ E then
Algorithm Log stabilizes the load vector b if (CH/(C+H−1))(b+ε c) ∈ C for some ε > 0.

The proof is an adaptation of the proof of Theorem 1 in [2] (Hint: replace the definition
of the set L′(s) in [2] by L′(s) = {e ∈ E : qsC+1(e) ≥ LCc(e)}) since Algorithm Log
behaves as a hybrid scheduling whenever L′(s) = E for all s ≥ 0.

RR n° 6763

22 Bermond, Mazauric, Misra, and Nain

Example 9. Consider a graph G = (V,E) composed of |E| links in series with an arbitrary
interference distance d. In this case, H = 2(d + 1) since a link is in conflict with at most
2(d + 1) other links and C = d + 2 since d + 2 colors are needed to color a path when the
interference distance is d.

Assume that for each e, {At(e), t ≥ 0} is an idd sequence with A(e) = E[At(e)] and that
E[At(e)At(e′)] is bounded for e, e′ ∈ E. In particular, E[Bs(e)] = 2A(e).

Theorem 8 says that if the vector a = (A(e),∈ E) is such that there exists ε > 0 with
(2(d+ 2)/3)((d+ 2)a + ε c) ∈ C then a stabilizes Algorithm Log.

We conjecture that if ∑
e′∈ε(e)∪{e}

A(e′) < min
e′∈ε(e)∪{e}

c(e′) (3)

for all e ∈ E then Algorithm Log is stable.
If this conjecture holds a natural question is to know what stability region among that

defined by Theorem 8 and by conditions (3) is the largest. We provide a partial answer to
that question in the setting of Example 9 when c(e) = 1 for all e ∈ E.

Assume that (2(d + 2)/3)((d + 2)a + ε) ∈ C for some ε > 0 so that from Example 9
Algorithm Log stabilizes the load vector a = (a(1), . . . , a(|E|)) with a(e) := A(e).

From the definition of the region C this means that there exist constants λi > 0 with∑
i λi < 1 such that

(2(d+ 2)/3) ((d+ 2)a(e) + ε) =
∑
i

λiIi(e), e = 1, . . . , |E|. (4)

From (4) and the positiveness of ε we deduce that

a(e) < 3
2(d+ 2)2

∑
i

λiIi(e), e = 1, . . . , |E|. (5)

Let us show that the vector a strictly lies within the region defined by conditions in (3).
This amounts to showing that D(e) < 1 for e = 1, . . . , |E| with

D(e) := a(e− 1 + d) + · · ·+ a(e− 1) + a(e)
+a(e+ 1) + · · ·+ a(e+ 1 + d)

where a(e) = 0 if e 6∈ {1, . . . , |E|} by convention. From (5) we find

D(e) < 3
2(d+ 2)2

∑
i

λi(Ii(e− 1 + d) + · · ·

+Ii(e− 1) + Ii(e) + Ii(e+ 1) + · · ·+ Ii(e+ 1 + d))

INRIA

Distributed Call Scheduling in Wireless Networks 23

for e = 1, . . . , |E|. By definition of the interference distance d we observe that

Ii(e− 1 + d) + · · ·+ Ii(e− 1) + Ii(e)
+Ii(e+ 1) + · · ·+ Ii(e+ 1 + d) ≤ 2

for e = 1, . . . , |E| since at most 2 links can be simultaneously active among 2(d + 1) + 1
consecutive links. Hence, D(e) < 3/(d + 2)2 ≤ 3/4 for e = 1, . . . , |E| and for any d ≥ 0.
This shows that the stability region given in (3) is larger than that given in Theorem 8.

We conclude this section by observing that conditions

A(e) < c(e)/C, e ∈ E. (6)

ensure the stability of Algorithm Log when K = 1. This is so because when K = 1 the
virtual weights do not depend on the backlogs, which in turn implies that Algorithm Log
becomes a deterministic algorithm that guarantees each link e to transmit at least c(e)
packets every C consecutive slots.

7 Simulations

We investigate in this section performance of our distributed scheduling algorithm, Algorithm
Log, via simulations. More precisely, we compute the total sum of active links at a given step
(Section 7.1), and we study the evolution of the largest queue of the network for thousands
time slots (Section 7.2). For instance in Section 7.2.2 we compare the largest and average
value computed by Algorithm Log to the one found by Augmenting Paths Algorithm,
proposed in [5].

7.1 Weight of the Set of Active Links

We study in this section the ratio between weights of the optimal matching and the matching
computed by Algorithm Log for a path. Figure 7(a) shows this ratio for a path G = (V,E)
composed of |E| = 50 edges for 1000 tests. At each test, we assign a weight for each e ∈ E
as follows: P (qt(e) = i) = 1/101, 0 ≤ i ≤ 100. We observe that, for each test, Algorithm
Log finds a matching of weight at least 4/5 than the optimal.

7.2 Evolution of the Largest/Average Queue

We investigate in this section the evolution of the length of the queues for a certain number
of time slots applying Algorithm Log. The simulations have been done for path networks
(Section 7.2.1), grid networks (Section 7.2.2), and random networks (Section 7.2.3). For
each topology we will explain the chosen parameters and describe the evolution of the size of

RR n° 6763

24 Bermond, Mazauric, Misra, and Nain

0 100 200 300 400 500 600 700 800 900 1000

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

tests

1.00

0.80

(a) Ratio optimal / Algorithm
Log.

0 1 2 3 4 5 6 7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(b) Largest queue depending to K
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

5

10

15

20

25

30

35

40

steps

45

(c) Random network

Figure 7: Performance of Algorithm Log

largest queue of the network, for thousands steps. Furthermore we compare in Section 7.2.2
Algorithm Log to Augmenting Paths Algorithm for the grid topology (largest and average
values), using parameters chosen in [5].

7.2.1 Paths

We show here some simulations for path networks. From Section 5.3, it is sufficient to
assign the sequence of integers (colors) 1, 2, 1, 2, . . . on the edges of the path, considering the
interference model defined by d = 0. Thus C = 2.

We first investigate Algorithm Log for a path G = (V,E) composed of |E| = 100 edges
during 100000 time slots. We choose K = 1000. Furthermore for any edge e ∈ E, the
capacity is c(e) = 18, and the arrival process is defined as follows: n1 messages arrive in
average on e at a step t ≥ 1 for an edge e ∈ E with color 1 (γ(e) = 1) and n2 message arrives
in average for the others (each edge e ∈ E such that γ(e) = 2). Figure 8(a), Figure 8(b),
and Figure 8(c) represent the largest weight of edges at each time slot respectively for pairs
(n1, n2) = (16, 1), = (12, 4), and = (8, 8). We observe that the largest queue is always lower
than respectively 400, 180, and 140.

Then we investigate the impact of the value of K on the largest and average queue of
a path G = (V,E) composed of 100 edges with d = 0. For each e ∈ E, an average of 0.75
(respectively 0.2) messages arrive at each step t ≥ 1 if γ(e) = 1 (respectively γ(e) = 2).
Figure 7(b) represents largest and average weight after 50000 time slots for different values
of K: K = 1, 2, 4, 8, . . . , 128. The plot illustrates the performance-overhead tradeoff of K -
a higher K leads to lower average queue sizes, but most of the gains come with relatively
small values of K.

INRIA

Distributed Call Scheduling in Wireless Networks 25

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

50

100

150

200

250

300

350

steps

400

(a) (n1, n2) = (16, 1)
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

20

40

60

80

100

120

140

160

steps

180

(b) (n1, n2) = (12, 4)
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

20

40

60

80

100

120

steps

140

(c) (n1, n2) = (8, 8)

Figure 8: evolution of the largest queue for a path network composed of 100 edges for
Algorithm Log (d = 0, K = 1000, L = 99, C = 4).

7.2.2 Square Grids

We compare in this section our distributed algorithm, Algorithm Log, to the one proposed
in [5], Augmenting Paths Algorithm, choosing the same parameters. More precisely, the
simulations have been done for a square grid G = (V,E) of |V | = 121 nodes and with
|E| = 220 edges (Figure 9). For each edge e ∈ E, the capacity is c(e) = 1. Furthermore
values mentioned in Figure 9 represent average arrivals divided by a parameter λ ≤ 1.
As described in Section 3, Augmenting Paths Algorithm requires parameters in inputs:
k and p. In [5], simulations have been done for the following parameters: {k = 2, p =
0.2}, {k = 3, p = 0.2}, and {k = 3, p = 0.1}. In [5], the number of time slots is 48000.
Recall that Augmenting Paths Algorithm is only valid for the primary node interference
model, and so d = 0 for our comparisons. Let us describe the parameters chosen for
Algorithm Log. From Section 5.3, the minimum value of C respecting constraints described
in Section 4 is χ′(G) = 4. See Figure 5(b) for an example of valid assignment of γ(e).
Furthermore we choose K = 1000 = L + 1. We compare in Figure 10 the largest and
average values for each time slot t ≤ 50000 with Algorithm Log and Augmenting Paths

0.1

0.1

0.1 0.1 0.1 0.1

0.1

0.10.10.1

0.1 0.1

0.7

0.7

0.7

0.7

0.1

0.1

0.1

0.1 0.7

0.7

0.7

0.7

Figure 9: grid network.

RR n° 6763

26 Bermond, Mazauric, Misra, and Nain

steps

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0

20

40

60

80

100

120

(a) λ = 0.90
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

50

100

150

200

250

steps

300

(b) λ = 0.95
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

0

100

200

300

400

500

steps

600

(c) λ = 0.97

Figure 10: evolution of the largest and average value of queues for the grid network (121
nodes and 200 edges) for Augmenting Paths Algorithm (k = 2, p = 0.2) and for Algorithm
Log (d = 0, K = 1000, L = 999, C = 4).

Algorithm, for the parameter {k = 2, p = 0.2} described in [5]. Simulation results for
the two other parameters are analogous. Figure 10(a), Figure 10(b), and Figure 10(c)
represent respectively largest and average value for λ = 0.90, 0.95, 0.97 (red straight lines
represent Augmenting Paths Algorithm and blue dotted lines represent Algorithm Log).
We note that the flexibility of Algorithm Log comes at a price for highly loaded networks,
as Augmenting Paths Algorithm performs better on average (though both are stable).
However, Augmenting Paths Algorithm is specialized for d = 0 where Algorithm Log is
stable for any value of d. Figure 7.2.3 shows a simulation for the same grid network with
the arrival rate in the capacity region established in Section 6. As can be seen, Algorithm
Log stabilizes the system.

7.2.3 Random Graphs

Finally in this section we apply Algorithm Log to a random network. First let us describe
how we have built our random graphs before analyzing the evolution of the largest queue.

Given a grid graph G′ = (V,E′), we delete an edge e ∈ E′ with a certain constant
probability p, before adding others edges with another constant probability q between two
nodes not so far than a certain Euclidean distance. We get a random transmission graph
G = (V,E). Figure 6 shows an example of such a random graph with |V | = 33 nodes and
|E| = 56 edges.

In our simulations, we investigate the stability criteria defined in Equation 3 of Section 6
with c(e) = 20, ∀e ∈ E.

The arrival processes for edges of the network are defined as follows: we first assign to
each edge e ∈ E an average arrival of 20 messages per step t ≥ 1 (uniform between 0 and
40). To respect previous conditions, we decrease the average number of arrivals per step by
1 for an edge e if it is necessary, until having the desired condition. In Figure 7(c), we have

INRIA

Distributed Call Scheduling in Wireless Networks 27

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

steps

Figure 11: Largest and average queue size for a grid network with d = 1 interference
constraint

applied Algorithm Log for such a graph G = (V,E) with |V | = 200 nodes and |E| = 424
edges. The number of time slots is 100000, with K = 10000 and C = 20. The interference
model is defined by d = 0. Figure 7(c) represents the largest queue for each time slot t,
and it is easy to show that Algorithm Log stabilizes the queueing system under previous
conditions.

8 Multi-Hop Traffic

We show in this section how to extend Algorithm Log to take into consideration multi-hop
traffic when routing is fixed. The main idea is to change the vector qt of previous weights
(Section 2) and the vector q′t of previous virtual weights (Section 4.1) into multi-hop vector of
weights qmt and virtual multi-hop vector of weights q′mt . Let G = (V,E) be the transmission
graph. More precisely ∀e ∈ E, qmt (e) =

∑
pit(e)hit(e) where pit(e) is the packet numbered i

in the queue of link e at step t and hit(e) is the number of remaining hops of the previous
packet. From qmt (e), we compute q′mt (e) for e in the same manner than in Algorithm Log
(Section 4.1). We assume here that the routing is pre-computed. Note that the policy of
services can changed with application requirements.

9 Conclusion

We proposed in this article the first, to our knowledge, a distributed algorithm for the
transmission scheduling problem in wireless networks with constant overhead and arbitrary
binary interference. We proved that the set of active links at each time slot is maximal.
We proposed sufficient stability conditions and investigated performance of our distributed

RR n° 6763

28 Bermond, Mazauric, Misra, and Nain

algorithm via simulations. We also proposed extensions to our algorithm in the multi-hop
case.

Since our algorithm works with arbitrary interference constraints, and uses observed in-
terference for its functioning, we believe it translates into a practical implementation well
and that is planned as future work. It will be interesting now to prove a better stabil-
ity condition and characterize the stability region of our algorithm. Although simulation
results strongly suggest that the algorithm is capacity achieving, it remains to be proven
analytically.

References
[1] H. Balakrishnan, C. Barrett, V. Kumar, M. Marathe, and S. Thite. The distance-2

matching problem and its relationship to the mac-layer capacity of ad hoc wireless
networks. IEEE, J. Selected Areas in Communication, 22(6):1069–1079, 2004.

[2] V. Bhandari and N. H. Vaidya. A result on hybrid scheduling in wireless networks.
Technical report, University of Illinois, Dept. Electrical and Computer Eng., March
2009.

[3] V. Bonifaci, R. Klasing, P. Korteweg, L. Stougie, and A. Marchetti-Spaccamela. Graphs
and Algorithms in Communication Networks, chapter Data Gathering in Wireless Net-
works. Springer-Verlag, 2009.

[4] A. Brzezinski, G. Zussman, and E. Modiano. Enabling distributed throughput maxi-
mization in wireless mesh networks: a partitioning approach. InMobiCom, pages 26–37.
ACM, 2006.

[5] L. X. Bui, S. Sanghavi, and R. Srikant. Distributed link scheduling with constant
overhead. IEEE/ACM Transactions on Networking, 17(5):1467–1480, 2009.

[6] K. Cameron. Induced matchings. Discrete Applied Mathematics, 24(1-3):97–102, 1989.

[7] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar. Throughput and fairness guarantees
through maximal scheduling in wireless networks. IEEE Transactions on Information
Theory, 54(2):572–594, 2008.

[8] H. Chen, X. Xie, and H. Wu. A queue-aware scheduling algorithm for multihop relay
wireless cellular networks. Mobile WiMAX Symposium, IEEE, 0:63–68, 2009.

[9] R. Diestel. Graph Theory (Graduate Texts in Mathematics), 1997.

[10] A. Eryilmaz, O. Asuman, and E. Modiano. Polynomial complexity algorithms for full
utilization of multi-hop wireless networks. INFOCOM, pages 499–507, 2007.

INRIA

Distributed Call Scheduling in Wireless Networks 29

[11] S. Fiorini and R. J. Wilson. Edge-colourings of graphs. Pitman, 1977.

[12] A. Gupta, X. Lin, and R. Srikant. Low-complexity distributed scheduling algorithms
for wireless networks. In INFOCOM, pages 1631–1639, 2007.

[13] R. Klasing, N. Morales, and S. Pérennes. On the complexity of bandwidth allocation
in radio networks. Theoretical Computer Science, 406(3):225 – 239, 2008.

[14] V. S. A. Kumar, M. Marathe, S. Parthasarathy, and A. Srinivasan. End-to-end packet-
scheduling in wireless ad-hoc networks. In SODA ’04, pages 1021–1030. SIAM, 2004.

[15] L. Lovász and M. Plummer. Matching Theory, volume 29 of Annals of Discrete Math-
ematics. North-Holland, 1986.

[16] R. Mazumar, G. Sharma, and N. Shroff. Maximum weighted matching with interference
constraints. FAWN, Pisa, Italy, 2006.

[17] J. Misra and D. Gries. A constructive proof of vizing’s theorem. Information Processing
Letters, 41, 1992.

[18] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput in wireless networks
via gossiping. SIGMETRICS Perform. Eval. Rev., 34(1):27–38, 2006.

[19] Y. Orlovich, G. Finke, V. Gordon, and I. Zverovich. Approximability results for the
maximum and minimum maximal induced matching problems. Discrete Optimization,
5(3):584 – 593, 2008.

[20] S. Rajagopalan, D. Shah, and J. Shin. Network adiabatic theorem: an efficient ran-
domized protocol for contention resolution. In SIGMETRICS ’09: Proceedings of the
eleventh international joint conference on Measurement and modeling of computer sys-
tems, pages 133–144, New York, NY, USA, 2009. ACM.

[21] S. Sanghavi, L. Bui, and R. Srikant. Distributed link scheduling with constant overhead.
In SIGMETRICS, pages 313–324, 2007.

[22] L. J. Stockmeyer and V. V. Vazirani. Np-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett., 15(1):14–19, 1982.

[23] L. Tassiulas. Scheduling and performance limits of networks with constantly changing
topology. IEEE Transactions on Information Theory, 43(3):1067–1073, 1997.

[24] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. IEEE
Conference on Decision and Control, pages 2130–2132 vol.4, 1990.

[25] P.-J. Wan. Multiflows in multihop wireless networks. In MobiHoc ’09, pages 85–94.
ACM, 2009.

RR n° 6763

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Modeling
	Previous Works
	Our Distributed Algorithm
	Virtual Weights
	Control Vector
	Algorithm Log
	Subphase 1
	Other Subphases

	Examples
	Square Grid with d = 0
	Random Graph with d = 1

	Analysis
	Maximality
	Overhead (Complexity)
	How to Compute the Constant C?
	How to Choose K and L?

	Stability
	Simulations
	Weight of the Set of Active Links
	Evolution of the Largest/Average Queue
	Paths
	Square Grids
	Random Graphs

	Multi-Hop Traffic
	Conclusion

