
HAL Id: inria-00435573
https://hal.inria.fr/inria-00435573

Submitted on 24 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First Class Futures: a Study of Update Strategies
Muhammad Uzair Khan, Ludovic Henrio

To cite this version:
Muhammad Uzair Khan, Ludovic Henrio. First Class Futures: a Study of Update Strategies. [Re-
search Report] RR-7113, INRIA. 2009. �inria-00435573�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50128319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00435573
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
1

1
3

--
F

R
+

E
N

G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

First-class Futures: a Study of Update Strategies

Khan Muhammad — Ludovic Henrio

N° 7113

November 2009

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

First-class Futures: a Study of Update Strategies

Khan Muhammad ∗ , Ludovic Henrio ∗

Thème : Distributed systems
Équipes-Projets Oasis

Rapport de recherche n° 7113 — November 2009 — 14 pages

Abstract: Futures enable an efficient and easy to use programming paradigm
for distributed applications. A natural way to benefit from distribution is to
perform asynchronous invocations to methods or services. Upon invocation,
a request is en-queued at the destination side and the caller can continue its
execution. But a question remains: “what if one wants to manipulate the result
of an asynchronous invocation?” First-class futures provide a transparent and
easy-to-program answer: a future acts as the placeholder for the result of an
asynchronous invocation and can be safely transmitted between processes while
its result is not needed. Synchronization occurs automatically upon an access
requiring the result. As references to futures disseminate, a strategy is necessary
to propagate the result of each request to the processes that need it. This report
studies the efficient transmission of results: it presents three main strategies in
a semi-formal manner, and provides a cost analysis with some experiments to
determine the efficiency of each strategy.

Key-words: distributed systems, future, future update strategies, active ob-
jects, asynchronous communications

∗ INRIA, Sophia Antipolis, Université de Nice – I3S – CNRS

Futurs de primière classe: Une étude des

stratégies de mise à jour des futures

Résumé : Une futur est un paradigme de programmation efficace et facile à
utiliser pour les applications distribuées. Un futur est une espace réservé tem-
poraire pour un résultat d’appel asynchrone. Cet article étudie la transmission
efficace des résultats: Elle présente trois stratégies demanière semi-formelle, et
fournit une analyse des coûts avec quelques expériences de manière à déterminer
l’efficacité de chaque stratégie.

Mots-clés : systèmes distribués, future, stratégies pour mise à jour les futures,
objet active, communication asynchrone

Future update strategies 3

Contents

1 Introduction 4

2 Related works 4

3 Modeling Different Future Update Strategies 5

3.1 General Notation . 5
3.1.1 Operations . 6
3.1.2 Events . 6

3.2 Eager Forward-Based Strategy 7
3.2.1 Send Future Reference . 7
3.2.2 Future Computed . 8
3.2.3 Send Future Value . 8

3.3 Eager Message-based Strategy . 8
3.3.1 Send Future Reference . 8
3.3.2 Future Computed . 9
3.3.3 Send Future Value . 9

3.4 Lazy Message-based Strategy . 9
3.4.1 Send future reference . 10
3.4.2 Wait-by necessity . 10
3.4.3 Future Computed . 10
3.4.4 Send Future Value . 10

3.5 Cost Analysis of Update Strategies 10

4 Experimental Evaluation 11

5 Conclusion 13

RR n° 7113

4 Khan & Henrio

1 Introduction

Futures are language constructs that improve concurrency in a natural and
transparent way. A future is used as a place holder for a result of a concurrent
computation [7, 16]. Once the computation is complete and a result (called
future value) is available, the placeholder is replaced by the result. Access to
an unresolved future is a blocking operation. As results are only awaited when
they are really needed, computation is parallelized in a somehow optimal way.
The future creation can be transparent or explicit. With explicit futures, spe-
cific language constructs are necessary to create the futures and to fetch the
result. Transparent futures, on the other hand, are managed by the underlying
middleware and the program syntax remains unchanged; futures have the same
type as the actual result. Some frameworks allow futures to be passed to other
processes. Such futures are called First class futures [3]. In this case additional
mechanisms to update futures are required not only on the creating node, but
also on all nodes that receive a future. First class futures offer greater flexi-
bility in application design and can significantly improve concurrency both in
object-oriented and procedural paradigms like workflows [14, 13]. They are par-
ticularly useful in some design patterns for concurrency, such as master-worker
and pipeline.

Our work analyzes several future update strategies; it can be considered as an
extension of [3] and [11] through a language-independent approach that makes
it applicable to various existing frameworks that support first class futures. The
experiments are performed with the ProActive library [1], which is a middleware
providing first-class futures. Our main contributions are: a semi-formal event-
like notation to model the future update strategies, and a description of three
different update strategies using this notation (Section 3); a cost-analysis of the
presented protocols (Section 3.5); some experimental results carried out with
the ProActive library (Section 4).

2 Related works

Futures, first introduced in Multilisp [7] and ABCL/1 [16] are used as con-
structs for concurrency and data flow synchronization. Languages/frameworks
that make use of explicit constructs for creating futures include Multilisp [7, 6],
λ-calculus [10], SafeFuture API [15] and ABCL/f [12]. In contrast, futures are
created implicitly in frameworks like ASP [3, 2], AmbientTalk [5] and ProAc-
tive [1]. This implicit creation corresponds to asynchronous invocation. A key
benefit of the implicit creation is that no distinction is made between local and
remote operations in the program. Additionally, the futures can be accessed
explicitly or implicitly. In case of explicit access, operations like claim and get,
touch are used to access the future [9, 8, 12]. For implicit access, operations that
need the real value of an object are called strict operations, and automatically
trigger an access to the future. Accessing a future that has not been updated,
results in a wait-by-necessity, which blocks the accessing process.

Creol [8] allows for explicit control over data-flow synchronizations. In [4],
Creol has been extended to support first class futures even if the access is still
explicit (using get and await). ASP [3] and ProActive [1], have transparent first-
class futures. Thus, the synchronization is transparent and data-flow oriented.

INRIA

Future update strategies 5

In AmbientTalk, futures are also first-class and transparently manipulated; but
the future access is a non-blocking operation: it is an asynchronous call that
returns another future. This avoids the possibility of a dead lock as there is
no synchronization. In AmbientTalk a future contains a mailbox to store the
received invocations, which are treated upon future update. This significantly
differs from the approach adopted in frameworks like [8] where access to a future
is blocking. All processes interested in the future are registered as observers.
When the result for the future is computed, all the registered observers are
notified, thus the future update strategy in AmbientTalk is closed to the eager-
message based strategy presented here. [15] provides a safe extension to Java
futures, but with explicit creation and access.

This report presents future update strategies, with more details than in [3];
it also analyzes the cost of each strategy. This work is language independent,
and can be applied to any frameworks supporting first class futures, e.g. [4, 5].

3 Modeling Different Future Update Strategies

This section gives a semi-formal definition for the three main future update
strategies. Strategies are called eager when all the references to a future are
updated as soon as the future value is calculated. They are called lazy if fu-
tures are only updated upon need, which minimizes communications but might
increase the time spent waiting for the future value. Two eager and one lazy
strategies are presented here: eager forward-based (following the future flow),
eager message-based (using a registration mechanism, also called home-based
in [11]), and lazy message based. One could also consider a lazy forward-based
strategy, but as it is extremely inefficient, we do not discuss it here.

3.1 General Notation

This section presents a brief overview of the various notation and entities that we
use to model the future update strategies. We denote by A the set of processes
(also called activities); α, β, . . . ∈ A range over processes. F denotes the set of
future identifiers, each future identifier is of the form fα→β , which represents
the future f created by the activity α, and being calculated by β. As each object
needs to keep track of the futures it has received, we make use of some local
lists for this purpose. There is one future list for each activity α. It represents
the location where the futures are stored in local memory.

FLα : F 7→ P(Loc)
Locations, called loc in the following and of type Loc, refer to the in-memory

position of the future. To keep track of activities to which a future is to be sent,
a future recipient list is stored in each process.

FRδ : F 7→ P(A)
γ ∈ FRδ (fα→β) if the future value for fα→β has to be sent from δ to γ.

It should be noted that each fα→β can be mapped to several locations in FL
or several activities in FR. FR and FL are initialized to empty mapping on
all processes. We use an event like notation to define the different strategies.
Operations triggered by the strategies, and events triggered by the rest of the
middleware are described respectively in bellow. Events are indexed by the
activity on which they occur, or α → β for a communication from α to β.

RR n° 7113

6 Khan & Henrio

3.1.1 Operations

Register Future - Reg: F × B × F 7→ P(B)
We define an operation Reg that is given a future, a process and a mapping
F 7→ P(B) (either FL when B = Loc, or FR when B = A). Regγ(fα→β , b, L)
replaces the list L by the list L′ defined as follows:

L′(fα′
→β′

2
)=

{

L(fα→β) ∪ {b} if fα′
→β′

2
=fα→β

L(fα′
→β′

2
) else

The Reg operation replaces the old mapping L with a new one containing the
additional mapping. An example of its usage could be Regγ(fα→β , loc,FLγ)
which adds to the FLγ list, a new location loc associated to future fα→β .

Locally Update future with value - Update: Loc × V alue
Once the value for a given future is received, this operation is triggered to update
all corresponding local futures with this value. The operation Updateγ(fα→β , v)
replaces, in the activity γ, each reference to the future fα→β by the value v.
Remember the set of locations of these references is FLγ(fα→β).

Clear future from list - Clear: F × F 7→ P(B)
The clear operation Clear(fα→β , L) removes the entry for future fα→β from the
list L; it replaces the list L by the list L′ defined by:

L′(fα′
→β′

2
) =

{

L(fα′
→β′

2
) if fα′

→β′

2
6= fα→β

∅ else

It will be used after a future update to clear entries for the updated future.

Send future value: SendValue: F × Loc × V alue
Send operation is used when a process needs to send the value of a computed fu-
ture to another process in order to update the future there. SendValueδ→γ(fα→β , loc, v)
sends the value v for the future fα→β from δ to γ. Sending a future value can
trigger send future reference events, SendRef , for all the future references con-
tained in the value v. The exact details of this operation depend on the strategy
and appear in Sections 3.2, 3.3, and 3.4

3.1.2 Events

Future update strategies react to events, triggered by the application or the
middleware, presented below.

Create future: Create: F × Loc
Createα(fα→β , loc) is triggered when α creates a future that will be calculated
by the process β. The semantics of this event is similar for all strategies: it
registers the future in the future list FL of the creating process.

Createα(fα→β , loc) , Regα(fα→β , loc,FLα)

INRIA

Future update strategies 7

H

A

B

C DE

F

f:M()

Legend

SendRef(f)

SendValue(v)

Figure 1: Future-update in eager forward-based strategy

Send future reference: SendRef: F × Loc
SendRefδ→γ(fα→β , loc) occurs when the process δ sends the future reference
fα→β to γ and the future is stored at the location loc on the receiver side. The
exact details of this operation depend on the strategy and will be described in
Sections 3.2, 3.3, and 3.4.

Future computed: FutureComputed: F × V alue
FutureComputedβ(fα→β , val) occurs when the value val of future fα→β has
been computed by β. Reactions to this event will be described below.

Wait-by-necessity: Wait: A
This event is triggered when a process accesses an unresolved future. This
corresponds to get or touch operation in [9, 8, 12]. For the two eager strategies
it simply causes the process to be blocked until the value is received. For the
lazy strategy, this event retrieves the future value, see Section 3.4.

3.2 Eager Forward-Based Strategy

In this strategy, each process remembers the nodes to which it has forwarded
the future. When the value is available, it is sent to all such nodes. The list
of processes to which a process β should send the future value for fα→β is
FRβ(fα→β). It is the list of processes to which β has sent the future reference.

Figure 1 shows an example illustrating this strategy. Process A makes an
asynchronous call on process H and receives the future fA→H . A then passes
this future to B, which in turn passes the future to C, D and E. Finally C
passes the future to F . Each time a future is forwarded, i.e. upon a SendRef

message, the forwarding process δ adds the destination to its FRδ(f
A→H).

When the result for fA→H is available, it is communicated to A using SendValue

message. A then forwards the update on B (FRA(fA→H) = {B}). B can make
concurrent updates on C, E and D (FRB(fA→H) = {C, E, D}). Finally, the
occurrence in F is updated by C (FRF (fA→H) = {C}).
3.2.1 Send Future Reference

When a process δ sends a future fα→β to a process γ, the sender registers the
destination process in FRδ, and the destination process registers the location

RR n° 7113

8 Khan & Henrio

of the future in FLγ .

SendRefδ→γ(fα→β , loc) , Regδ(f
α→β , γ, FRδ); Regγ(fα→β , loc,FLγ)

3.2.2 Future Computed

Once the value of a future fα→β has been computed at process β, it is imme-
diately sent to all the processes that belong to FRβ(fα→β). This will trigger
chains of SendValue operations. Once the future value have been sent, the future
recipient list is no longer useful:

FutureComputedβ(fα→β , value) , ∀ δ∈FRβ(fα→β), SendValueβ→δ(f
α→β , value)

Clearβ(fα→β ,FRβ))

3.2.3 Send Future Value

When a future value is received, the receiver first updates all the local references,
and then sends the future value to all the processes to which it had forwarded
the future (the processes in its FR list). The operation is recursive, because
the destination process of SendValue may also need to update further futures.
This operation can potentially trigger the SendRef operation in case of nested
futures. The future locations and future recipient lists for this future are not
anymore needed after those step:

SendValueδ→ǫ(f
α→β , value) , ∀ loc∈FLǫ(f

α→β), Updateǫ(loc, value),
Clearǫ(f

α→β ,FLǫ)
∀ γ∈FRǫ(f

α→β), SendValueǫ→γ(fα→β , value),
Clearǫ(f

α→β ,FRǫ)

3.3 Eager Message-based Strategy

In eager message-based strategy, the process β, computing the future value, is
responsible for updating all nodes which receive a future. Opposed to forward-
based strategy where futures updates are performed in a distributed manner,
here all updates are performed by same process β (home) in a centralized man-
ner. Whenever, a process δ forwards a future to another process γ, it sends
a message SendRegReq to the home process β, and updates the list of future
recipients FRβ . FRβ(fα→β) contains the set of processes to which fα→β has
been forwarded.

Figure 2 shows an example of this strategy. When A forwards the future to
process B a registration message SendRegReq is sent from A to H, registering
B in FRH . Similarly we have a registration message sent to H from B adding
C, E, and D to FRH ; finally we have FRH(fA→H) = {A, B,C, D, E, F}.

Once the future result is available, H uses the SendValue message to com-
municate the value to all processes in FRH(fA→H).

3.3.1 Send Future Reference

In the message-based strategy when a future fα→β is forwarded by a process δ
to a process γ, a registration message is sent to the process that will compute
the future, β.
SendRefδ→γ(fα→β , γ, loc) , Regβ(fα→β , γ,FRβ); Regγ(fα→β , loc,FLγ)

The registration Regβ(fα→β , γ,FRβ) is performed using a communication
addressed to the home process β, and is called SendRegReq in Figure 2.

INRIA

Future update strategies 9

H
A

B

C DE

F

f:M()

Legend

SendRef(f)

SendValue(v)

SendRegReq()

Figure 2: Future-update in eager message-based strategy
3.3.2 Future Computed

Once the execution is completed and the value is available in β, the process β
sends the value to all the processes in FRβ(fα→β).

FutureComputedβ(fα→β , val) , ∀ δ ∈ FRβ(fα→β) SendValueβ→δ(f
α→β , val);

Clearβ(fα→β ,FRβ)

3.3.3 Send Future Value

Contrarily to forward-based strategy, there is no need to forward the future
value when received, only local references are updated, and then the FL list
can be cleared.

SendValueβ→γ(fα→β , val) , ∀ loc ∈ FLγ(fα→β) Updateγ(loc, val);
Clearγ(fα→β ,FLγ)

The received future value may contain other futures as well. In this case, it can
potentially trigger the send future reference operation.

3.4 Lazy Message-based Strategy

The lazy strategy differs from the eager strategies in the sense that future values
are only transmitted when absolutely required. When a process accesses a
unresolved future, the access triggers the update. This strategy is somewhat
similar to message-based strategy except the futures are updated only when
and if necessary. In addition, each process now needs to store all the future
values that it has computed. For this, we introduce another list, FV that stores
these values: FV : F 7→ P(V alue). FVβ(fα→β), if defined, contains a singleton,
which is the future value of fα→β .

Compared to Figure 2, in the lazy strategy only the processes that require
the future value register in FRH , FRH(fA→H) = {C, D} if only C and D
access the future. When the result is available, H communicates it to processes
in FRH(fA→H). In addition, the value is stored in FVH(fA→H). If the future
value is required later, it will be retrieved from FVH(fA→H).

RR n° 7113

10 Khan & Henrio

3.4.1 Send future reference

This strategy does not require registration with home process when forwarding
a future. Incoming futures are registered in FLγ on the receiver. Once the value
is received, all local references can be updated.

SendRefδ→γ(fα→β , γ, loc) , Regγ(fα→β , loc,FLγ)

3.4.2 Wait-by necessity

Wait-by-necessity is triggered when the process tries to access the value of the
future. We register the waiting process at β:

If the future has already been computed by β, the value is transmitted
immediately. Otherwise, the request is added to the Future receivers list of β.

SendRegReqγ→β(fα→β , γ) ,

{

SendValueβ→γ(fα→β , val) ifFVβ(fα→β) = {val}
Regβ(fα→β , γ,FRβ) if fα→β /∈ dom(FVβ)

3.4.3 Future Computed

When a result is computed, the value is stored in the future value list. Moreover,
if there are pending requests for the value, then the value is sent to all the
awaiting processes.

FutureComputedβ(fα→β , val) , ∀ δ ∈ FRβ(fα→β)SendValueβ→δ(f
α→β , val)

Clearβ(fα→β ,FRβ); Regβ(fα→β , val,FVβ)

3.4.4 Send Future Value

The SendV alue operation is the same as for the eager message-based strategy:

SendValueβ→γ(fα→β , val) , ∀ loc ∈ FLγ(fα→β) Updateγ(loc, val);
Clearγ(fα→β ,FLγ)

3.5 Cost Analysis of Update Strategies

In this section, we present a simple model for analyzing the cost of updating
futures using different strategies. For the purpose of our analysis, we assume
that futures are forwarded over a simple tree like configuration of activities.
The cost analysis focuses on the time necessary for updates and does not con-
sider the computation time which is too much application dependent. We do
not measure the time necessary to require a result because this measure has
a different meaning for each strategy. Thus, for message-based strategies, we
suppose that, all the registration requests have been received when the result is
computed. Our analysis focuses on a tree T consisting of N activities; depth of
T is D(T). We assume that all nodes have the same degree d. If the degree is
not constant, d is the average degree of the nodes in T , and the cost is approx-
imated. At each node, the maximum number of concurrent updates a process
can perform is given by k (size of thread pool). Additionally, for lazy strategy,
only l processes (nodes) out of N make use of future values. In order to update
future values on various nodes in T , values must be serialized-deserialized at
appropriate nodes. The time spent in serializing-deserializing for one transfer
is denoted by ts, while tf is the time required for transferring the serialized

INRIA

Future update strategies 11

result. Additionally, tr is the time for registering a process as a future recipient
(for the lazy strategy). Using these notations, we aim to approximate: a) the
total number of messages needed to update a future, b) The total time needed
to update a given future fα→β at all N processes, c) Tw: the time for a given
node/process γ to receive a result.

The following table presents a summary of the cost evaluation.

Variable Eager forward-based Eager Message-
based

Lazy

Number of mes-
sages

N 2 ∗ N 2 ∗ l

Time to update all
futures

D(T) ∗ (tf + ts) ∗
⌈d/k⌉

⌈N/k⌉ ∗ tf + ts Not Applicable

Time to update a
future at a given
node

tf + ts ≤ Tw ≤
D(γ)∗(tf +ts)∗⌈d/k⌉

tf + ts ≤ Tw ≤
⌈N/k⌉ ∗ tf + ts

ts + tf + tr ≤ Tw ≤
⌈l/k⌉ ∗ tf + ts + tr.

In eager-forward strategy the responsibility of future update is distributed
among all intermediate nodes. This can be a important consideration in envi-
ronments where the bandwidth available is limited. On the other hand, this
implies that future update time is dependent on the number of intermediate
nodes that must be traversed. Each intermediate node requires serialization-
deserialization. As can be observed from the model, the value of ts plays a
important role. In case of huge data sizes, tf can become significantly large.

In message-based strategy the responsibility to update the future values is
centralized at computing node. This can potentially over-load the process and
available bandwidth. On the other hand, all updates are carried out by a single
process, thus results need to be serialized only once if group communication
mechanisms are employed. Also, the update time is independent from the lo-
cation of the node, and all nodes receive future update in a relatively constant
time. This can be an important consideration in scenarios where the ts is rela-
tively large and the depth of the tree is significant.

For lazy strategy, the registration requests can arrive at any time, before or
after future value has been computed. The main drawback of this strategy is
that, since registration is performed only when needed, the access to a future
necessarily waits for one registration request plus the time to update a future.
This introduces additional delay compared to the approximation above, and to
the eager strategies. Lazy strategy can greatly reduce the number of messages
exchanged. This can be a benefit in environments where network charge is an
important consideration, or when future references spread but only a few nodes
need the value. In counterpart, this strategy is costly in memory because future
values must be stored indefinitely at the computing node.

4 Experimental Evaluation

We conducted an experimentation with a real system in order to validate the
cost estimation proposed in the previous section. To this end, we adopted
ProActive version 3.90. ProActive is based on the notion of active objects,
abstracting processes with a unique thread and message queue. We used a
cluster of 11 nodes equipped with Intel(R) Xeon(TM) CPUs at 2.80GHz with
1 GB RAM running Linux kernel 2.6.9. The cluster nodes are connected via

RR n° 7113

12 Khan & Henrio

a Gigabit Ethernet link. To measure the various parameters of interest, we
deployed an application featuring a tree topology where each node is an active
object. For the scope of the analysis, we kept the number of nodes making
strict operations constant. In addition, only the leaf nodes of the tree make use
of future values. It should be noted that we have implemented the message-
based approaches using java RMI, instead of a multicast api; this affects the
performance of message-based and lazy strategy.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7

T
im

e
 (

M
s
)

Height

Tree Height = 1-7
 Future = 20MB, Nodes = 31

Eager-Forward Eager-Message Lazy-Message

Figure 3: Comparison of strategies for a tree configuration

The graph in Figure 3 compares the time needed to update futures for the
evaluated strategies. Experiments are realized over trees of varying heights.
Lazy strategy takes less time to update the futures since much less updates
have to be made than for the two eager strategies. As expressed in Section 3.5
the experience shows that update time required for lazy and eager message-
based strategies is roughly independent of the height of the tree. Eager-forward
based strategy can take advantage of concurrent updates. On the other hand,
it also gets more time to reach the bottom of high trees as shown by the shape
of the graph. As the height of the tree increases, overheads increases due to
time spent at intermediate nodes. As a result, at height 7, the time needed for
updates is higher. Note that for height 1, both eager strategies perform in a
similar way because in that case both algorithms are roughly identical.

Figure 4 shows the time necessary to update a future along a simple chain
of processes. Time taken by the lazy strategy is again constant and is very
small because only one update is made (for the leaf node). It can be easily
observed from the graph that forward-based and message-based strategies scale
in a linear manner. There is no parallelization of the updates, neither for the
forward-based strategy, nor for the message-based (as it is implemented in a
single threaded manner). Future updates in eager forward-based strategy go
through a number of intermediate steps before arriving at the last node in
the chain. This introduces and additional delay for forward-based strategy. In
message-based strategies, all updates are performed by same node in single step.
Thus the update time is relatively constant.

INRIA

Future update strategies 13

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20 25 30

T
im

e
(M

s)

Height

Pipe of length 1-30
 Future = 20 MB

Lazy-Message Eager-Message Eager-Forward

Figure 4: Comparison of strategies for a pipe configuration

5 Conclusion

This report presented a study of the three main strategies for updating first class
futures. We build upon the work presented in [3, 11] to model and evaluate each
of the protocols, along with experimental results. Our main contributions are:

Semi-formal event-like notation. We present and use a general (language
independent) notation for modeling future update strategies. Consequently,
other frameworks involving first class futures can directly benefit from our work.

Cost analysis of the strategies. For better understanding of the strategies
and the relative costs (in terms of number of messages and time) involved, we
present a simplified cost analysis of the protocols. This helps in understanding
which strategy is more suitable for a given application.

Experimental results. We implemented the different strategies in the ProAc-
tive middleware and experimentally verified the results of our analysis.

We hope this article will help answering to the non-trivial question: “Which
is the best future update strategy”? There is no single best strategy, rather the
strategy should be adopted based on the application requirements, to summa-
rize:

• Eager forward-based strategy is more suitable for scenarios where the num-
ber of intermediate nodes is relatively small and the future value is not too
big. Also, the distributed nature of future updates results in less overloading
at any specific node.

• Eager message-based strategy is more adapted for process chains since it
ensures that all updates are made in relatively constant time. Due to its
centralized nature, it may require more bandwidth and resources at the
process that computes the future.

• Lazy strategy is better suited for cases where the number of processes that
require future value is significantly less than total number of processes.
Considerable savings in network load can be achieved but this has to be
balanced against the additional delay inherent in the design of lazy ap-
proach. Also, all computed results have to be stored which requires more
memory resources.

RR n° 7113

14 Khan & Henrio

References

[1] D. Caromel, C. Delbé, A. di Costanzo, and M. Leyton. ProActive: an integrated
platform for programming and running applications on grids and P2P systems.
Computational Methods in Science and Technology, 12(1):69–77, 2006.

[2] D. Caromel, L. Henrio, and B. Serpette. Asynchronous and deterministic objects.
In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 123–134. ACM Press, 2004.

[3] Denis Caromel and Ludovic Henrio. A Theory of Distributed Object. Springer-
Verlag, 2005.

[4] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to
the future. In ESOP, pages 316–330, 2007.

[5] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt, and Wolf-
gang De Meuter. Ambient-oriented programming in ambienttalk. In Dave
Thomas, editor, ECOOP, volume 4067 of Lecture Notes in Computer Science,
pages 230–254. Springer, 2006.

[6] Cormac Flanagan and Matthias Felleisen. The semantics of future and an appli-
cation. Journal of Functional Programming, 9(1):1–31, 1999.

[7] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic compu-
tation. ACM Transactions on Programming Languages and Systems (TOPLAS),
7(4):501–538, 1985.

[8] Einar Broch Johnsen and Olaf Owe. An asynchronous communication model
for distributed concurrent objects. In SEFM ’04: Proceedings of the Software
Engineering and Formal Methods, pages 188–197, Washington, DC, USA, 2004.
IEEE Computer Society.

[9] Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: a type-safe
object-oriented model for distributed concurrent systems. Theor. Comput. Sci.,
365(1):23–66, 2006.

[10] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda
calculus with futures. Theoretical Computer Science, 364(3):338–356, November
2006.

[11] Nadia Ranaldo and Eugenio Zimeo. Analysis of different future objects update
strategies in proactive. In IPDPS 2007: Parallel and Distributed Processing Sym-
posium, IEEE International, pages 23–66, 2007.

[12] Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. Abcl/f: A future-
based polymorphic typed concurrent object-oriented language - its design and
implementation. In DIMACS ’94, volume 18, 1994.

[13] G. Tretola and E. Zimeo. Extending semantics of web services to support asyn-
chronous invocation and continuation. In Proceedings of the IEEE International
Conference on Web Services (ICWS), pages 208–215, 2007.

[14] G. Tretola and E. Zimeo. Activity pre-scheduling for run-time optimisation of
grid workflows. Journal of Systems Architecture, 54(9), 2008.

[15] Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures for java.
SIGPLAN Not., 40(10):439–453, 2005.

[16] Akinori Yonezawa, Etsuya Shibayama, Toshihiro Takada, and Yasuaki Honda.
Modelling and programming in an object-oriented concurrent language ABCL/1.
In A. Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent Program-
ming. MIT Press, 1987.

INRIA

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Related works
	Modeling Different Future Update Strategies
	General Notation
	Operations
	Events

	Eager Forward-Based Strategy
	Send Future Reference
	Future Computed
	Send Future Value

	Eager Message-based Strategy
	Send Future Reference
	Future Computed
	Send Future Value

	Lazy Message-based Strategy
	Send future reference
	Wait-by necessity
	Future Computed
	Send Future Value

	Cost Analysis of Update Strategies

	Experimental Evaluation
	Conclusion

