
SimGrid: a Generic Framework for
Large-Scale Distributed Experiments

Martin Quinson (LORIA–Nancy University, France)
Arnaud Legrand (CNRS, Grenoble University, France)

Frédéric Suter (CNRS, IN2P3, Lyon, France)
Henri Casanova (Hawai’i University at Manoa, USA)

ANR 08 SEGI 022

Introduction

Context: Research on Large-Scale Distributed Systems
I Systems already in use, even if not fully understood
I Researchers need to assess and compare solutions (algorithms, applications, etc.)

Experimental Methodologies
I Analytical Work difficult without unrealistic assumptions
I Real-world Experiments

, Probably less experimental bias; / Time/labor consuming; Reproducibility?

I Simulation/Emulation
, Fast, Easy, Unlimited, Repeatable; / Validation?

Requirement on Experimental Methodology (what do we want)
I Standard methodologies and tools: Grad students learn them to be operational
I Incremental knowledge: Read a paper, Reproduce its results, Improve.
I Reproducible results: Compare easily experimental scenarios (work reviewing)

Current practices in the field (what do we have)
I Very little common methodologies and tools; many home-brewed tools
I Experimental settings rarely detailed enough in literature

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 2/18

Introduction

Context: Research on Large-Scale Distributed Systems
I Systems already in use, even if not fully understood
I Researchers need to assess and compare solutions (algorithms, applications, etc.)

Experimental Methodologies
I Analytical Work difficult without unrealistic assumptions
I Real-world Experiments

, Probably less experimental bias; / Time/labor consuming; Reproducibility?

I Simulation/Emulation
, Fast, Easy, Unlimited, Repeatable; / Validation?

Requirement on Experimental Methodology (what do we want)
I Standard methodologies and tools: Grad students learn them to be operational
I Incremental knowledge: Read a paper, Reproduce its results, Improve.
I Reproducible results: Compare easily experimental scenarios (work reviewing)

Current practices in the field (what do we have)
I Very little common methodologies and tools; many home-brewed tools
I Experimental settings rarely detailed enough in literature

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 2/18

The SimGrid Project (Hawai’i, Grenoble, Nancy)

History

I Created just like other home-made simulators (only a bit earlier ;) for HPC

I Original goal: scheduling research ; need for speed (users do parameter sweep)

I HPC quality criteria: makespan ; accuracy not negligible

SimGrid in a Nutshell

I SimGrid is 10 years old: we explored several architectures, models, etc

I Many genericity hooks: modular, multi-api, multi-model ; multi-community?

G
R
E
:

G
R

A
S

 in
 s

itu
SURF

SimIX

SMURF

SMPI GRAS
MSGSimDag

XBT

”POSIX-like” API on a virtual platform

SimIX network proxy

virtual platform simulator

I Current work: pushing the scalability limits

I Some people study Desktop Grids with it

I We think it could be used in P2P too

Let’s try to convince you of that

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 3/18

Agenda

Introduction

SimGrid Overview

Simulation Models

Accuracy Assessment

Scalability Assessment

Conclusion

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 4/18

User-visible SimGrid Components

GRAS
Framework
to develop

distributed applications

MSG

Simple application-

level simulator

SimDag

Framework for

DAGs of parallel tasks

XBT: Grounding features (logging, etc.), usual data structures (lists, sets, etc.) and portability layer

toolbox

AMOK

applications on top of

a virtual environment

Library to run MPI
SMPI

SimGrid user APIs
I Specialized APIs: Designed for a specific community, genericity not a goal

I SimDag: model applications as DAG of (parallel) tasks
I SMPI: simulate MPI codes

I Generic APIs: allow to express Concurrent Sequential Processes (CSP)
I MSG: study heuristics, get quickly some performance evaluation charts
I GRAS: develop real applications, studied and debugged in simulator

I (+XBT: grounding toolbox easing C coding)

Argh, you really expect me to code in C?!

I Java bindings to MSG exist, other are planed (Python, C++, SimDag)

I Some bad sides of C avoided: feature-rich toolbox w/o dependency, portable

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 5/18

SimGrid Usage Workflow: the MSG example (1/2)

1. Write the Code of your Agents

int master(int argc, char **argv) {
for (i = 0; i < number_of_tasks; i++) {
t=MSG_task_create(name,comp_size,comm_size,data);
sprintf(mailbox,"worker-%d",i % workers_count);
MSG_task_send(t, mailbox);

}

int worker(int ,char**){
sprintf(my_mailbox,"worker-%d",my_id);
while(1) {

MSG_task_receive(&task, my_mailbox);
MSG_task_execute(task);
MSG_task_destroy(task);

}

2. Describe your Experiment

XML Platform File
<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">
<host name="host1" power="1E8"/>
<host name="host2" power="1E8"/>
...
<link name="link1" bandwidth="1E6"

latency="1E-2" />
...
<route src="host1" dst="host2">

<link:ctn id="link1"/>
</route>
</platform>

XML Deployment File

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">
<!-- The master process -->
<process host="host1" function="master">
<argument value="10"/><!--argv[1]:#tasks-->
<argument value="1"/><!--argv[2]:#workers-->

</process>

<!-- The workers -->
<process host="host2" function="worker">

<argument value="0"/></process>
</platform>

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 6/18

SimGrid Usage Workflow: the MSG example (2/2)

3. Glue things together

int main(int argc, char *argv[]) {
/* Bind agents’ name to their function */
MSG_function_register("master", &master);
MSG_function_register("worker", &worker);

MSG_create_environment("my_platform.xml"); /* Load a platform instance */
MSG_launch_application("my_deployment.xml"); /* Load a deployment file */

MSG_main(); /* Launch the simulation */

INFO1("Simulation took %g seconds",MSG_get_clock());
}

4. Compile your code (linked against -lsimgrid), run it and enjoy

Executive summary, but representative
I Similar in others interfaces, but:

I glue is generated by a script in GRAS and automatic in Java with introspection
I in SimDag, no deployment file since no CSP

I Platform can contain trace informations, Higher level tags and Arbitrary data
I In MSG, applicative workload can also be externalized to a trace file

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 7/18

Agenda

Introduction

SimGrid Overview

Simulation Models

Accuracy Assessment

Scalability Assessment

Conclusion

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 8/18

Under the Hood: Simulation Models

Modeling CPU
I Resource delivers pow flop / sec; task require size flop ⇒ lasts size

pow sec
I Simple (simplistic?) but more accurate become quickly intractable

Modeling Single-Hop Networks
I Simplistic: T = λ+ size

β ; Better: use β′ = min(β, Wmax

RTT) (TCP windowing)

Modeling Multi-Hop Networks
I Simplistic Models: Store & Forward or Wormhole

S

l1

l3

l2 pi ,j

MTU

S

l1

l3

l2

, Easy to implement; / Not realistic (TCP Congestion omitted)

I NS2 and other packet-level study the path of each and every network packet
, Realism commonly accepted; / Sloooooow

I Fluid Models: Data streams ≈ fluids in pipes flow L

link L

flow 2flow 1

flow 0
link 1 link 2

, Fast, Rather well studied; / Resource sharing; Would you trust that?

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 9/18

Under the Hood: Simulation Models

Modeling CPU
I Resource delivers pow flop / sec; task require size flop ⇒ lasts size

pow sec
I Simple (simplistic?) but more accurate become quickly intractable

Modeling Single-Hop Networks
I Simplistic: T = λ+ size

β ; Better: use β′ = min(β, Wmax

RTT) (TCP windowing)

Modeling Multi-Hop Networks
I Simplistic Models: Store & Forward or Wormhole

S

l1

l3

l2 pi ,j

MTU

S

l1

l3

l2

, Easy to implement; / Not realistic (TCP Congestion omitted)

I NS2 and other packet-level study the path of each and every network packet
, Realism commonly accepted; / Sloooooow

I Fluid Models: Data streams ≈ fluids in pipes flow L

link L

flow 2flow 1

flow 0
link 1 link 2

, Fast, Rather well studied; / Resource sharing; Would you trust that?

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 9/18

Under the Hood: Simulation Models

Modeling CPU
I Resource delivers pow flop / sec; task require size flop ⇒ lasts size

pow sec
I Simple (simplistic?) but more accurate become quickly intractable

Modeling Single-Hop Networks
I Simplistic: T = λ+ size

β ; Better: use β′ = min(β, Wmax

RTT) (TCP windowing)

Modeling Multi-Hop Networks
I Simplistic Models: Store & Forward or Wormhole

S

l1

l3

l2 pi ,j

MTU

S

l1

l3

l2

, Easy to implement; / Not realistic (TCP Congestion omitted)
I NS2 and other packet-level study the path of each and every network packet

, Realism commonly accepted; / Sloooooow

I Fluid Models: Data streams ≈ fluids in pipes flow L

link L

flow 2flow 1

flow 0
link 1 link 2

, Fast, Rather well studied; / Resource sharing; Would you trust that?

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 9/18

Under the Hood: Simulation Models

Modeling CPU
I Resource delivers pow flop / sec; task require size flop ⇒ lasts size

pow sec
I Simple (simplistic?) but more accurate become quickly intractable

Modeling Single-Hop Networks
I Simplistic: T = λ+ size

β ; Better: use β′ = min(β, Wmax

RTT) (TCP windowing)

Modeling Multi-Hop Networks
I Simplistic Models: Store & Forward or Wormhole

S

l1

l3

l2 pi ,j

MTU

S

l1

l3

l2

, Easy to implement; / Not realistic (TCP Congestion omitted)
I NS2 and other packet-level study the path of each and every network packet

, Realism commonly accepted; / Sloooooow

I Fluid Models: Data streams ≈ fluids in pipes flow L

link L

flow 2flow 1

flow 0
link 1 link 2

, Fast, Rather well studied; / Resource sharing; Would you trust that?

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 9/18

Agenda

Introduction

SimGrid Overview

Simulation Models

Accuracy Assessment

Scalability Assessment

Conclusion

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 10/18

Validation experiments on a single link
Experimental settings
TCP

source

TCP

sink

Link

1 flow

I Compute achieved bandwidth as function of S
I Fixed L=10ms and B=100MB/s

Evaluation Results

NS2

GTNets

0.001 0.01 0.1 1 10 100 1000

0

300

200

100

900

400

500

600

700

800

Data size (MB)

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

SSFNet (0.01)

SSFNet (0.2)

Old SimGrid

Data size (MB)

 0

 0.5

 1

 1.5

 2

 0.001 0.01 0.1 1 10 100 1000

|ε
|

I Packet-level tools don’t completely agree
I SSFNet TCP FAST INTERVAL bad default
I GTNetS is equally distant from others

I Old SimGrid model omitted slow start effects

⇒ Statistical analysis of GTNetS slow-start
; Better instantiation of MaxMin model

β′′ ; .92× β′; λ ; 10.4× λ

I Resulting validity range quite acceptable

S |ε| |εmax |
S < 100KB ≈ 12% ≈ 162%
S > 100KB ≈ 1% ≈ 6%

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 11/18

Validation experiments on a single link
Experimental settings
TCP

source

TCP

sink

Link

1 flow

I Compute achieved bandwidth as function of S
I Fixed L=10ms and B=100MB/s

Evaluation Results

NS2

GTNets

0.001 0.01 0.1 1 10 100 1000

0

300

200

100

900

400

500

600

700

800

Data size (MB)

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

SSFNet (0.01)

SSFNet (0.2)

Old SimGrid
New SimGrid

Data size (MB)

 0

 0.5

 1

 1.5

 2

 0.001 0.01 0.1 1 10 100 1000

|ε
|

I Packet-level tools don’t completely agree
I SSFNet TCP FAST INTERVAL bad default
I GTNetS is equally distant from others

I Old SimGrid model omitted slow start effects
⇒ Statistical analysis of GTNetS slow-start
; Better instantiation of MaxMin model

β′′ ; .92× β′; λ ; 10.4× λ

I Resulting validity range quite acceptable

S |ε| |εmax |
S < 100KB ≈ 12% ≈ 162%
S > 100KB ≈ 1% ≈ 6%

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 11/18

Validation experiments on random platforms

I 160 Platforms (generator: BRITE)

I β ∈ [10,128] MB/s; λ ∈ [0; 5] ms

I Flow size: S=10MB

I #flows: 150; #nodes ∈ [50; 200]

I |ε| < 0.2 (i.e., ≈ 22%);
|εmax | still challenging up to 461%

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Experiment

 0

 0.5

 1

 1.5

 2

Mean Error (|ε|)
Max Error (|εmax |)

Maybe the error is not SimGrid’s

I Big error because GTNetS multi-phased

I Seen the same in NS3, emulation, ...

I Phase Effect: Periodic and deterministic
traffic may resonate [Floyd&Jacobson 91]

I Impossible in Internet (thx random noise)

**

*

**

*

*

*

**

**

*

*

*

*
*

**

*

**

*

*

*

*

*

**

*

**

*
*

**

*

*

*

*

**

*

*

*

*
*

*

*

*

**

*

**

*

*

**

*

**

*

*

*

*

**

*

*

**

**

*

*

**

**

*

*

*
*
*

*
*

*

**

*

*

**

*

*

**

*

*

*

*

**

*

*

*

*
**

*

**

*

**

*

**

**

*

**

*

**

*
*

round trip time ratio

N
o

d
e
 1

 t
h

ro
u

g
h

p
u

t
(%

)

1.0 1.2 1.4 1.6 1.8 2.0

0
2
0

4
0

6
0

8
0

1
0
0

; We’re adding random jitter to continue SimGrid validation

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 12/18

Validation experiments on random platforms

I 160 Platforms (generator: BRITE)

I β ∈ [10,128] MB/s; λ ∈ [0; 5] ms

I Flow size: S=10MB

I #flows: 150; #nodes ∈ [50; 200]

I |ε| < 0.2 (i.e., ≈ 22%);
|εmax | still challenging up to 461%

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Experiment

 0

 0.5

 1

 1.5

 2

Mean Error (|ε|)
Max Error (|εmax |)

Maybe the error is not SimGrid’s

I Big error because GTNetS multi-phased

I Seen the same in NS3, emulation, ...

I Phase Effect: Periodic and deterministic
traffic may resonate [Floyd&Jacobson 91]

I Impossible in Internet (thx random noise)

**

*

**

*

*

*

**

**

*

*

*

*
*

**

*

**

*

*

*

*

*

**

*

**

*
*

**

*

*

*

*

**

*

*

*

*
*

*

*

*

**

*

**

*

*

**

*

**

*

*

*

*

**

*

*

**

**

*

*

**

**

*

*

*
*
*

*
*

*

**

*

*

**

*

*

**

*

*

*

*

**

*

*

*

*
**

*

**

*

**

*

**

**

*

**

*

**

*
*

round trip time ratio

N
o

d
e
 1

 t
h

ro
u

g
h

p
u

t
(%

)

1.0 1.2 1.4 1.6 1.8 2.0

0
2
0

4
0

6
0

8
0

1
0
0

; We’re adding random jitter to continue SimGrid validation

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 12/18

So, what is the model used in SimGrid?

“--cfg=network model” command line argument

I CM02, LV08 ; MaxMin fairness (give a fair share to everyone)

I Vegas ; Vegas TCP fairness (Lagrangian approach)

I Reno ; Reno TCP fairness (Lagrangian approach)

I By default: LV08

I Example: ./my simulator --cfg=network model:Vegas

CPU sharing policy

I Default MaxMin is sufficient for most cases

I cpu model:ptask L07 ; model specific to parallel tasks

Want more?
I network model:gtnets ; use Georgia Tech Network Simulator for network

Accuracy of a packet-level network simulator without changing your code (!)

I Plug your own model in SimGrid!!

I Other models are currently cooking (constant time, last-mile, etc.)

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 13/18

Agenda

Introduction

SimGrid Overview

Simulation Models

Accuracy Assessment

Scalability Assessment

Conclusion

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 14/18

Simulation speed

200-nodes/200-flows network sending 1MB each
GTNetS SimGrid

of flows Simulation time simulation
simulated

Simulation time simulation
simulated

10 0.661s 0.856 0.002s 0.002

100 7.649s 7.468 0.137s 0.140

200 15.705s 11.515 0.536s 0.396

200-nodes/200-flows network sending 100MB each
GTNetS SimGrid

of flows Simulation time simulation
simulated

Simulation time simulation
simulated

10 65s 0.92 0.001s 0.00002

100 753s 8.08 0.138s 0.00142

200 1562s 12.59 0.538s 0.00402

Conclusion
I GTNetS execution time linear in both data size and #flows

I SimGrid only depends on #flows

I (plus, GTNetS clearly outperforms NS2)

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 15/18

Application-Level Benchmarks

Master/Workers on amd64 with 4Gb
#tasks Context #Workers

mecanism 100 500 1,000 5,000 10,000 25,000
1,000 ucontext 0.16 0.19 0.21 0.42 0.74 1.66

pthread 0.15 0.18 0.19 0.35 0.55 ?
java 0.41 0.59 0.94 7.6 27. ?

10,000 ucontext 0.48 0.52 0.54 0.83 1.1 1.97
pthread 0.51 0.56 0.57 0.78 0.95 ?

java 1.6 1.9 2.38 13. 40. ?
100,000 ucontext 3.7 3.8 4.0 4.4 4.5 5.5

pthread 4.7 4.4 4.6 5.0 5.23 ?
java 14. 13. 15. 29. 77. ?

1,000,000 ucontext 36. 37. 38. 41. 40. 41.
pthread 42. 44. 46. 48. 47. ?

java 121. 130. 134. 163. 200. ?

?: #semaphores reached system limit
(2 semaphores per user process,

System limit = 32k semaphores)

I These results are old already
(before the summer ;)

I v3.3.3 is 30% faster

I v3.3.4 ; lazy evaluation

Extensibility with UNIX contextes
#tasks Stack #Workers

size 25,000 50,000 100,000 200,000
1,000 128Kb 1.6 † † †

12Kb 0.5 0.9 1.7 3.2
10,000 128Kb 2 † † †

12Kb 0.8 1.2 2 3.5
100,000 128Kb 5.5 † † †

12Kb 3.7 4.1 4.8 6.7
1,000,000 128Kb 41 † † †

12Kb 33 33.6 33.7 35.5
5,000,000 128Kb 206 † † †

12Kb 161 167 161 165

Scalability limit of GridSim

I 1 user process = 3 java threads
(code, input, output)

I System limit = 32k threads

⇒ at most 10,922 user processes

†: out of memory

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 16/18

Application-Level Benchmarks

Master/Workers on amd64 with 4Gb
#tasks Context #Workers

mecanism 100 500 1,000 5,000 10,000 25,000
1,000 ucontext 0.16 0.19 0.21 0.42 0.74 1.66

pthread 0.15 0.18 0.19 0.35 0.55 ?
java 0.41 0.59 0.94 7.6 27. ?

10,000 ucontext 0.48 0.52 0.54 0.83 1.1 1.97
pthread 0.51 0.56 0.57 0.78 0.95 ?

java 1.6 1.9 2.38 13. 40. ?
100,000 ucontext 3.7 3.8 4.0 4.4 4.5 5.5

pthread 4.7 4.4 4.6 5.0 5.23 ?
java 14. 13. 15. 29. 77. ?

1,000,000 ucontext 36. 37. 38. 41. 40. 41.
pthread 42. 44. 46. 48. 47. ?

java 121. 130. 134. 163. 200. ?

?: #semaphores reached system limit
(2 semaphores per user process,

System limit = 32k semaphores)

I These results are old already
(before the summer ;)

I v3.3.3 is 30% faster

I v3.3.4 ; lazy evaluation

Extensibility with UNIX contextes
#tasks Stack #Workers

size 25,000 50,000 100,000 200,000
1,000 128Kb 1.6 † † †

12Kb 0.5 0.9 1.7 3.2
10,000 128Kb 2 † † †

12Kb 0.8 1.2 2 3.5
100,000 128Kb 5.5 † † †

12Kb 3.7 4.1 4.8 6.7
1,000,000 128Kb 41 † † †

12Kb 33 33.6 33.7 35.5
5,000,000 128Kb 206 † † †

12Kb 161 167 161 165

Scalability limit of GridSim

I 1 user process = 3 java threads
(code, input, output)

I System limit = 32k threads

⇒ at most 10,922 user processes

†: out of memory

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 16/18

Agenda

Introduction

SimGrid Overview

Simulation Models

Accuracy Assessment

Scalability Assessment

Conclusion

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 17/18

Conclusion

SimGrid is not P2P specific
I Initially: HPC community; already used in Desktop Grids

SimGrid could Help your Research anyway
I Provides Interesting Models: fast and shown accurate

I When chasing SimGrid accuracy limits, we found packet-level ones
I 30,000 requests/sec (and counting) in Master/Workers classical example

I Is Generic: multi-models, but also several user interfaces provided
I Is Configurable: Platform, Deployment, Workload and Code not intermixed
I Allows live deployments with GRAS (performance comparable to MPI)
I Enjoys a solid user community: 130 members on -user; grounded >40 papers

SimGrid is not perfect
I Learning curve harder: mainly C even if Java bindings exist
I Few associated tools: No GUI, no visualization, poor statistics (but a generator)
I No stock implementation

It’s a very active research project
I Ultra-Scalable Simulation with SimGrid: 3 years grant (1M$, 7 labs, 25 people)

Plus other smaller grants ongoing or under evaluation
I Big Plans: Model-Checking; Emulation solution (plus usability improvement)

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 18/18

Conclusion

SimGrid is not P2P specific
I Initially: HPC community; already used in Desktop Grids

SimGrid could Help your Research anyway
I Provides Interesting Models: fast and shown accurate

I When chasing SimGrid accuracy limits, we found packet-level ones
I 30,000 requests/sec (and counting) in Master/Workers classical example

I Is Generic: multi-models, but also several user interfaces provided
I Is Configurable: Platform, Deployment, Workload and Code not intermixed
I Allows live deployments with GRAS (performance comparable to MPI)
I Enjoys a solid user community: 130 members on -user; grounded >40 papers

SimGrid is not perfect
I Learning curve harder: mainly C even if Java bindings exist
I Few associated tools: No GUI, no visualization, poor statistics (but a generator)
I No stock implementation

It’s a very active research project
I Ultra-Scalable Simulation with SimGrid: 3 years grant (1M$, 7 labs, 25 people)

Plus other smaller grants ongoing or under evaluation
I Big Plans: Model-Checking; Emulation solution (plus usability improvement)

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 18/18

	Introduction
	SimGrid Overview
	Simulation Models
	Accuracy Assessment
	Scalability Assessment
	Conclusion

