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Introduction

Context: Research on Large-Scale Distributed Systems
I Systems already in use, even if not fully understood
I Researchers need to assess and compare solutions (algorithms, applications, etc.)

Experimental Methodologies
I Analytical Work difficult without unrealistic assumptions
I Real-world Experiments

, Probably less experimental bias; / Time/labor consuming; Reproducibility?

I Simulation/Emulation
, Fast, Easy, Unlimited, Repeatable; / Validation?

Requirement on Experimental Methodology (what do we want)
I Standard methodologies and tools: Grad students learn them to be operational
I Incremental knowledge: Read a paper, Reproduce its results, Improve.
I Reproducible results: Compare easily experimental scenarios (work reviewing)

Current practices in the field (what do we have)
I Very little common methodologies and tools; many home-brewed tools
I Experimental settings rarely detailed enough in literature
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The SimGrid Project (Hawai’i, Grenoble, Nancy)

History

I Created just like other home-made simulators (only a bit earlier ;) for HPC

I Original goal: scheduling research ; need for speed (users do parameter sweep)

I HPC quality criteria: makespan ; accuracy not negligible

SimGrid in a Nutshell

I SimGrid is 10 years old: we explored several architectures, models, etc

I Many genericity hooks: modular, multi-api, multi-model ; multi-community?
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”POSIX-like” API on a virtual platform

SimIX network proxy

virtual platform simulator

I Current work: pushing the scalability limits

I Some people study Desktop Grids with it

I We think it could be used in P2P too

Let’s try to convince you of that
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User-visible SimGrid Components

GRAS
Framework
to develop

distributed applications

MSG

Simple application-

level simulator

SimDag

Framework for

DAGs of parallel tasks

XBT: Grounding features (logging, etc.), usual data structures (lists, sets, etc.) and portability layer

toolbox

AMOK

applications on top of

a virtual environment

Library to run MPI
SMPI

SimGrid user APIs
I Specialized APIs: Designed for a specific community, genericity not a goal

I SimDag: model applications as DAG of (parallel) tasks
I SMPI: simulate MPI codes

I Generic APIs: allow to express Concurrent Sequential Processes (CSP)
I MSG: study heuristics, get quickly some performance evaluation charts
I GRAS: develop real applications, studied and debugged in simulator

I (+XBT: grounding toolbox easing C coding)

Argh, you really expect me to code in C?!

I Java bindings to MSG exist, other are planed (Python, C++, SimDag)

I Some bad sides of C avoided: feature-rich toolbox w/o dependency, portable
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SimGrid Usage Workflow: the MSG example (1/2)

1. Write the Code of your Agents

int master(int argc, char **argv) {
for (i = 0; i < number_of_tasks; i++) {
t=MSG_task_create(name,comp_size,comm_size,data );
sprintf(mailbox,"worker-%d",i % workers_count);
MSG_task_send(t, mailbox);

}

int worker(int ,char**){
sprintf(my_mailbox,"worker-%d",my_id);
while(1) {

MSG_task_receive(&task, my_mailbox);
MSG_task_execute(task);
MSG_task_destroy(task);

}

2. Describe your Experiment

XML Platform File
<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">
<host name="host1" power="1E8"/>
<host name="host2" power="1E8"/>
...
<link name="link1" bandwidth="1E6"

latency="1E-2" />
...
<route src="host1" dst="host2">

<link:ctn id="link1"/>
</route>
</platform>

XML Deployment File

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">
<!-- The master process -->
<process host="host1" function="master">
<argument value="10"/><!--argv[1]:#tasks-->
<argument value="1"/><!--argv[2]:#workers-->

</process>

<!-- The workers -->
<process host="host2" function="worker">

<argument value="0"/></process>
</platform>
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SimGrid Usage Workflow: the MSG example (2/2)

3. Glue things together

int main(int argc, char *argv[ ]) {
/* Bind agents’ name to their function */
MSG_function_register("master", &master);
MSG_function_register("worker", &worker);

MSG_create_environment("my_platform.xml"); /* Load a platform instance */
MSG_launch_application("my_deployment.xml"); /* Load a deployment file */

MSG_main(); /* Launch the simulation */

INFO1("Simulation took %g seconds",MSG_get_clock());
}

4. Compile your code (linked against -lsimgrid), run it and enjoy

Executive summary, but representative
I Similar in others interfaces, but:

I glue is generated by a script in GRAS and automatic in Java with introspection
I in SimDag, no deployment file since no CSP

I Platform can contain trace informations, Higher level tags and Arbitrary data
I In MSG, applicative workload can also be externalized to a trace file

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 7/18



Agenda

Introduction

SimGrid Overview

Simulation Models

Accuracy Assessment

Scalability Assessment

Conclusion

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 8/18



Under the Hood: Simulation Models

Modeling CPU
I Resource delivers pow flop / sec; task require size flop ⇒ lasts size

pow sec
I Simple (simplistic?) but more accurate become quickly intractable

Modeling Single-Hop Networks
I Simplistic: T = λ+ size

β ; Better: use β′ = min(β, Wmax

RTT ) (TCP windowing)

Modeling Multi-Hop Networks
I Simplistic Models: Store & Forward or Wormhole

S

l1

l3

l2 pi ,j

MTU

S

l1

l3

l2

, Easy to implement; / Not realistic (TCP Congestion omitted)

I NS2 and other packet-level study the path of each and every network packet
, Realism commonly accepted; / Sloooooow

I Fluid Models: Data streams ≈ fluids in pipes flow L

link L

flow 2flow 1

flow 0
link 1 link 2

, Fast, Rather well studied; / Resource sharing; Would you trust that?
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Validation experiments on a single link
Experimental settings
TCP

source

TCP

sink

Link

1 flow

I Compute achieved bandwidth as function of S
I Fixed L=10ms and B=100MB/s

Evaluation Results

NS2

GTNets
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I Packet-level tools don’t completely agree
I SSFNet TCP FAST INTERVAL bad default
I GTNetS is equally distant from others

I Old SimGrid model omitted slow start effects

⇒ Statistical analysis of GTNetS slow-start
; Better instantiation of MaxMin model

β′′ ; .92× β′; λ ; 10.4× λ

I Resulting validity range quite acceptable

S |ε| |εmax |
S < 100KB ≈ 12% ≈ 162%
S > 100KB ≈ 1% ≈ 6%
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Validation experiments on random platforms

I 160 Platforms (generator: BRITE)

I β ∈ [10,128] MB/s; λ ∈ [0; 5] ms

I Flow size: S=10MB

I #flows: 150; #nodes ∈ [50; 200]

I |ε| < 0.2 (i.e., ≈ 22%);
|εmax | still challenging up to 461%

 10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160

Experiment
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Max Error (|εmax |)

Maybe the error is not SimGrid’s

I Big error because GTNetS multi-phased

I Seen the same in NS3, emulation, ...

I Phase Effect: Periodic and deterministic
traffic may resonate [Floyd&Jacobson 91]

I Impossible in Internet (thx random noise)
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; We’re adding random jitter to continue SimGrid validation
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So, what is the model used in SimGrid?

“--cfg=network model” command line argument

I CM02, LV08 ; MaxMin fairness (give a fair share to everyone)

I Vegas ; Vegas TCP fairness (Lagrangian approach)

I Reno ; Reno TCP fairness (Lagrangian approach)

I By default: LV08

I Example: ./my simulator --cfg=network model:Vegas

CPU sharing policy

I Default MaxMin is sufficient for most cases

I cpu model:ptask L07 ; model specific to parallel tasks

Want more?
I network model:gtnets ; use Georgia Tech Network Simulator for network

Accuracy of a packet-level network simulator without changing your code (!)

I Plug your own model in SimGrid!!

I Other models are currently cooking (constant time, last-mile, etc.)
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Simulation speed

200-nodes/200-flows network sending 1MB each
GTNetS SimGrid

# of flows Simulation time simulation
simulated

Simulation time simulation
simulated

10 0.661s 0.856 0.002s 0.002

100 7.649s 7.468 0.137s 0.140

200 15.705s 11.515 0.536s 0.396

200-nodes/200-flows network sending 100MB each
GTNetS SimGrid

# of flows Simulation time simulation
simulated

Simulation time simulation
simulated

10 65s 0.92 0.001s 0.00002

100 753s 8.08 0.138s 0.00142

200 1562s 12.59 0.538s 0.00402

Conclusion
I GTNetS execution time linear in both data size and #flows

I SimGrid only depends on #flows

I (plus, GTNetS clearly outperforms NS2)

a Generic Framework for Large-Scale Distributed Experiments ANR 08 SEGI 022 15/18



Application-Level Benchmarks

Master/Workers on amd64 with 4Gb
#tasks Context #Workers

mecanism 100 500 1,000 5,000 10,000 25,000
1,000 ucontext 0.16 0.19 0.21 0.42 0.74 1.66

pthread 0.15 0.18 0.19 0.35 0.55 ?
java 0.41 0.59 0.94 7.6 27. ?

10,000 ucontext 0.48 0.52 0.54 0.83 1.1 1.97
pthread 0.51 0.56 0.57 0.78 0.95 ?

java 1.6 1.9 2.38 13. 40. ?
100,000 ucontext 3.7 3.8 4.0 4.4 4.5 5.5

pthread 4.7 4.4 4.6 5.0 5.23 ?
java 14. 13. 15. 29. 77. ?

1,000,000 ucontext 36. 37. 38. 41. 40. 41.
pthread 42. 44. 46. 48. 47. ?

java 121. 130. 134. 163. 200. ?

?: #semaphores reached system limit
(2 semaphores per user process,

System limit = 32k semaphores)

I These results are old already
(before the summer ;)

I v3.3.3 is 30% faster

I v3.3.4 ; lazy evaluation

Extensibility with UNIX contextes
#tasks Stack #Workers

size 25,000 50,000 100,000 200,000
1,000 128Kb 1.6 † † †

12Kb 0.5 0.9 1.7 3.2
10,000 128Kb 2 † † †

12Kb 0.8 1.2 2 3.5
100,000 128Kb 5.5 † † †

12Kb 3.7 4.1 4.8 6.7
1,000,000 128Kb 41 † † †

12Kb 33 33.6 33.7 35.5
5,000,000 128Kb 206 † † †

12Kb 161 167 161 165

Scalability limit of GridSim

I 1 user process = 3 java threads
(code, input, output)

I System limit = 32k threads

⇒ at most 10,922 user processes

†: out of memory
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Conclusion

SimGrid is not P2P specific
I Initially: HPC community; already used in Desktop Grids

SimGrid could Help your Research anyway
I Provides Interesting Models: fast and shown accurate

I When chasing SimGrid accuracy limits, we found packet-level ones
I 30,000 requests/sec (and counting) in Master/Workers classical example

I Is Generic: multi-models, but also several user interfaces provided
I Is Configurable: Platform, Deployment, Workload and Code not intermixed
I Allows live deployments with GRAS (performance comparable to MPI)
I Enjoys a solid user community: 130 members on -user; grounded >40 papers

SimGrid is not perfect
I Learning curve harder: mainly C even if Java bindings exist
I Few associated tools: No GUI, no visualization, poor statistics (but a generator)
I No stock implementation

It’s a very active research project
I Ultra-Scalable Simulation with SimGrid: 3 years grant (1M$, 7 labs, 25 people)

Plus other smaller grants ongoing or under evaluation
I Big Plans: Model-Checking; Emulation solution (plus usability improvement)
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