
HAL Id: inria-00436053
https://hal.inria.fr/inria-00436053

Submitted on 25 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fast Cache-Oblivious Mesh Layout with Theoretical
Guarantees

Marc Tchiboukdjian, Vincent Danjean, Bruno Raffin

To cite this version:
Marc Tchiboukdjian, Vincent Danjean, Bruno Raffin. A Fast Cache-Oblivious Mesh Layout with
Theoretical Guarantees. International Workshop on Super Visualization (IWSV’08), Jun 2008, Kos,
Greece. �inria-00436053�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50127895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00436053
https://hal.archives-ouvertes.fr

A Fast Cache Oblivious Mesh Layout

with Theoretical Guarantees

Marc Tchiboukdjian ∗

Grenoble Universités
CNRS - CEA/DIF/DSSI

Vincent Danjean †

Grenoble Universités
Bruno Raffin ‡

INRIA

Abstract

One important bottleneck when visualizing large
data sets is the data transfer between processor
and memory. Cache-aware (CA) and cache-
oblivious (CO) algorithms take into consideration
the memory hierarchy to design cache efficient al-
gorithms. CO approaches have the advantage
to adapt to unknown and varying memory hierar-
chies. Recent CA and CO algorithms developed
for 3D mesh layouts significantly improve perfor-
mance of previous approaches. However, these al-
gorithms are based on heuristics. We propose in
this paper a new CO algorithm for meshes that
has both a low theoretical complexity and proven
quality. We guarantee that a coherent traversal of
an O(N)-size mesh in dimension d will induce less
than O(N/B +N/M1/d) cache misses where B and
M are the block size and the cache size. We com-
pare our layout with previous ones on several 3D
meshes.

Keywords: Visualization of large data sets ;
Cache-aware ; Cache-oblivious ; Mesh layouts ;
Heterogeneous platforms.

1 Introduction

As the size of data generated by massively paral-
lel simulations reaches terabyte scale, interactive
scientific visualization, even on clusters, becomes
challenging. One important bottleneck when visu-
alizing large data sets is the data transfer between
processor and memory. This issue tends to worsen

∗Marc.Tchiboukdjian@imag.fr
†Vincent.Danjean@imag.fr
‡Bruno.Raffin@imag.fr

Figure 1: The cache-oblivious memory model

with today multi-core processors where cache and
bandwidth are shared among cores.

Cache-aware (CA) and cache-oblivious (CO) al-
gorithms take into consideration the memory hier-
archy to design cache efficient algorithms. CA al-
gorithms are based on the external-memory (EM)
model [1]. The memory hierarchy consists of two
levels, a main memory of size M called cache and
an infinite size secondary memory called disk. Data
is transferred between these two levels in blocks of
B consecutive elements. The I/O complexity of an
algorithm is Q the number of blocks transfers. The
CO memory model [6] is essentially the EM model
where cache and block sizes are unknown (Fig 1).
CO approaches have the advantage to adapt to
unknown and varying memory hierarchies. This
is well adapted to data visualization applications
that must face complex memory hierarchies: simu-
lation and rendering usually take place on different
machines with different memory hierarchies, and
platforms can be heterogeneous, mixing multi-core
CPUs and GPUs. In this field the most significant
and recent work is probably the CO mesh layout
proposed by Yoon et Al. [18]. Performance is not
theoretically guaranteed, but experiments show a
significant performance improvement compared to
other approaches.

As memory is accessed by blocks on modern com-

1

Figure 2: Good layouts can significantly reduce the
number of block transfers. On the left hand side,
75% of the data must be loaded to access the query
slice (each line corresponds to a cache line), while
the layout used on the right hand side enables to
reduce this amount to only 33% of the data (each
block fits into a cache line).

puters, elements accessed sequentially during com-
putations should be stored nearby in memory to
increase cache performance (Fig. 2). In this arti-
cle we propose a CO data layout for meshes that is
cache efficient for access patterns showing a good
spatial locality. An assumption on the access pat-
tern is mandatory to build an efficient layout: no
layout can provide a performance gain for a random
access pattern.

Given a mesh, we model the access pattern as
a graph where each node represents a data (a ver-
tex, a triangle or a tetrahedron for instance) and
each edge connects data that are likely to be ac-
cessed sequentially. The goal is to compute a mesh
layout, i.e. a permutation of the mesh data, that
minimizes the number of cache misses in the CO
model when we access all the mesh respecting the
spatial locality defined by the graph.

In the general case where there is no restriction
on the graph, the problem is very likely to be NP-
complete. Even deciding if we can have a layout
with less than N/B cache misses is NP-complete
(it is the bandwidth reduction problem).

In this article, we propose an algorithm to com-
pute a CO mesh layout with a proven quality. We
prove that a coherent traversal of a O(N)-size mesh
in dimension d leads to less than O(N/B+N/M1/d)
cache misses in the CO model whatever B, the
block size, and M , the cache size, are. The cost
of running this algorithm on a mesh is also re-
duced (O(N log N)) and the amount of memory al-

located is about the memory size required to store
the mesh.

We tested the algorithm with several 3D meshes.
We visualize the mesh using VTK. Once the mesh
layout is computed, it is stored as a VTK unstruc-
tured mesh. No modification of the VTK visual-
ization pipe-line is required. We compare the per-
formance results with the one obtained using the
original layout and using the layout computed from
the CO algorithm, named OpenCCL, developed by
Yoon et Al. [18]. Both CO layouts significantly
outperform the original layout for unstructured
meshes. The two CO layouts show similar perfor-
mance when visualizing the data, except that our
algorithm computes the layout significantly faster
and with less memory.

Related works are discussed in section 2. The al-
gorithm is presented and analyzed in section 3, be-
fore to introduce experimental results in section 4.

2 Related Work

Cache efficient algorithms and layout for
structured meshes. There is a large body of
work on CA and CO algorithms for regular data
structures, see for example the surveys [15] and [2].
For a focus on scientific visualization and computer
graphics see [14]. The area where we can observe
the biggest improvement over standard (non cache
efficient) counterpart is dense linear algebra. The
basic technique used by BLAS libraries (e.g. for
dense matrix multiplication) is blocking [16]. A
CO alternative to blocking (where cache sizes are
needed) is space filling curves [3]. Layout for reg-
ular meshes uses similar techniques as dense linear
algebra: blocking and space filling curves [12].

Layout for unstructured meshes. The first
work in the area of unstructured meshes is [8] which
assumes a FIFO cache and known cache parame-
ters. [4] extends this work, still requiring a FIFO
cache but without knowing the cache parameters.
[10, 13] give fast greedy algorithms but requires the
cache parameters and policy. [18, 17] do not assume
any particular cache policy and developed both CA
and CO approaches. The 3D mesh layout algo-
rithms of [18, 17] significantly improve performance
of previous approaches. However, these algorithms
are based on heuristics that do not guarantee any

2

bound on the time needed to generate the layout
nor on the quality obtained (number of cache misses
and processing time for rendering). They are both
based on a multi-level optimization scheme which
gives relatively slow algorithms.

3 Cache Oblivious Layout

Our goal is to compute a layout for meshes that
shows a good behavior in the CO memory model.
The access pattern on the mesh data is modeled
by a graph where each vertex represents a data
and each edge connects data that are likely to be
accessed sequentially. Our algorithm require the
graph to be an overlap graph, which is define in
the following. It included most of spatially coherent
access patterns on meshes. For instance an impor-
tant example of overlap graphs is the graph whose
vertices are mesh nodes and edges connect vertices
sharing a face in the mesh.

Starting from the graph of sequential accesses,
we compute the CO layout by recursively splitting
the graph in 2 parts. The layout is obtained by
storing sequentially the leaves resulting from the
recursive graph splitting. The intuitive idea is that
each recursive level corresponds to a block size. The
initial level correspond to a block size able to store
the full graph. The second level corresponds to a
block size able to store half the graph, etc. Thus,
at visualization time, there will always be a level
that will correspond to the actual block sizes of the
machine.

The separator algorithm we use was developed
by [11]. It splits the graph in 2 parts of about the
same size while attempting to minimize the number
of edges cut. We will later see that the number of
edges cut is closely related to the number of cache
misses induced by a mesh traversal. Notice that we
are not limited to 3D meshes. It can apply to any
d-dimensional mesh.

3.1 Overlap graphs

Overlap graphs is the class of graphs embedded in a
fixed dimension that have a small separator, which
is a relatively small subset of edges whose removal
divides the rest of the graph into two disconnected
pieces of approximately equal size. By taking ad-
vantage of the geometric structure, partitioning can

be performed efficiently. Computational meshes are
often composed of elements that are well-shaped in
some sense, such as having bounded aspect ratio or
having angles that are not too small or too large.
Overlap graphs model this kind of geometric con-
straint.

An overlap graph starts with a neighborhood sys-
tem, which is a set of closed balls in R

d that re-
strains how they can intersect.

Definition 1 (Neighborhood system [11])
A neighborhood system in d dimensions is a set
B1, . . . , Bn of closed balls in R

d, such that no point
in R

d is strictly interior to more than one ball.

A neighborhood system and the parameter α de-
fine an overlap graph where there is one vertex per
ball. An edge joins two vertices if expanding the
smaller of their two balls by a factor of α would
make them intersect.

Definition 2 (Overlap graph [11]) Let α ≥ 1
and let B1, . . . , Bn be a neighborhood system. The
α-overlap graph for the neighborhood system is the
graph with vertex set {1, . . . , n} and edge set

{(i, j) | Bi ∩ (α.Bj) 6= ∅ and Bj ∩ (α.Bi) 6= ∅}.

Overlap graphs are good models of computa-
tional meshes because every mesh of bounded
aspect- ratio elements in two or three dimensions is
contained in some overlap graph (for a good choice
of the parameter α) [11].

The separator algorithm we detail in next section
is based on the following theorem:

Theorem 3 (Geometric separator [11]) Let
G be an n-vertex α-overlap graph in d dimensions.
Then the vertices of G can be partitioned into two
sets A and B such that |A|, |B| ≤ d+1

d+2
n and the

number of edges between A and B is O
(

αn1−1/d
)

.
Such a separator can be computed with high
probability by a randomized linear time algorithm.

Such a separator is optimal for this class of
graphs. Indeed we cannot find a smaller separa-
tor for a regular d dimensional grid.

3.2 Geometric separator algorithm

The geometric separator algorithm (Algo. 1) from
[11] starts by randomly sampling a constant num-
ber of points from the input mesh and project them

3

onto the surface of the unit sphere in R
d+1. Then

it finds a centerpoint of this random sample in lin-
ear time relative to the sample size. A point is
a centerpoint if every hyperplane passing through
it divides the sample set approximately evenly, at
most in the ratio d + 1 : 1. With good probabil-
ity, this centerpoint is a centerpoint of the original
set of points [5]. Finally we randomly choose a hy-
perplane through the centerpoint and expect that
it will not cut too many edges and will be a good
separator.

Algorithm 1: Geometric separator algorithm

Input: Mesh M = (Nodes N, Edges E)
Output: A separator φ
repeat nc times1

Ns ← sample of (d + 3)4 points of N2

P ← project Ns to the unit sphere in R
d+1

3

c← centerpoint of P4

(u, r)← rotation and scaling factor to5

move c at the origin
repeat nh times6

n← random normal vector7

φ← separator defined by (u, r,n)8

compute the number of edges cut by φ9

end10

end11

return the best φ12

The execution time is dominated by the qual-
ity evaluation of the separator (Algo. 1 line 8).
Both the time complexity and the I/O complexity
of this quality evaluation are linear in the number
of edges. This is the non coherent accesses of the
nodes through the edges that induce the high I/O
complexity. The remaining steps of the algorithm
only lead to a time complexity linear in nc and
s the sample size and very small I/O complexity
(Q(s) = O(ncs/B)).

The quality evaluation could be improved using a
random sample on the edges or a special data struc-
ture to store the edges taking into account some
geometrical characteristics of the data.

3.3 Layout algorithm

The layout algorithm (Algo. 2) is the recursive ap-
plication of the separator algorithm. It leads to a
complete partition tree.

Algorithm 2: Layout algorithm

Input: Graph G
Output: Permutation of the nodes π
T ← complete partition tree of the graph G1

π ← left to right order of the leaves of T2

return π3

Definition 4 (Partition tree) The m-partition
tree T of a graph G is a binary tree with G at the
root and the children of a node H are the subgraphs
H0 and H1 obtained by separating H using the sep-
arator algorithm. We apply this recursive scheme
until each leaf contains less than m nodes. A com-
plete partition tree is a partition tree with 1-node
leaves.

Its complexity directly derives from the recursive
calls of the separator algorithm.

Theorem 5 (Layout computation) The num-
ber of computational steps of the layout algorithm
is W (n) = O (n log n).

Proof. The separator algorithm 1 has linear com-
plexity. Splitting a subgraph decreases the size of
its children by at least a factor d+1

d+2
. Thus the com-

plete partition tree has depth O(log n) and the over-
all complexity is O (n log n).

Different data structures can be used to store the
data when computing the layout. The only require-
ment to obtain the claimed complexity is to have a
node sampler of linear complexity and an iterator
on edges of linear complexity too. The approach we
adopt in this paper uses two arrays: one for the ver-
tex coordinates and one for unordered edges (pair
of vertex indices). We partition the nodes and the
edges according to the computed separator. Nodes
at the left of the separator are moved at the left of
the array and nodes at the right of the separator
are moved to the right of the array. For edges we
use a 3-way quicksort approach. Inner edges of H0

are stored at the left, inner edges of H1 at the right
and cut edges between H0 and H1 in the middle.

3.4 Layout quality

Before analyzing the number of block transfers re-
lated to our layout, we define the cut, inner and
outer edges of a partition tree (Fig. 3).

4

Figure 3: Cut edges of T and outer edges of H2.

Definition 6 (Cut edge) In a partition tree T , a
cut edge of a non-leaf subgraph H is an edge with
one endpoint in each of the children of H.

Definition 7 (Inner and outer edges) In a
partition tree T , an inner (resp. outer) edge of G
is an edge whose endpoints are in the same leaf
subgraph (resp. different leaf subgraphs).

We then compute an upper bound for the number
of outer edges. These edges are related to the cache
misses induced by a graph traversal.

Lemma 8 (Number of outer edges) Let T a
m-partition tree of an n-node graph. Then the total
number of outer edges is O

(

n
m1/d

)

.

Proof. The number of outer edges in T is equal to
the sum of all cut edges for all non-leaf subgraphs
of T . Let K(r) be the maximum number of cut
edges in a subtree T ′ of T rooted at a subgraph of
size r. If r ≤ m then T ′ is just a leaf and K(r) = 0.
If r ≥ m we count the cut edges of the left and right
children and the cut edges of the root of T ′:

K(r) ≤ max
1/2≤λ≤δ

[K(λr) + K((1− λ)r)] + cr1−1/d

By induction, we can prove that

K(r) ≤ c′
(r

m1/d
− r1−1/d

)

as long as

c′ ≥
c

21/d − 1
Moreover the number of outer edges is less than
K(n). Thus we obtain the claimed bound.

We now can compute the number of block trans-
fers.

Theorem 9 (Layout quality) The cache-
oblivious layout of section 3.3 guarantees
that a traversal of the graph induces less than
O(n/B + n/M1/d) block transfers.

Proof. Let T the complete partition tree of
G computed in algorithm 2. Let T ′ ⊂ T the
M -partition tree of G and H1, . . . ,Hk its leaves.
H1, . . . ,Hk is a partition of G that is stored sequen-
tially in memory. A traversal of G is a traversal of
each of the Hi. As the size |Hi| of one Hi is less
than M , we can store it completely in cache for a
cost of O(|Hi|/B) and a traversal of the inner edges
of Hi does not cause any additional block transfer.
Only outer edges cause additional block transfers
of 1 per edge. From lemma 8, the number of outer
edges of T ′ is O(n/M1/d). Thus the total number
of block transfers needed to traverse all the graph
is

k
∑

i

O

(

|Hi|

B

)

+ O
(n

M1/d

)

.

As
∑k

i |Hi| = n, we get

Q(n) = O
(n

B
+

n

M1/d

)

which complete the proof.

At this point we cannot directly compare this
algorithm with OpenCCL. OpenCCL is based on
a meta-heuristic and no upper bound on the
quality of the resulting layout is given nor a β-
approximation.

4 Experiments

In this section we detail experiments run with 3
different 3D meshes: a structured mesh, an AMR
mesh and an unstructured one (Table 1). For each
of these meshes we compare the performance re-
sults of the original layout (as provided), the layout
computed by the OpenCCL algorithm of Yoon et
Al. [18], and our layout.

Experiments ran on 8 processor PC equiped
with opteron 875 dual-core processors running at
2,2Ghz. Only one core was used. Each core as its
own L1 and L2 caches: a 2-way associative L1 cache
of 64K and a 16-way associative L2 cache of 1024K,
both caches using lines of 64 bytes.

5

Mesh Points Cells Mesh type
Plasma 274k 1,310k tetra structured
Reactor 84k 78k hexa AMR
Skull 37k 156k tetra unstructured

Table 1: Characteristics of the 3 meshes tested.

Our layout OpenCCL
Mesh time mem time mem

Plasma 107.4 124 282.4 6843
Reactor 8.8 15 27.6 458
Skull 10.6 16 26.9 814

Table 2: Time (in seconds) and maximal memory
(in MB) for the layout computation.

We first focus on the computation of the layout
and compare our algorithm with OpenCCL. Our al-
gorithm was developed in C++ following the Mat-
lab implementation of [7]. Its parameters were set
to nc = 2 and nh = 50 to compute 5-partition
trees (graph of less than 5 nodes are not further
split). The OpenCCL algorithm was used as pro-
vided at [9]. For the 3 meshes tested our algorithm
significantly outperform OpenCCL regarding the
computation time and the memory used (Table 2).

Once the layouts computed, we compare the re-
sulting performance when the meshes are read for
a visualization. We use VTK 5.0.4 and measure
the execution time when moving a cut plan in di-
agonal on the mesh from bottom left to top right.
Each experiment is repeated 30 times. In all cases
OpenCCL and our algorithm show very similar per-
formance (Table 3). For the structured and AMR
meshes, the CO layouts do not provide a perfor-
mance improvement over the original layout. Two
reasons explain this result:

• Being structured meshes, the original layouts
already have a cache efficient data structure;

• Both meshes are small, making it difficult to
measure any cache improvement that the CO
layouts could provide.

In opposite, the CO layouts both significantly out-
perform the original layout for the Skull unstruc-
tured mesh. These results are confirmed when
counting the number of L1 cache misses using the
Cachegrind utility (Table 4).

Time (s) Original OpenCCL Our layout

Plasma 32.38 (0.25) 32.49 (0.22) 32.38 (0.22)

Reactor 3.34 (0.05) 3.32 (0.1) 3.36 (0.09)

Skull 5.11 (0.04) 4.95 (0.02) 4.96 (0.02)

Table 3: Average execution time and standard de-
viation (in parenthesis) when visualizing the differ-
ent meshes: a cut plane is moved through the whole
mesh.

Mesh Original OpenCCL Our Layout
Plasma 146.6 150.7 151.2
Reactor 21.5 21.8 22.0
Skull 26.5 21.7 21.8

Table 4: Number of L1 cache misses (in millions)
when visualizing the different meshes.

We also compute the density of edges accord-
ing to their length for each Skull layout (Fig. 5).
The edge length is computed from the layout. The
length of an edge is the number of nodes separating
the storage location of each extremity. Large edges
tend to produce more cache misses that small ones
as the cache lines storing both extremities are more
likely to store data required before being evicted.
The edge length distribution for the original layout
shows various peaks while CO layouts tend to have
a smoother distribution with high density of small
edges. This edge length distribution is coherent
with the experienced execution times and number
of cache misses.

We further investigate the effect of the cache size
on the Skull mesh using Cachegrind (Fig. 4). The
smaller the cache size is, the more efficient CO lay-
outs are compared to the original layout. It con-
firms what we observed about edge lengths: favor-
ing small edge lengths leads to more robust layouts.

5 Conclusion

Memory transfers are one of the main bottleneck for
the visualization of large meshes. This bottleneck
tends to worsen with new multi-core architectures
showing complex memory hierarchies. In this con-
text, it is important to control the mesh memory
layout in an attempt to reduce the number of use-
less data transfers. In this paper we presented an
algorithm to compute cache oblivious mesh layouts.

6

Figure 5: Density of edges depending on their size for the different Skull mesh layouts.

Figure 4: Number of cache misses for the Skull
mesh with L1 cache size varying from 8KB to
128KB. Cachegrind was used to simulate the vari-
ous cache sizes.

Cache oblivious layouts have the advantage not to
depend on a given block and cache size. The layout
does not have to be recomputed when changing of
machine or if the cache size available dynamically
changes during execution for instance.

Experiments shows that our layout performance
match the layouts computed from Yoon et Al. [18]
OpenCCL algorithm. But in opposite to this algo-
rithm, our algorithm performance is theoretically
guaranteed on the number of block transfers. It
also significantly outperform OpenCCL regarding
execution time and memory allocation when com-
puting the layout, an important criteria as we focus
on large meshes.

Future work will focus on validating our algo-
rithm on very large meshes and a more important

7

variety of access patterns. We are also investigat-
ing the benefits of this algorithm on GPUs and in
the context of parallel mesh visualization.

Acknowledgements

This work is partly funded by CEA/DIF/DSSI,
Bruyères le Châtel, France and by the Agence Na-
tionale de la Recherche contract ANR-07-CIS7-003.

Plasma 1 and Skull 2 models are provided by the
AIM@SHAPE Shape Repository 3.

References

[1] A. Aggarwal and J. S. Vitter. The in-
put/output complexity of sorting and related
problems. Comm. of ACM, 31(9):1116–1127,
1988.

[2] L. Arge, G. Brodal, and R. Fagerberg. Cache
oblivious data structures, 2004.

[3] M. Bader and C. Zenger. Cache oblivious ma-
trix multiplication using an element ordering
based on a peano curve. Linear Algebra and
Its Applications, 417(2–3):301—-313, 2006.

[4] A. Bogomjakov and C. Gotsman. Univer-
sal rendering sequences for transparent vertex
caching of progressive meshes. In GRIN’01,
pages 81–90, 2001.

[5] K. L. Clarkson, D. Eppstein, G. L. Miller,
C. Sturtivant, and S.-H. Teng. Approximat-
ing center points with iterated radon points.
In SCG ’93: Proceedings of the ninth annual
symposium on Computational geometry, pages
91–98, 1993.

[6] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algo-
rithms. In Proceedings of the 40th Annual
Symposium on Foundations of Computer Sci-
ence, page 285, 1999.

[7] J. R. Gilbert, G. L. Miller, and S.-H. Teng.
Geometric mesh partitioning: implementation
and experiments. In IPPS ’95: Proceedings of
the 9th International Symposium on Parallel
Processing, pages 418–427, 1995.

1courtesy of ISTI-CNR
2courtesy of Pierre Alliez
3http://shapes.aim-at-shape.net/

[8] H. Hoppe. Optimization of mesh locality for
transparent vertex caching. In SIGGRAPH
’99: Proceedings of the 26th annual conference
on Computer graphics and interactive tech-
niques, pages 269–276, 1999.

[9] OpenCCL: Cache-Coherent Layouts.
http://www.cs.unc.edu/ geom/col/openccl/.

[10] G. Lin and T. P.-Y. Yu. An improved vertex
caching scheme for 3d mesh rendering. IEEE
Transactions on Visualization and Computer
Graphics, 12(4):640–648, 2006.

[11] G. L. Miller, S.-H. Teng, W. Thurston, and
S. A. Vavasis. Geometric separators for finite-
element meshes. SIAM J. Sci. Comput.,
19(2):364–386, 1998.

[12] R. Niedermeier, K. Reinhardt, and P. Sanders.
Towards optimal locality in mesh-indexings.
In FCT ’97: Proceedings of the 11th Interna-
tional Symposium on Fundamentals of Com-
putation Theory, pages 364–375, 1997.

[13] P. V. Sander, D. Nehab, and J. Barczak.
Fast triangle reordering for vertex locality
and reduced overdraw. ACM Trans. Graph.,
26(3):89, 2007.

[14] C. Silva, Y. Chiang, J. El-Sana, and P. Lind-
strom. Out-of-core algorithms for scientific vi-
sualization and computer graphics, 2002.

[15] J. S. Vitter. External memory algorithms and
data structures: dealing with massive data.
ACM Comput. Surv., 33(2):209–271, 2001.

[16] R. C. Whaley and A. Petitet. Minimizing de-
velopment and maintenance costs in support-
ing persistently optimized BLAS. Software:
Practice and Experience, 35(2):101–121, 2005.

[17] S.-E. Yoon and P. Lindstrom. Mesh lay-
outs for block-based caches. IEEE Transac-
tions on Visualization and Computer Graph-
ics, 12(5):1213–1220, 2006.

[18] S.-E. Yoon, P. Lindstrom, V. Pascucci, and
D. Manocha. Cache-oblivious mesh layouts.
In ACM SIGGRAPH, pages 886–893, 2005.

8

