
HAL Id: inria-00260643
https://hal.inria.fr/inria-00260643

Submitted on 4 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting Simultaneous Consensus with Crash Failures
Y. Moses, Michel Raynal

To cite this version:
Y. Moses, Michel Raynal. Revisiting Simultaneous Consensus with Crash Failures. [Research Report]
PI 1885, 2008, pp.17. �inria-00260643�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50127515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00260643
https://hal.archives-ouvertes.fr

I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1885

REVISITING SIMULTANEOUS CONSENSUS WITH CRASH
FAILURES

Y. MOSES M. RAYNAL

http://www.irisa.fr

Revisiting Simultaneous Consensus with Crash Failures

Y. Moses* M. Raynal**

Systèmes communicants
Projet ASAP

Publication interne n ˚ 1885 — Mars 2008 — 17 pages

Abstract: This paper addresses the “consensus with simultaneous decision” problem in a synchronous system
prone to t process crashes. This problem requires that all the processes that do not crash decide on the same value
(consensus) and that all decisions are made during the very same round (simultaneity). So, there is a double agreement,
one on the decided value (data agreement) and one on the decision round (time agreement). This problem was first
defined by Dwork and Moses who analyzed it and solved it using an analysis of the evolution of states of knowledge
in a system with crash failures. The current paper presents a simple algorithm that optimally solves simultaneous
consensus. Optimality means in this case that the simultaneous decision is taken in each and every run as soon as any
protocol decides, given the same failure pattern and initial value. The design principle of this algorithm is simplicity,
a first-class criterion. A new optimality proof is given that is stated in purely combinatorial terms.

Key-words: Consensus, Distributed algorithm, Fault-tolerance, Round-based computation, Simultaneous decision,
Synchronous message-passing system.

(Résumé : tsvp)

* Department of Electrical Engineering, Technion, Haifa, 32000 Israel moses@ee.technion.ac.il
** IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France raynal@irisa.fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Décision simultanée en environement synchrone avec crash de processus

Résumé : Ce rapport présente un algorithme de consensus pour un système synchrone avec crash de processus, dans
lequel les processus qui décident le font à la même ronde de calcul. L’accent erst mis sur la simplicité de conception
de cet algorirthme.

Mots clés : Système synchrone, algorithme distribué, consensus, crash de processus, décision simultaée, modèle de
calcul fondé sur les rondes, système synchrone.

1 Introduction

The consensus problem Fault-tolerant systems often require a means by which processes or processors can arrive
at an exact mutual agreement of some kind [15]. If the processes defining a computation have never to agree, that
computation is actually made up of a set of independent computations, and consequently is not an inherently distributed
computation. The agreement requirement is captured by the consensus problem that is one of the most important
problems of fault-tolerant distributed computing. It actually occurs every time entities (usually called agents, processes
-the word we use in the following-, nodes, sensors, etc.) have to agree. The consensus problem is surprisingly simple
to state: each process is assumed to propose a value, and all the processes that are not faulty have to agree/decide
(termination), on the same value (agreement), that has to be one of the proposed values (validity). The failure model
considered in this paper is the process crash model.

While consensus is impossible to solve in pure asynchronous systems despite even a single process crash [6] (“pure
asynchronous systems” means systems in which there is no upper bound on process speed and message transfer delay),
it can be solved in synchronous systems (i.e., systems where there are such upper bounds) whatever the number n of
processes and the number t of process crashes (t � n).

An important measure for a consensus algorithm is the time it takes for the non-faulty processes to decide. As a
computation in a synchronous system can be abstracted as a sequence of rounds, the time complexity of a synchronous
consensus algorithm is measured as the minimal number of rounds (R t) a process has to execute before deciding, in
the worst case scenario. It has been shown (see, e.g., in [5, 12]) that R t � t� �. Moreover, that bound is tight: there
exist algorithms (e.g., see [1, 9, 16]) where no process ever executes more than R t rounds (these algorithms are thus
optimal with respect to that bound).

While t�� rounds are needed in the worst case scenario, the major part of the executions have few failures or are
even failure-free. So, an important issue is to be able to design early deciding algorithms, i.e., algorithms that direct the
processes to decide “as early as possible” in good scenarios. Let f , � � f � t, be the number of actual process crashes
in an execution. It has been shown that the lower bound on the number of rounds is then R t�f � min�f � �� t � ��
(e.g., [2, 12, 17]). As before, this bound is tight: algorithms in which no process ever executes more than R t�f exist
(e.g., see [2, 7, 16]).

Simultaneous decision Consensus agreement is a data agreement property, namely the processes have to agree on
the same value. According to the actual failure pattern, and the way this pattern is perceived by the processes, it is
possible for several processes to decide at distinct rounds. The only guarantee lies in the fact that this round can be
bounded by Rt (or Rt�f).

This uncertainty on the set of round numbers at which the processes decide, can be a serious drawback for the
real-time oriented applications where agreement is required, not only on the decided value, but also on the time
the decision is taken. More precisely, these applications require that the processes decide on the same value (data
agreement), during the very same round (time agreement). This property is also called simultaneous decision.

Among the algorithms that ensure simultaneous decision, there are trivially all the “classical” consensus algorithms
where all the processes that do not crash decide systematically at the end of the round R t � t � �. This observation
suggests immediately the following question: “As far as the simultaneous decision property is concerned, are there
early deciding algorithms, i.e., algorithms whose maximal number of rounds in the worst case scenario can be deter-
mined from f (and t)?” Unfortunately, it is shown in [2] that the answer to that question is negative: R t � t � �
rounds is the best that can be done when both the parameters t and f are considered. At first glance, this can appear
as counter-intuitive as it states that t�� is a bound for simultaneous decision whatever the value of f (i.e., even when
no process crashes)!

Early simultaneous decision So, given an execution, a more refined analysis requires to consider not the parameters
t and f , but t and the failure pattern that actually occurs in the execution. The previous question can now be translated
as follows: “Which are the failure patterns that force a simultaneous decision consensus algorithm to decide in k
rounds for � � k � t � �”. This question was posed and answered in [3] where a bound is stated and proved (this
bound is denoted RSt�F in the following; F stands for the failure pattern that occurs in the considered run).

To better understand the intuition that underlies the bound RS t�F , let us consider the particular failure pattern
where t processes have crashed before the execution starts. The n � t remaining processes define consequently a

PI n ˚ 1885

failure-free system. During the first round each non-crashed process can learn that, from then on, it is in a failure-free
system of n � t processes, and consequently all the processes can exchange their view of the system and decide the
same value at the end of the second round. More generally, what makes things easier is when many crashes occur early
in the computation. Roughly speaking, this is because a crash is stable, while the property “a process has not crashed”
is not a stable property. This instability property and the occurrence of only a few crashes, makes an agreement on an
early round for a simultaneous decision more difficult to obtain.

The previous discussion suggests that determining the smallest round at which the processes can simultaneously
decide should take into account the pairs (round number, number of processes perceived as crashed until that round).
This intuition is formalized in [3] as follows. Let C�r	 be the set of the processes that are seen as crashed by (at least)
one of the processes that survive (i.e., do not crash before the end of) round r. For any r, let d r � max��� jC�r	j � r�;
as we shall see, dr represents the number of rounds that could be saved with respect to the worst case t � � bound,
thanks to the failures that occurred and were seen by at least one process that terminate round r. LetD � max r���dr�;
D represents the best saving in terms of rounds. Notice that the values of d r and D in a given run are determined only
by its failure pattern F . It is shown in [3] that the smallest round number at the end of which a common decision
can be simultaneously taken is RSt�F � �t � �� � D (where D � D�F �). The quantity D is considered in [3] to
be the waste inherent in the failure pattern F , since it specifies the number of rounds the adversary has “lost” in its
quest to delay decision for as long as possible. This optimality proof is established in [3] from the theory of distributed
(implicit) knowledge and common knowledge (and the way distributed knowledge becomes common knowledge in a
distributed system) [4, 8]. An optimal binary consensus algorithm that directs the processes to decide simultaneously
at the end of the round RSt�F � �t � �� �D is also described in [3]. Its construction is derived based on a the same
knowledge-based analysis.

Content of the paper This paper presents a simple construction of an optimal simultaneous multi-valued consensus
algorithm, that can be seen as a variant that revisits the algorithm presented in [3]. This variant is based on concepts
and proofs introduced in [10, 11]. Here, the aim is not to design a brand new algorithm, but to construct a simple
algorithm from a few definitions and simple observations. Moreover, a simpler matching lower bound proving the
optimality of this algorithm is presented. The main criterion is design simplicity. Interestingly, not only the design,
but also the proofs of the algorithm are simple. While the connection to knowledge is hinted at here and there, the
development and proofs are purely combinatorial. We hope that the relative simplicity of the development in this
paper will make the simultaneous agreement property and the simple (and elegant) concepts its implementation relies
on more broadly accessible.

The paper is made up of 6 sections. The computation model and the problem are introduced in Section 2. The
algorithm is presented in Section 3, while its proof is given in Section 4. Section 5 presents a new lower-bound
proof (simplifying that of [3]) of the optimality of the algorithm presented in Section 3. Finally, Section 6 states a few
concluding remarks.

2 Model and problem specification

2.1 Computation model

Round-based synchronous system The system model consists of a finite set of processes, namely,
 � fp�� � � � � png,
that communicate and synchronize by sending and receiving messages through channels. (Sometimes we also use p
and q to denote processes.) Every pair of processes is connected by a bi-directional reliable channel (which means that
there is no creation, alteration, loss or duplication of message).

The system is round-based synchronous. This means that each execution consists of a sequence of rounds. Those
are identified by the successive integers �� �� etc. For the processes, the current round number appears as a global
variable r that they can read, and whose progress is managed by the underlying system. A round is made up of three
consecutive phases:

� A send phase in which each process sends the same message to all the processes (including itself).

� A receive phase in which each process receives messages.
The fundamental property of the synchronous model lies in the fact that a message sent by a process p i to a
process pj at round r, is received by pj at the very same round r.

Irisa

� A computation phase during which each process processes the messages it received during that round and
executes local computation.

Process failure model A process is faulty during an execution if its behavior deviates from that prescribed by its
algorithm, otherwise it is correct. We consider here the crash failure model, namely, a faulty process stops its execution
prematurely. After it has crashed, a process does nothing. If a process crashes in the middle of a sending phase, only
a subset of the messages it was supposed to send might actually be received.

As already indicated, the model parameter t (� � t � n) denotes an upper bound on the number of processes
that can crash in a run. A failure pattern F is a list of at most t triples hq� kq � Bqi. A triple hq� kq � Bqi states that the
process q crashes while executing the round kq (hence, it sends no messages after round kq), while the set Bq denotes
the set of processes that do not receive the message sent by q during the round k q.

2.2 The simultaneous consensus problem

The problem has been informally stated in the introduction: every process p i proposes a value vi (called its initial
value) and the processes have to decide, during the very same round, on the same value that has to be one of the
proposed values. This can be stated as a set of four properties that any algorithm solving the problem has to satisfy.

� Decision. Every correct process decides.

� Validity. A decided value is a proposed value.

� Data agreement. No two processes decide different values.

� Simultaneous decision (or Time agreement). No two processes decide at distinct rounds.

Given a set V of two or more values, an input configuration is an assignment I �
 � V of an initial value v i

to each process pi. We are considering the simultaneous consensus problem under the assumption that all jV j n input
configurations are possible.

Traditional consensus algorithms for the crash failure model are guaranteed to decide within at most t�� rounds [2,
15]. Any such algorithm can be converted into a simultaneous consensus algorithm by delaying any early decision
and having all deciding processes decide only in round t � �. Dwork and Moses showed that simultaneous decision
can often be obtained much earlier than that [3]. Although every algorithm will have runs that decide in t� � rounds,
simultaneous decision can be obtained as early as the second round in some cases. The goal, then, is to design a simple
algorithm that direct the processes to decide both as early as possible and simultaneously.

3 A simple optimal algorithm

3.1 Preliminary definitions

As the system model requires each process to send a message to all the processes at each round, process failures can
be easily detected, and this detection is done as soon as possible. In addition to this very simple failure detection
mechanism, the algorithm is based on other simple notions, namely, the notions of clean round (introduced in [3]),
and the notion of horizon (introduced in [10]).

Failure discovery The failure of a process q is discovered (for the first time) in round r if r is the first round such
that there is a process p that (1) does not receive a round r message from q, and (2) survives (i.e., completes without
crashing) round r.

Clean round A round r is clean if no process is discovered faulty for the first time in that round. This means that a
process that crashes during a clean round r has sent its round r message to all the processes that proceed to the round
r � �.

Let us call an algorithm symmetric if a process never sends different messages to distinct processes in the same
round. The following property is an immediate consequence of the previous definitions. 1

1In a precise sense, a clean round can be used to ensure that the knowledge of the various processes is identical. Once this happens the processes
are in agreement about initial values. They then need to discover this and coordinate their decisions.

PI n ˚ 1885

Property 1 In a symmetric algorithm, if round r is clean, then all the processes that proceed to the round r � �
received, during the round r, messages from the same set of processes (including at least all of them).

Let us observe that a clean round is not necessarily a failure-free round. It is possible that a process p crashes in
a clean round r but no process active at the end of r has noticed its crash (p has crashed after its sending phase and
before the end of the round r, or more generally p as crashed during r after sending its round r message at least to the
processes that survive round r). Similarly a failure-free round is not necessarily clean. As an example a failure-free
round r � � that follows a clean round r during which a crash occurred is not clean.

Horizon [10] Given a process pi and a round r � �, let x be the greatest number of process crashes that occurred
between the round � and the round r� � (included) and are known by p i (to have crashed in the first r � � rounds) by
the end of r.

The value hi�r� � r� t�x is called the horizon of pi at round r. We have hi��� � t��. If three crashes occurred
by the end of the first round and are reported to p i during the second round, we have h i��� � t� �.

As we will see, the horizon notion (of a process p i at round r) is a key notion to determine the smallest round at
the end of which the same value can be simultaneously decided. The following simple theorem (that will be exploited
in the presentation of the algorithm) explains why this notion is crucial.

Theorem 1 Let x be defined as indicated above, and p i a process that survives round r. There is a clean round y such
that r � y � hi�r� � r � t� x.

Proof Let us first observe that, as at least x processes have been discovered as faulty between the round � and the
round r � � (included), at most t � x processes can be discovered as faulty between the round r (included) and the
round r � t� x (included). But there are t� x� � rounds from r to r � t� x, from which we conclude that at least
one of these rounds is clean. �Theorem �

3.2 Description of the algorithm

Local variables Each process pi manages the following local variables. Some variables are presented as belonging
to an array. This is only for notational convenience, as such array variables can be implemented as simple variables.

� esti contains, at the end of r, pi’s current estimate of the decision value. Its initial value is v i, the value proposed
by pi.

� fi�r	 denotes the set of processes from which pi has not received a message during the round r. (So, this variable
is the best current estimate that pi can have of the processes that have crashed.)
Let fi�r	 �
 n fi�r	 (i.e., the set of processes from which pi has received a round r message).

� f �i �r � �	 is a value computed by pi during the round r, but that refers to crashes that occurred up to the round
r � � (included), hence the notation. It is the value

S
pj�fi�r�

fj �r � �	, which means that f �i �r � �	 is the set of
processes that were known as crashed at the end of the round r � � by at least one of the processes from which
pi has received a round r message. This value is computed by p i during the round r. As a process pi receives
its own messages, we have fi�r � �	 � f �i �r � �	.

� bhi�r	 represents the best (smallest) horizon value known by p i at round r. It is pi’s best estimate of the smallest
round for a simultaneous decision. Initially, bh i��	 � hi��� � t� �.

Process behavior Each process pi not crashed at the beginning of r sends to all the processes a message containing
its current estimate of the decision value (esti), and the set fi�r � �	 of processes it currently knows as faulty. After it
has received the round r messages, pi computes the new value of esti and the value of bhi�r	. The new value of esti is
the smallest of the estimates values it has seen so far. As far as the value of bh i�r	 is concerned, we have the following.

� The computation of bhi�r	 has to take into account hi�r�. This is required to benefit from Theorem 1 that
states that there is a clean round y such that r � y � hi�r�. When this clean round will be executed, any two
processes pi and pj that execute it will have esti � estj , and (as they will receive messages from the same set
of processes, see Property 1) will be such that f �i �r��	 � f �j �r��	. It follows that, we will have hi�y� � hj�y�,
thereby creating correct “seeds” for determining the smallest round for a simultaneous decision. This allows the
processes to determine rounds at which they can simultaneously decide.

Irisa

� As we are looking for the first round where a simultaneous decision is possible, bh i�r	 has to be set tomin
�
hi���� hi���� � � � � hi�r�

�
,

i.e., bhi�r	 � min
�
bhi�r � �	� hi�r�

�
.

Finally, according to the previous discussion, the algorithm directs a process p i to decide at the end of the first round
r that is equal to the best horizon currently known by p i, i.e., when r � bhi�r	.

The resulting algorithm is presented in Figure 1, where h i�r� (see line 08) is expressed as a function of r � � to
emphasize the fact that it could be computed at the end of the round r � � by an external omniscient observer. The
local boolean variable decided is used only to prove the optimality of the algorithm (see Section 5). Its suppression
does not alter the algorithm.

algorithm PROPOSE�vi�:
(01) esti � vi; bhi���� t� �; fi���� �; decided � false ; % initialization %
(02) when r � �� 	� � � � do % r: round number %
(03) begin round
(04) send �esti� fi�r � ��� to all; % including pi itself %
(05) let f�

i �r � �� � the union of the fj �r � �� sets received during r;
(06) let fi�r� � the set of processes from which pi has not received a message during r;
(07) esti � min� all the estj received during r�;
(08) let hi�r� � �r � �� � �t � �� jf �

i �r � ��j�;
(09) bhi�r�� min

�
bhi�r � ��� hi�r�

�
;

(10) if r � bhi�r� then decided � true; return (esti) end if
(11) end round

Figure 1: Optimal simultaneous decision despite up to t crash failures (code for p i)

4 Proof of the algorithm

Lemma 1 Validity property. A decided value is a proposed value.

Proof The proof is an immediate consequence of the initialization of the est i local variables (line 01), the reliability
of the channels, and the min�� operation used at line 07. �Lemma �

Lemma 2 Let pi be a correct process. �r � � we have hi�r� � r.

Proof Since the processes in the set f �i �r� �	 are processes that have crashed by the end of the round r� �, it follows
that t� jf �i �r � �	j � �. Consequently, hi�r� � r � t� jf �i �r � �	j � r. �Lemma �

Notation: Considering an arbitrary execution, let p i be a process that is correct in that execution.
� Let BHi � minr�� hi�r�. BHi is the smallest value ever attained by the function h i�r�, i.e., the smallest

horizon value determined by p i.
� Let Li � max�fr j hi�r� � BHig�. Li is the last round whose horizon value is BHi .

It follows from these definitions that if L� � Li then hi�L�� � hi�Li�.

Lemma 3 Let t � n. The round Li is a clean round (i.e., no process is discovered faulty for the first time in that
round).

Proof Assume, by way of contradiction, that L i is not clean (recall that pi is a correct process). This means there is a
process pz that is seen faulty for the first time in round Li by some process py. Notice that pz �� f �i �Li � �	 since pz
was not discovered faulty in the previous rounds. There are two cases.

� Case 1: pi receives a message from py in round Li � �.
(This case includes the case where pi and py are the same process). As py does not receive a message from
pz during Li, and a crash is stable, we have pz � fy�Li	. Moreover, due to the case assumption, and the fact
that the round Li � � message from py to pi carries fy�Li	, it follows that f �i �Li	 contains f �i �Li � �	 	 fpzg.
Consequently, jf �i �Li	j � jf �i �Li � �	j. It follows that hi�Li � �� � hi�Li�, contradicting the definition of Li.

PI n ˚ 1885

� Case 2: pi does not receive a message from py in round Li � �.
In that case, both pz and py are seen faulty for the first time by pi during the round Li � �. So, fi�Li � �	
contains f �i �Li � �		 fpy� pzg. Since f �i �Li � �	 (computed by pi during the round Li ��) contains fi�Li � �	,
we have jf �i �Li � �	j � jf �i �Li � �	j� �. Thus, we have

hi�Li � �� � �Li � �� � t� jf �i �Li � �	j�

� �Li � �� � t� �jf �i �Li � �	j� ���

� Li � t� jf �i �Li � �	j�

� hi�Li��

which again contradicts the definition of L i.
�Lemma �

Lemma 4 Let t � n. Every correct process decides. Moreover, all processes that decide do so in the same round and
decide on the same value.

Proof
Decision property� Let us consider a correct process pi. Notice that, due to the initialization and line 09 we have
�r � bhi�r	 � t � �, from which we conclude BHi � t � �. So, to prove that pi decides we have to show that pi
does not miss the test r � BHi at line 10. This could happen if the first round � such that bh i�� � �	 � BHi and
bhi��	 � BHi is such that � � BHi . We prove that this cannot happen.

Let us observe that, due to Lemma 2, we have h i��� � �. It then follows from bhi�� � �	 � BHi , hi��� � �,
bhi��	 � BHi , and line 09, that BHi � bhi��	 � min�bhi��� �	� hi���� � hi��� � �, i.e., BHi � �, which establishes
the result. It follows that pi decides no later than round t� �.

Simultaneous decision for the correct processes� We first show that no two correct processes pi and pj decide
at distinct rounds. Due to the algorithm, if p i and pj decide, they decide at round BHi and BHj , respectively. We
show that BHi � BHj . Due to Lemma 3, the round Li is clean. Hence, during the round L i, pj receives the same
messages that pi receives (Property 1). Thus f �i �Li � �	 � f �j �Li � �	 and consequently, hi�Li� � hj�Li�. Since
bhj �Li	 � hj�Li� by line 09, it follows that bhj �Li	 � bhi�Li	 � BHi , and thus BHj � BHi . By symmetry the same
reasoning yields BHi � BHj , from which it follows that BHi � BHj . This proves that no two correct processes
decide at distinct rounds.2

Simultaneous decision for the faulty processes� BH being the round at which the correct processes decide, let us
now consider the case of a faulty process pj . As pj behaves as a correct process until it crashes, and as the correct
processes decide in the same round BH , it follows that no faulty process decides before BH , and if p j executes line
10 of round BH , it does decide as if it was a correct process.

Data agreement property. The fact that no two processes decide different values comes from the existence of the
clean round Li that appears before a process decision. During that round, all the processes that are alive at the end of
this round have received the same set of estimate values (Property 1), and selected the smallest of them. It follows that,
from the end of that round, there is a single estimate value in the system, which proves the data agreement property.

�Lemma �

Definitions This paragraph recalls notions and results that have already been stated in the introduction. Given an
execution, let F be the failure pattern that occurs in that execution.

� Let S�r	 be the set of processes that survive (i.e., complete) round r.

� Let C�r	 �
S

pi�S�r�
fi�r	, i.e., the set of the processes that are known to have crashed by at least one of the

processes that survives round r. Observe that f �i �r	 � C�r	, for any pi � S�r	.
2In [3, 8] it is shown that before performing such a simultaneous action the processes must attain common knowledge that they are doing so. In

particular, they must have common knowledge that the decided value v is one of the initial values in the run.

Irisa

� Let D � maxr���dr� where dr � jC�r	j � r. (In the introduction, D has been called the waste inherent in F ,
i.e., the number of rounds the adversary has lost in his quest to delay decision for as long as possible.)

Notice that D � �, since C��	 � � and D � d� � C��	 � � � �. The following optimality results are shown
in [3]. The smallest number of rounds RS t�F that any simultaneous decision consensus algorithm can achieve is
RSt�F � �t� ���D when t � n� �, and RSt�F � t�D when t � n� �.

Theorem 2 Let t � n. The algorithm described in Figure 1 solves the consensus problem with simultaneous decision.
In a run with failure pattern F , decision is reached in round t� ��D where D � D�F � is the waste inherent in F .

Proof The proof of the validity, decision, simultaneous decision and data agreement properties follow from the
Lemmas 1 and 4. We now show that the decision is obtained in round t � ��D. Let us consider an arbitrary run of
the algorithm. It follows from Lemma 4 that BH i � BHj for any pair of processes pi and pj that decide. Let BH
denote this round. The proof of the claim amounts to showing that BH � t� ��D and BH � t� ��D.

Let pi be a process that decides and R the last round such that jC�R	j�R � D (i.e., jC�R�x	j� �R�x� � D �
jC�R	j � R, for any x � �). Let us observe that, due to the lines 08-10 of the algorithm, BH is attained at the round
numbers that make the function hi�r� � �r � �� � t � jf �i �r	j � � minimal. Moreover, it follows from the definition
of D and R that jC�R��	j � jC�R	j. Since C�R	 � C�R��	, it follows that C�R	 � C�R��	, i.e., no new process
failure is discovered in round R � �, so the round R� � is clean and we have jf �i �R	j � jC�R	j. Due to line 08 of the
round R � �, we have hi�R � �� � R � t � � � jf �i �R	j � �t � �� � �jf �i �R	j � R� � t � � �D, from which we
conclude BH � t� ��D.

For the other direction, let us recall that, due to Lemma 3, the round L i � � is clean. It follows that f �i �Li � �	 �
C�Li � �	, since any pi hears in round Li from all processes that survived round L i � �. Therefore, BH � t � ��
�jf �i �Li � �	j � �Li � ��� � t� �� �jC�Li � �	j � �Li � ��� � t� �� d�Li��	 � t� ��D, which completes the
proof of the theorem. �Theorem �

5 On the optimality of the algorithm: t� ��D is a lower bound

This section proves that the PROPOSE algorithm is optimal: In a synchronous system prone to up to t process crashes
(with t � n� �), there is no deterministic algorithm that can ever solve the simultaneous consensus problem in fewer
than t� ��D rounds. The proof given here is new (and simpler than the first proof given in [3]). It relies on notions
introduced in [11]. It also uses notations introduced in Section 4.

The problem of simultaneous consensus is closely related to the knowledge-theoretic notion of similarity among
runs at a given time. This notion is captured by the following definitions. For later use, these definitions are made with
respect to an arbitrary round-based synchronous deterministic algorithm P (they consequently apply in particular to
the PROPOSE algorithm described in Figure 1).

5.1 Preliminary definitions and lemmas

For ease of exposition, the runs of an arbitrary deterministic algorithm P are denoted by �� � �� etc. S�r� �	 denotes the
set of processes that survive round r of �, while ls�p� r� �� denotes the local state of p at the end of r in the run � (i.e.,
its set of local variables and their current values).

Definition 1 Given a deterministic algorithm P , a process p, and a round r, the runs � and � � of P are indistinguish-
able to p after round r �denoted �

r

p �

�� if both (i) p � S�r� �	 � S�r� ��	 (i.e., p has survived round r in both runs),
and (ii) ls�p� r� �� � ls�p� r� ���.

Definition 2 The runs � and � � are connected at the end of round r, denoted �
r
� ��, if there is a sequence of runs

and processes such that � � ��
r

p� ��

r

p�

r

pk�� �k � ��.

In other words, an undirected graph G(P� r) (in short G(r)) can be associated with each round r of a protocol P .
This graph is called P ’s similarity graph for round r. Its vertices are the runs of P and there is an edge connecting

� and �� if there is a process q such that �
r

q ��. It is easy to see that �

r
� �� holds if � and �� belong to the

PI n ˚ 1885

same connected component in G(r). Because G(r) is undirected, being connected (
r
�) is an equivalence relation.3

Moreover, observe that if we can show that some property A is maintained under
r

q for all q �
, then whenever �

has property A and �
r
� ��, we are guaranteed that � � has property A as well.

Lemma 5 Let � and �� be runs of a deterministic algorithm P that solves simultaneous consensus. If some process

decides on value v in round r of � and �
r
� �, then the processes in S�r� ��	 decide the same value v in the same round

r of ��.

Proof It suffices to show the claim for any two runs �� � � such that �
r

q �

� for some q � S�r� �	 � S�r� ��	. In this
case, q decides v in round r of �. Because P is deterministic and q has the same local state at the end of round r of �
and ��, q decides v at the end of round r in � �. Finally, as P solves simultaneous consensus (lemma assumption) it
follows that all processes in S�r� ��	 decide v in round r (and no other process decides a different value in a different
round). �Lemma

An immediate consequence of Lemma 5 is captured by the following corollary.

Corollary 1 Let P be a deterministic algorithm that solves simultaneous consensus. If � � is a run of P such that

(1) no initial value in � � is v, and (2) �
r
� ��, then no process can decide v in round r of �.

Proof Since n � t, the set S�r� � �	 is nonempty. By Lemma 5, if some process q decides v in round r of �, the
processes in S�r� ��	 decide v in round r of � �. But this contradicts the Validity property of the simultaneous consensus
algorithm P , since the decision value v is not one of the initial values in � �. �Corollary �

5.2 A full-information algorithm

For the purpose of proving optimality, we make use of a full-information algorithm, denoted FIP and described in
Figure 2.

The algorithm In the first round, each process sends its initial value v i to all processes (including to itself). The
algorithm then constructs an array inpi����n	 containing the incoming message from each of the processes (itself
included). If pi does not receive a message from pj then it sets inpi�j	 to the default value �. In each of the later
rounds, every process pi first sends inpi to all others, and then uses the incoming messages of the current round to
construct an updated array inpi in the same way as in the first round. The local state of the process at the end of round r
is identified simply with the contents of its array inpi.

This algorithm is introduced in order to establish, for each failure patternF , times at which simultaneous consensus
cannot be reached by any algorithm whatsoever. Optimality will then be established by showing that the PROPOSE

algorithm described in Figure 1 decides as soon as possible, for each and every possible failure pattern (and initial
configuration).

algorithm FIP:
(01) for j � f�� � � � � ng n fig do inpi�j�� � end for; inpi�i�� vi;
(02) when r � �� 	� � � � do
(03) begin round
(04) send inpi to all; % including to pi itself %
(05) for j � f�� � � � � ng do
(06) inpi�j�� message received from pj during r if any, otherwise �
(07) end for
(08) end round

Figure 2: The full-information algorithm FIP (code for p i�

Observe that a deterministic algorithm P , an initial configuration I (set of initial values), and a failure pattern F
determine a run � � P �I� F � of P .

3In the knowledge terminology, process q knows a fact A at the end of round r in � if it is true of all runs �� satisfying ��
r
�q �; it is common

knowledge there if A holds at all runs ��
r
� �. Thus, the set of runs connected to � determines what is common knowledge in � at the end of

round r.

Irisa

Definition 3 A run � of P corresponds to a run 	 of an algorithm P � if, for some initial configuration I and failure
pattern F , it is the case that � � P �I� F � and 	 � P ��I� F �.

The next lemma shows, in a precise sense, that the connected components of the similarity graph for FIP refine
those of any other deterministic algorithm.4

Lemma 6 Let P be a deterministic algorithm for simultaneous consensus. Let us assume that the runs � and � � of P

correspond to the runs 	 and 	� of FIP, respectively. Then �i� if 	
r

q 	

� then �
r

q �

�, and �ii� if 	
r
� 	� then �

r
� ��.

Proof Let us consider the runs � and � � of P and the corresponding runs 	 and 	 � of FIP. Since
r
� is the transitive

closure of the relations f
r

pgp��, claim (ii) follows from (i). Consequently, it suffices to prove claim (i). Let us

observe that, due to the definition of “corresponds to”, the fact that � corresponds to 	 implies that S�r� �	 � S�r� 		

for all rounds r. The proof that 	
r

q 	

� � �
r

q �

�, is by induction on r.

Base case. For the base case, let us consider the initial configuration that corresponds to the fictitious round r � �.
Since the initial state of each process (under P as well as under FIP) is fully determined by its initial value, the fact

that 	
�

q 	� implies that q has the same initial state in both. Since � corresponds to 	 and � � corresponds to 	�, it

follows that q has the same initial value in � and � �, and so �
�

q �

�.

Induction case: r � �. Let us assume that item (i) holds for every process at round r � � (induction assumption).
Moreover, let us assume that 	

r

q 	

�. As before, � and � � correspond to 	 and 	�, respectively. We need to show that
�

r

q �

�.
Since q survives round r in both the runs 	 and 	 �, and as this depends only on their failure patterns F and F �,

which are also the failure patterns in � and � �, respectively, we have q � S�r� �	 � S�r� � �	. Let us recall that the local
state of a process q at the end of a round r of a run � of a deterministic algorithm such as P (namely, the local state
ls�q� r� ��) is a function of its local state in round r � � (ls�q� r � �� ��) and the messages that it receives in round r.
We have to show that the local states ls�q� r� �� and ls�q� r� � �� are the same.

Since 	
r

q 	�, it follows that the arrays inpq are the same in both the runs 	 and 	 � at the end of round r. So,

inpq �q	 in both runs have the same value at the end of r; let X be that value.
The fact that q survives round r in both 	 and 	 �means, in particular, that it receives its own round r message

sent at line 04 of FIP in both 	 and 	�. The value of this message in 	 is ls�q� r � �� 	� which is the value of
inpq �q	 at the end of r, i.e., ls�q� r � �� 	� � X . A similar reasoning shows that ls�q� r � �� 	 �� � X . It follows

from ls�q� r � �� 	� � ls�q� r � �� 	�� � X that 	
r��

 q 	� and by the inductive hypothesis we obtain �

r��

 q ��.

Consequently, q has the same local state at the end of round r�� in both � and � �, i.e., ls�q� r��� �� � ls�q� r��� ���.
It remains to show that q receives exactly the same messages during round r in both � and � �. Suppose that q

receives message
 from process bq in round r of �. It follows from the failure pattern F that the message sent by bq to
q during round r is received by q. Since 	 corresponds to � and in FIP process bq sends messages to all processes in
every round, we have that q receives a message from bq in round r of 	 as well. As above (case of the message that, at
each round, a process sends to itself), this message in 	 contains ls�bq� r � �� 	� (the local state of bq at round r � � of

the run). From 	
r

q 	

� we have that q receives the same message from bq in 	 �. As a result, we have that 	
r��

bq 	
�,

and by the inductive assumption for r� � and bq we obtain that �
r��

bq �
�. Since the message
 is determined by P as

a function of the local state of bq at r � � in �, we have that the same message
 is also sent by bq to q in round r of � �.
As the round r message sent by bq to q in 	� is received by q, and � � corresponds to 	�, we obtain that q receives
 from
bq in �� as well. It follows that every message received by q in round r of � is received by it in the same round of � �. By
symmetry, the messages received in � � are also received in �. Finally, since q has the same local state in round r � �
of � and �� (namely, ls�q� r � �� �� � ls�q� r � �� ���), and receives the same messages in round r of both � and � �,
we obtain that �

r

q �

�, which concludes the proof of the lemma. �Lemma �

4In the sequel, we interpret
r
� and

r
� among runs of an algorithm P in terms of the similarity graph G(r� P) defined on the runs of P . Thus, the

interpretation of
r
� and

r
� in statements such as that of Lemma 6 is always with respect to the algorithm generating the related runs.

PI n ˚ 1885

On failure patterns and full-information algorithms Observe that in both the FIP and PROPOSE algorithms, a cor-
rect process is required to send a message to each process in every round. As a result, in runs of both FIP and PROPOSE,
a process p knows by the end of round r that q has crashed if the failure pattern F is such that q has crashed before it
sent its round r message to p.

The set fi�r	 of the processes that r has not heard from in round r can be directly computed from the local state
in FIP as fpj j inpi�j	 � �g. Since pi sends inpi to all other processes, the set f �i �r� �	 of processes that pi knows at r
to have been discovered as crashed by round r � � is thus easily computed from the messages it receives in round r.
Since for corresponding runs of FIP and PROPOSE these sets coincide (in fact, their values depend only on the failure
pattern), we find it convenient to talk about the values of f i�r� F 	, f �i �r� F 	, C�r� F 	, D�F 	, etc. for runs of FIP as well.

Since the Validity property states that it is illegal to decide v in a run that does not contain v as one of its initial
values, Corollary 1 implies that it is impossible to decide on v as long as there is a connected run that does not contain v
as one of its initial values. In light of this, we can now show that the algorithm FIP reaches a decision as soon as it
possibly can.

5.3 Premature rounds

It has been shown in Theorem 2 that the algorithm PROPOSE decides on a value in round BH � t���D. Let BH �	�
denote the value of the round number BH of the the run 	 � PROPOSE�I� F �. Recall that the value of BH is solely a
function of 	’s failure pattern F (and not of the initial configuration).

Definition 4 A round � is premature5 in F if � � t� ��D � BH �	� for every run 	 � PROPOSE�I� F �.

As hi�r � �� � r � �t � � � jf �i �r	j�, and hi�r � �� � BH �	�, this means that, for every r such that r � � � �,
the property r � t� �� jC�r� F 	j � � holds. Notice that the failure pattern F that occurs during the run 	 determines
whether or not � is premature: In all runs of PROPOSE with the same F the sets f i�r� F 	 and C�r� F 	 are the same for
every i and r, and so are D and BH .

Lemma 7 Let t � n � �, � � �, 	 � FIP�I� F � and 	� � FIP�I� F ��. If 	
�
� 	� then � is premature in F iff � is

premature in F �.

Proof Let 	 � FIP�I� F � and 	� � FIP�I �� F ��. As in the proof of item (ii) of Lemma 6, it suffices to show that,

for all q, if 	
�

q 	� then � is premature in F iff � is premature in F �. Thus, let us assume that 	

�

q 	�. Let

� � PROPOSE�I� F � and �� � PROPOSE�I �� F �� be the runs of PROPOSE corresponding to the runs 	 � FIP�I� F �
and 	� � FIP�I �� F ��, respectively.

By item (ii) of Lemma 6, it follows that �
�

q �

�. Round � is premature in F iff BH ��� � �, which by Theorem 2
implies that q does not decide in � by the end of round �. Thus, since the if test on line 10 of PROPOSE fails,

decidedq � false continues to hold in �. The fact that �
�

q �

� implies that decidedq � false holds at the end of the
round � of � � as well. It follows that BH ���� � �, and consequently � is premature at F �, as desired. The ‘only-if’
direction of the lemma is obtained by a symmetric argument. �Lemma

Definition 5 A process is silent in a round r of a run 	 if it has crashed before sending its round r messages.

Definition 6 Given a failure pattern F , a process q and a round r, let Fq�r be the failure pattern that satisfies the
following four conditions: �i� Fq�r coincides with F for the first r � � rounds, �ii� in round r exactly the failures
detected in C�r� F 	 occur in Fq�r, �iii� process q is silent from round r � � on, and �iv� no process other than q fails
after round r.

Lemma 8 If � is premature in F and k � �, then no more than t processes crash in Fq�k .

Proof Let H �r� F 	 � r � t � � � jC�r� F 	j. Let us observe that the number of processes that crash in F q�k is
at most jC�k� F 	j � �. It suffices to show that jC�k� F 	j � t. As � is premature and k � �, we have H �k� F 	 �

5This is short for premature for simultaneous consensus, a term that will be justified by the technical analysis in this section.

Irisa

k � t� �� jC�k� F 	j � �. Since k � � we have that � � k � �. We thus obtain that t� k � �� jC�k� F 	j � k � �,
which implies that t� jC�k� F 	j � �, and t � jC�k� F 	j� �, as desired.

�Lemma �

Definition 7 Given a run 	 � FIP�I� F �, let 	q�k be the run 	q�k � FIP�I� Fq�k�.

Let us notice that, due to Lemma 8, if 	 is a run of FIP in which at most t processes fail, then so is 	 q�k.

Lemma 9 Let t � n � � and fix � � �. Moreover, let 	 � FIP�I� F � and let q �
. If � is premature in F , then

	
�
� 	q�k for all k satisfying � � k � �.

Proof Let � � �. We prove the lemma for all runs 	, by induction on d � � � k. For the base case, assume
that d � �, and so k � �. Choose q �
, and let p � S��� 		. Since � is premature in 	, we have hp��� �
��� �� � t� �� jfp��� �� F 	j � �, i.e., jfp��� �� F 	j � t� � � n� �. Let p� � S��� 		 n fpg (such a process p� is
guaranteed to exist since t � n� �).

Let 	� be the (prefix of a) run identical to 	 up to and including round � � �, and in round � process p receives
the same messages as in 	, but process p� (who is non-faulty in 	� too) receives messages from all processes in

 n fp��� �� F 	. There are exactly jfp��� �� F 	j � t failures in 	� and p � S��� 	�	 has the same local state at the end

of round � in both 	 and 	 �. Hence, we have 	
�

p 	

�.
If q is silent in round � in 	� then we are done. Otherwise, let 	�� be a run that is the same as 	� except that q crashes

in round � by not sending a round � message to p. At most jf p��� �� F 	j�� � t� �� � � t processes fail in 	��, and

p� has the same state in 	� as in 	��. Hence, 	�
�

p� 	

��. Finally, observe that 	q���� is identical to 	�� except that q is
silent in round �. Process p does not distinguish 	 �� from 	q���� since in both it receives the same messages in round �.

Thus, 	��
�

p 	q����, and by definition of

�
� we have that 	

�
� 	q����, completing the base case.

Induction step. Let k � � and assume that the lemma holds for round k�� in all runs in which � is premature. We
prove the lemma for round k. Let 	 be a run in which � is premature, and choose an arbitrary process q �
. We will
use the induction assumption to find a connected run that coincides with 	 for the first k � � rounds where no process
crashes in round k. If q is silent in this run, then it will be 	q�k as desired. Otherwise, we use the induction assumption
again to show that this run is connected to 	q�k, as desired.

Let 	� be a run that coincides with 	 for the first k� � rounds where no process crashes in round k, and process p n

is silent from round k � � on. We show that 	
�
� 	�. Define 	�� � � � � 	n where n � j
j to be runs such that in 	j the

first k � � rounds are identical to 	, process pj is silent from round k � � on, no process other than (possibly) p j fails
in rounds k � �� � � � � �, and no new failure in round k is seen by processes p �� � � � � pj . Denoting 	 � 	�, we prove

by induction on j that 	
�
� 	j . The case j � � is immediate, since 	� � 	. Let j � � and assume inductively that

	
�
� 	j��. Since � is premature in F � F �	, it follows from Lemma 7 that � is premature in 	 j��. By the induction

assumption for k � � we have that 	j�� �
� b	, where b	 � �	j���pj �k. In particular, Lemma 8 implies that there are at

most t failures in b	. Observe that (i) pj is silent from round k � � in b	, (ii) every process other than p j has the same
local state at the end of round k in both b	 and 	 j , and (iii) the same messages are sent from round k � � in both runs,

and (iv) since no more processes fail in 	j than do in b	, there are at most t failures in 	j . It thus follows that b	 �
� 	j ,

completing the induction argument. We conclude that 	
�
� 	n � 	�, as claimed.

Observe that 	� coincides with 	 for the first k � � rounds and no process crashes in round k. Otherwise, define
��� � � � � �n to be runs of FIP such that in �j the first k � � rounds are identical to 	�, process pj is silent from round
k � � on, no process other than (possibly) pj fails in rounds k � �� � � � � �, and round k is identical to 	 � except that
process q crashes in round k and does not send messages to p�� � � � � pj . Defining �� � 	� an induction argument

identical to the one in the previous paragraph shows that 	 �
�
� �n. Notice that q is silent from round k in �n. Finally,

it follows from the induction hypothesis for k � � that �n
�
� �nq�k�� � 	q�k, which completes the proof of the lemma.

�Lemma �

PI n ˚ 1885

Based on Lemma 9, we can modify the initial configuration arbitrarily as long as the round number � is premature.
Specifically, if there are at least two possible initial values, and all jV jn initial configurations are possible, then simul-
taneous agreement on v is impossible: The current run is still connected in G(�) to a run in which all initial values
are v �� v:6

Lemma 10 Let t � � � n, and let v� v � V be distinct initial values (i.e., v �� v). Let 	 � FIP�I� F � and let � be a

premature round in F . There is a run 	� all of whose initial states are v, such that 	
�
� 	�.

Proof Let 	 � FIP�I� F � and let � be a premature round in F . Thanks to Lemma 9 we can silence the processes one
by one from the first round, and change their initial values to v. Let us then define 	 �� � � � � 	n to be the runs of FIP

such that in 	j � FIP�Ij � Fpj ���, where I j coincides with I on the initial values of pj��� � � � � pn, and vi � v for all
i � j, and where Fpj �� is obtained from Definition 6 with q � pj and r � �. Moreover, denote 	� � 	.

We prove by induction on j that 	
�
� 	j . For j � � the claim is trivial, since 	 � 	�. Assuming that the claim

is true for j, we show that it holds for j � �. Since � is premature in F and 	
�
� 	j , we have by Lemma 7 that � is

premature in Fpj ��, which is the failure pattern of 	j . Instantiating Definition 7 with q � pj�� and k � �, let us define

b	 � �	j�pj����. By Lemma 9 we have that 	j
�
� b	. Notice that b	 differs from 	j�� only in the initial state of pj��.

Since pj�� is silent in b	 and t � n it follows that b	 �
� 	j��. By transitivity of � we obtain that 	

�
� 	j��, completing

the induction step. We finally obtain that 	
�
� 	n. Since all initial values in 	n are v, the lemma holds for 	� � 	n.

�Lemma ��

5.4 Optimality of the proposed algorithm

Lemma 10 combined with Corollary 1 prove that no deterministic algorithm can decide in a run with failure pattern F
at a round that is premature in F . Since we have shown in Theorem 2 that PROPOSE is guaranteed to decide in
round BH � BH �F 	 we can conclude that PROPOSE is an optimal algorithm for simultaneous consensus. Hence the
following theorem.

Theorem 3 Let P be a deterministic algorithm for simultaneous consensus. Let � be a run of P and let 	 be a run
of PROPOSE corresponding to �. If the correct processes decide in round r in � and in round k in 	, then k � r.

6 A few concluding remarks

On the message size of the algorithm PROPOSE Let b be the number of bits required to encode a proposed value.
The size of each message is consequently b� n bits. Let us also observe that a process p i can send a default value �
instead of esti when its value is the same as in the previous round. This can reduce the size of some messages when
b is big. Another simple improvement to reduce the message size consists in sending, at each round r, the differential
value �f i�r � �	 � fi�r � �	� fi�r � �	 instead of fi�r � �	 (fi���	 being initialized to �).

On optimality Usually an algorithm is said to be optimal when its performance matches the worst-case lower bound
(given a failure model, every execution behaves at least as well as the worst case execution must). Here, the optimality
notion is stronger. More precisely, when t � n � �, the proposed algorithm is optimal in the sense that, for every
particular pattern of failures, no other algorithm can decide in fewer rounds in an execution with the same pattern. So
optimality for our algorithm is in each and every run, rather than in the worst case run.

It is shown in [4] that the bound on the minimal number of rounds required for a simultaneous decision is �t����D
when t � n � �, and t �D when t � n � �. The algorithm presented in Figure 1, that is optimal when t � n � �,
can be easily modified to be optimal also when t � n � �. Essentially, when t � n � � a process that sees that all
others have crashed can immediately decide, and be guaranteed not to violate simultaneity since it is the only process
remaining.

6In the knowledge-theoretic terminology, the lemma claims that the existence of an initial value of v among the run’s initial values is not common
knowledge as long as the round is premature.

Irisa

Circumventing the lower bound An interesting open issue is the following: “Are there additional assumptions that
would allow to circumvent the lower bound RS t�F � �t � �� � D?” Recall that we have used the fact that all jV jn

initial configurations are possible, as are all ways in which t or less processes can crash. Better performance should
be attainable if we assume that the set of initial conditions is more restricted. This is the condition-based approach
introduced in [13], and used in [14] to characterize the sets (each set is characterized by a degree d) of the input vectors
for which the min�t��� f ��� (non-simultaneous) consensus lower bound can be bypassed (it is shown that no more
than min�t� �� f � �� d� �� rounds are necessary when the input vector belongs to a set characterized by the degree
d).

References
[1] Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and Advanced Topics (2nd Edition), Wiley

Interscience, 414 pages, 2004.

[2] Dolev D., Reischuk R. and Strong R., Early Stopping in Byzantine Agreement. Journal of the ACM, 37(4):720-741, April
1990.

[3] Dwork C. and Moses Y., Knowledge and Common Knowledge in a Byzantine Environment: Crash Failures. Information and
Computation, 88(2):156-186, 1990.

[4] Fagin R., Halpern J.Y., Moses Y. and Vardi M.Y., Reasoning about Knowledge, MIT Press, 533 pages, 2003.

[5] Fischer M.J. and Lynch N., A Lower Bound for the Time to Assure Interactive Consistency. Information Processing Letters,
71:183-186, 1982.

[6] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process. Journal of the
ACM, 32(2):374-382, 1985.

[7] Garg V.K., Elements of Distributed Computing, Wiley, 423 pages, 2002.

[8] Halpern J.Y. and Moses Y., Knowledge and Common Knowledge in a Distributed Environment. Journal of the ACM,
37(3):549-587, 1990.

[9] Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996.

[10] Mizrahi T. and Moses Y., Continuous Consensus via Common Knowledge. Distributed Computing, 20(5):305-321, 2008.

[11] Mizrahi T. and Moses Y., Continuous Consensus with Failures and Recoveries. Unpublished manuscript, 2008.

[12] Moses Y. and Rajsbaum S., A Layered Analysis of Consensus. SIAM Journal of Computing, 31(4):989-1021, 2002.

[13] Mostéfaoui A., Rajsbaum S. and Raynal M., Conditions on Input Vectors for Consensus Solvability in Asynchronous Dis-
tributed Systems. Journal of the ACM, 50(6):922-954, 2003.

[14] Mostéfaoui A., Rajsbaum S. and Raynal M., Synchronous Condition-Based Consensus. Distributed Computing, 18(5):325-
343, 2006.

[15] Pease L., Shostak R. and Lamport L., Reaching Agreement in Presence of Faults. Journal of the ACM, 27(2):228-234, 1980.

[16] Raynal M., Consensus in Synchronous Systems: a Concise Guided Tour. Proc. 9th IEEE Pacific Rim Int’l Symposium on
Dependable Computing (PRDC’02), IEEE Computer Press, pp. 221-228, 2002.

[17] Wang X., Teo Y.M. and Cao J., A Bivalency Proof of the Lower bound for Uniform Consensus. Information Processing
Letters, 96:167-174, 2005.

PI n ˚ 1885

