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Abstract
This paper presents GosSkip, a self organizing and fully dis-

tributed overlay that provides a scalable support to data storage
and retrieval in dynamic environments. The structure of GosSkip,
while initially possibly chaotic, eventually matches a perfect set of
Skip-list-like structures, where no hash is used on data attributes,
thus preserving semantic locality and permitting range queries.
The use of epidemic-based protocols is the key to scalability, fair-
ness and good behavior of the protocol under churn, while pre-
serving the simplicity of the approach and maintaining O(log(N))
state per peer and O(log(N)) routing costs. In addition, we pro-
pose a simple and efficient mechanism to exploit the presence of
multiple data items on a single physical node. GosSkip’s behavior
in both a static and a dynamic scenario is further conveyed by ex-
periments with an actual implementation and real traces of a peer
to peer workload.

Keywords: Gossip-based protocols, self-organization,
data structures, skiplist

1 Introduction and Background
Peer to peer networks are distributed networks where no

centralization is used, especially for locating and querying
data. The desired properties of such systems include, but are
not limited to, load balancing among participating nodes,
resilience in face of churn and high expressiveness of query
mechanisms. Above all, a peer-to-peer network has to be
scalable, and this is particularly important for the efficiency
of search algorithms and construction costs of overlays.

Generic P2P overlays [15, 16, 17, 21] usually provide
the functionality of a distributed hash table (DHT). They
can be used to efficiently locate an object specified by a key
(e.g., a filename) within a large set of nodes. They ensure
load balancing in terms of hosted objects per node and scal-
ability but the search efficiency (usually inO(log(N)), N
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being the number of nodes in the overlay) is a result of the
inherent tradeoff between efficiency and expressiveness in
distributed systems. The fact that the only querying inter-
face is exact-match and that hashing is used to determine
the placement of data to nodes lose the initial ordering of
objects. As a result, the possibility of richer query mecha-
nisms such as range queries or nearest neighbor queries is
restrained, or exhibits crippling costs.

Some work has been done to propose structured over-
lays that keep this ordering on objects names. Mercury [5]
stores objects described by a set of attributes. To each at-
tribute corresponds a ring, on which objects ordering is pre-
served, thus providing a support for range queries. To en-
sure load balancing, however, distributed node-count his-
tograms gathering of the naming space have to be per-
formed, and the behavior of this scheme in face of a high
churn rate remains unclear. Another set of distributed data
structures that avoid hashing to ensure load balancing, and
that permit both query efficiency and an expressiveness that
is higher than DHTs, are based on the Skip-List structure.
A Skip-List is a doubly-linked list where objects with sub-
sequent names are linked on the first level (level0). Some
pointers at each object permits a Skip List to resemble a bal-
anced tree, forming increasingly sparse linked lists at each
level. In aperfect Skip list, a levelh pointer at a node tra-
verses exactly 2h nodes, while for Skip-Nets [11] or proba-
bilistic Skip-lists [14], the structure resembles a randomized
balanced tree, withO(logN) insertion and querying costs
w.h.p., and a similar top-down querying strategy. However,
a Skip List uses only one linked list per level, thus imply-
ing a high load on nodes participating on upper levels, and
penalizing the whole structure upon deletion of such nodes.
While this was not an issue for centralized data structures,
these two points are a concern for a peer-to-peer data struc-
ture. Skip-graphs [3] are similar to Skip-Lists but use sev-
eral concurrent linked lists for levels> 0, to balance the

1



load of query propagation and ensure fault resilience. Skip-
webs [2] are based on the same concepts for multidimen-
sional data. They provide aO(log N/ log log N) query cost
in single dimension andO(log N) in multiple dimensions.
However, all these distributed data structures rely on a de-
terministic construction of the overlay (and on leaving peers
using a fair leaving procedure) and need additional mecha-
nisms to repair themselves in presence of node failures.

On the other hand, gossip based protocols have proven
efficient for the construction and maintenance of distributed
systems. Gossip techniques have been successfully used
in many settings [12] including database maintenance [8],
multicast [6], routing tables management [19] and attribute-
based publish/subscribe systems [10]. Their application to
the maintenance of overlay networks [7, 18, 20] has shown
their ability to gracefully deal with churn, building self-
organizing networks able to resist to the loss of a large part
of the network without collapsing. Gossip techniques en-
able to keep overlay construction algorithms simple yet ef-
ficient, without the need for explicit overlay reconstruction
mechanism in case of node departures.

Contributions: In this paper, we propose the design and
implementation of GosSkip, a distributed data structure pro-
viding a better tradeoff between query expressiveness and
query efficiency than DHTs. As in the above systems,
GosSkip has the important property of preserving content
locality in the semantic space. GosSkip linksapplica-
tions objects(rather than computing entities) in a struc-
ture that eventually resembles a set of exact balanced trees,
while balancing the load of queries uniformly among peers.
GosSkip is built using a gossip-based protocol and is re-
silient to high churn rates. Overlay construction messages
can be piggy-backed on top ofheart beatmessages which
are in any way present in most distributed systems. An eval-
uation of GosSkip behavior both in a static and dynamic
scenarios is performed using a deployed implementation of
the protocol and a real workload of a file sharing applica-
tion. The paper is organized as follows: basic principles
are given in Section 2 and the details of algorithms in Sec-
tion 3. Section 4 gives evaluation results of the protocol us-
ing real traces and in dynamic settings. Section 5 proposes
an approach to leverage the presence of multiple peers on a
physical node and improve routing and robustness.

2 GosSkip at a Glance

GosSkip is a structured peer-to-peer overlay linking ap-
plication objects in a distributed data structure. We will thus
discuss indifferently of data elements as beingpeersin the
overlay. Each peer has a name that depicts its semantic for
the application. The only necessary property is that these
names follow a deterministic total ordering. Then, the posi-
tion of a data element is fully determined by its name. For
the remaining of the paper,N will denote the number of

peers.
GosSkip organizes peers in such a way that they form

a sorted doubly linked list (or ring). Once a peer has lo-
cated himself in the sorted list, links to level-0 neighbors
are straightforward to implement. For each peer, additional
longer linksli, for levels1 ≤ i ≤ logk(N) skip overki

peers. These links form a set of perfect skip lists, providing
the functionality of balancedk-ary tree:O(logk N) search
and insertion costs. In a single skip list, a peer has a proba-
bility of being part of each leveli equal to 1

2i . This can lead
to a high load of query propagation on the top-level nodes.
In GosSkip, this is not the case as every peer is present in all
logk(N) levels and has an equal probability of being part of
any query path. The load of query propagation is thus bal-
anced uniformly among all peers.

Peer management In GosSkip, a peer is associated to
one data element. Its management is the responsibility of
thephysical node(computing entity) that published this el-
ement. For the sake of clarity, we assume for now that there
is a one-to-one mapping between peers and physical nodes,
and we come back to this issue in Section 5. The mapping of
peers to node can be modified to move application objects
according to some heuristics (physical proximity, commu-
nication patterns) but such techniques do not modify the al-
gorithms and their description is out of the scope of this
paper.

3 Overlay Construction

In this section, we describe the mechanisms used to cre-
ate and maintain the GosSkip overlay.

Joining and leaving the network. When a peer wants
to join the overlay, it simply sends ajoin message to a
peer already participating in the system as in most p2p al-
gorithms [15, 16]. The join message progresses in the sorted
list until the peer location is found and the peer is then in-
serted still preserving the sorted order. Then, as gossip mes-
sages are exchanged in the system, the peer is gradually in-
tegrated in the upper level lists. When a peer wishes to leave
the system, it just stops gossiping messages and will grad-
ually be discarded from the neighbor lists. Besides, a peer
failure is detected by its neighbors which in turn remove it
from their list of neighbors triggering the creation of a new
level 0 link instead.

Establishing long links. GosSkip relies on gossip mes-
sages to construct long links. This message can be piggy-
backed over maintenance or applications messages that al-
ready exist in the network. To ease description, we will
denote asright handandleft handneighbors on leveli the
peer that directly follows (respectively precedes) a peer in
a list. Each peer periodically sends gossip messages to the
peers on the right hand side first, as shown in Figure 1.

Each message consists of a collection of entries. Each
entry is composed of an identifier (e.g., IP address; Id1 in



Figure 1), its associated data item ( d1 in Figure 1) and a
counter. As in all gossip-based protocols, time at each peer
is divided in periods of fixed duration. Each new period,
each peer forwards a subset of the entries it receives dur-
ing the last period. It also adds an entry with its own id,
data item and a counter set to zero along with the forwarded
entries. Each peer increments the counter of every entry it
receives before forwarding it. Once received, if the counter
at peerp is equal tok-1 (k is a configurable system param-
eter, gives the number of peers each link skip over, and in
Figure 1 we considerk as 2) the entry is not further gossiped
(by simply removing it from the message) and peerp adds
the peer associated with the removed entry together with the
information associated with that entry to its neighbor list
(e.g., as in Step 3 of Figure 1, peer 3 adds Id1 to its neigh-
bor set together with d1). Peers have neighbors on right and
left hand sides, maintained respectively in rightward- and
leftward-neighbor lists. These neighbor lists represent the
routing state of each peer.

Note that, as a result of removing entries from messages,
once the counter reaches parameterk-1, the size of the gos-
sip message (in terms of entries) is limited tok entries ir-
respective of the network size. At the end of this process,
peers know about other peers that arek hops away, on the
left hand side. These steps are depicted in Figure 1 wherek
is set to 2. Immediate neighbors (i.e., one hop away) peers
are level-0 neighbors and neighbors that arek hops away
are level-k neighbors. For example, as in Figure 1, node 1
and 2 are level-0 neighbors while node 1 and 3 are level-
1 neighbors. Likewise, each message is associated with a
level representing the level of the neighbors between which
the message is sent.
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Figure 1. Gossip-based construction

Higher level gossip messages.GosSkip is fully built by
iterating on this algorithm at each level. To set additional
long links (that skips over more peers), peers gossip similar
set of messages but only among level-1 neighbors. Note
that level-0 messages are forwarded from left to right: as a
result, peers on the right come to know about peers on the

left. Hence peers can forward level-1 messages leftward. If
the level is an even number, the message is forwarded to the
right, else to the left. Once a level-1 message with counter
set to 0 is received by a peer, that peer learns about another
peer on the right that isk hops away (e.g., in Figure 1 peer 1
learns about peer 3 when peer 1 receives a level-1 message
from peer 3).

Peers with their level 0, 1 and 2 neighbors are shown in
Figure 1. The lines in Figure 1 depict paths of the messages
and as well as long links between peers. For simplicity,
only a limited number of links are shown: in reality each
peer has level 0, 1 and 2 neighbors. This scheme can be
further extended to form links of greater length by gossiping
another set of messages among level 2 neighbors and so
on. More precisely, additional links are constructed as the
system size grows. The number of links maintained by a
peer is bounded by2 log N . If a given peer does nothear
from a neighbor before atime outperiod, it removes the
corresponding link.

Algorithm 1 Message reception
1: upon RECEIVE (message msg) with msg.level=l by

peeri
2: out-bufferl← null

3: for all entities e∈msgdo
4: if e.counter= 0 AND l 6= 0 then
5: if l MOD 2=0 then
6: leftward-neighbors.add(l,[e.peer-id,e.peer-value])
7: else
8: rightward-neighbors.add(l,[e.peer-id,e.peer-value])
9: end if

10: end if
11: if e.counter= k-1 then
12: if l MOD 2=0 then
13: leftward-neighbors.add(l+1,[e.peer-id,e.peer-value])
14: else
15: rightward-neighbors.add(l+1,[e.peer-id,e.peer-value])
16: end if
17: else
18: e.counter← e.counter+1
19: out-bufferl← out-bufferl ∪ {e}
20: end if
21: end for

Algorithm 2 Message emission
1: At peeri
2: for all neighbors in levell ∈ [0..lmax] do
3: for eacht ∗ (l + 1) secdo
4: msg← out-bufferl
5: e← [myID,myValue,0]
6: msg←msg∪ {e}
7: msg.level← l

8: if l MOD 2=0 then
9: send msg to immediate rightward-neighbor at levell

10: else
11: send msg to immediate leftward-neighbor at levell

12: end if
13: end for
14: end for



3.1 Gossiping Algorithm

Algorithm 1 and Algorithm 2 show the pseudo-code of
the gossip construction of links. In the pseudo-code,peer-
valuerefers to the data item associated to an external peer
andmyValuerefers to the local peer’s data item.
Message reception. Algorithm 1 describes the steps car-
ried out by a peer when it receives a message of levell.
Once a gossip message is received, one out of two possi-
ble link types are created. In the first link type, links skip a
number of peers as discussed earlier. These links are con-
structed if the counter of a given entry is set tok-1: then the
associated value is added to the relevant (either left or right-
ward) neighbor list (lines 11-17) and the entry is no longer
gossiped. For example, if the level of the message is an
even number, the leftward neighbor list is updated (e.g., for
a message at level 0, a neighbor at level 1 is added to left-
ward list if the counter has reachedk-1). If the counter is
less thank-1, the counter of the entity is incremented (line
18) and it is added to the out-going buffer (out-bufferl) cor-
responding to the levell (line 19).

The second link type connects immediate neighbors in
a given level. For example, peer 1 and 3 are immediate
neighbors at level 1. Whenever the counter of a given entry
e is set to 0,e corresponds to an immediate neighbor at
level l. Then, depending on whetherl is odd or even, the
corresponding neighbor list is updated as shown in line 4-
10 (level 0 links are managed when nodes join and leave).
Message emission. Algorithm 2 shows the message for-
warding algorithm. For all the neighbors at each level mes-
sages are forwarded periodically in the relevant direction.
The period of forwarding depends on the level: lower level
messages are gossiped more frequently than higher level
ones. As a result, lower level links are maintained with
more accuracy (in terms of link length) in the presence of
join/leave of peers than higher-level links.

The out-bufferl data structure contains the entries re-
ceived during the last period: a message is constructed con-
taining all the entries of this buffer (line 4). An entry cor-
responding to peeri is also added to the message (line 5-6)
with the associated counter set to 0 (line 5). The level of
the message is set accordingly (line 7). Each message has a
direction according to its level (line 8-12): for example, as
in Figure 1, level 0 messages are sent rightward.

3.2 Routing and Spreading

Routing to a peer according to its value (or routing to
the peer that has the nearest value, if it does not exist), is
similar to querying a value in a balanced tree. The process
begins at the higher level linked list, and goes down to lower
levels when, at a peer, the current level link skips too many
peers. This requiresO(log N) routing steps. If the query
has to be further spread over several peers, for a range query
or if many peers share the same data element description,
we use the spreading protocol that we describe in the next
paragraph.

Efficient and fault-tolerant spreading. While routing
provides the very same exact-match interface as a DHT,
GosSkip preserves the ordering of data items in the list.
This permits to define a more general query model, that is
a spreading algorithm, which is both used as a range query
mechanism and to propagate messages among peers with
the same value. This algorithm is designed to cope with dy-
namicity. While some links at each level may be missing,
or some peers may fail or some transient routing failures
between peers may exist, the spreading still reaches all non
failed peers in the given range. The spreading algorithm ex-
ploits the multiple balanced trees structure of GosSkip both
to speed up the multicast process and to provide resilience
to failures. The first peer satisfying the query (joined by
routing to any point in the range) is responsible for initiat-
ing the multicast process to all thematching area.

Each encountered peer follows Algorithm 3. The key
idea is, at each peer, to divide the spanning space using high
level links up to a levell, and to delegate each neighbor on
this level a sub-space of the matching area. When a peer
forwards a query to one of its neighbors at levell − 1, it
assigns it the task of spreading it, in the same direction, to
every peer between itself and its next immediate neighbor
at levell. Each query for spanning a region contains alevel
upper boundand anoffset. The level indicates how many
levels the peer as to deal with, and the offset is used to avoid
overlapping when repairing failed links. Aspread message
consists in spreading a query to

(

2level+1 − 1
)

−offset im-
mediate neighbors in a given direction. Figure 2 depicts
an example. Let peers 0 to 8 be a subset of the matching
area and peer 0 be the first reached target of the routing.
Peer 0 spreads the query on its right: it sends simultane-
ously spreading messages to his neighbors (peers 1,2,4 and
8). Peer 1 is in charge of itself only, peer 2 is in charge of
itself and peer 3, etc. Thus, the maximum load for a query
propagation on a peer isO(log N) (maximuml messages)
and a peer receives the query one time only. This algorithm
builds efficiently a spanning tree using alive GosSkip links
for all peers in the matching area with a high resilience to
failures.

rSpread(MAXLEVEL);

(2)(2)

(1)

l = 0 : ,

l = 1 : , 2

l = 2 : ,

l = 3 : , 8

l = 0 : 3 ,

l = 1 : 2 , 6

l = 2 : , 8

(1)

0 1 2 3 4 5 6 7 8

Figure 2. Spreading algorithm principles

3.3 Failure Recovery

Nodes in the overlay can fail or leave without notifica-
tion: we refer to them simply as failures (we do not ad-



Algorithm 3 GosSkip Spreading – Upon reception oflspread-msgat
level l with offset on peern

Require: level ≥ −1,offset ≥ 0
Ensure: Spreads the query to every matching

(

2level+1 − 1
)

− offset

left neighbors
1: l← level

2: while l ≥ 0 ∧ 2l ≤ offset do {compute the highest destination level
according to the offset correction}

3: offset ← offset − 2l

4: l← l− 1
5: end while
6: lmatching ← highest-level matching neighbor (lmatching ≤ l)
7: if level = Maxlevel− 1 then
8: send lSpread-msg(level,0) to immediate leftward-neighbor at level

lmatching

9: else
10: if lmatching = level then {the target level is reachable}
11: send lSpread-msg(level − 1,offset) to immediate leftward-

neighbor at levellmatching

12: else
13: send lSpread-msg(level,offset + 2l) to immediate leftward-

neighbor at levellmatching

14: end if
15: end if
16: llast ← lmatching

17: for l← lmatching − 1 to 0 step−1 do
18: n← immediate leftward-neighbor at levell

19: if n existsthen
20: if llast = l + 1 then {the following neighbor is valid}
21: send lSpread-msg(l − 1,0) to n

22: else {some following neighbors are broken}
23: send lSpread-msg(llast − 1,2l) to n

24: end if
25: llast ← l

26: end if
27: end for
28: if n = null then {uses the last valid neighbor to spread to the first

broken neighbors}
29: send rSpread-msg(llast − 1,0) to immediate leftward-neighbor at

level llast

30: end if

dress malicious peers in this paper). Failures are handled
along two directions: (1) establishing new links between
new neighbors instead of failed ones, (2) use of alternative
links instead of failed links to forward messages before full
recovery.

Establishing New Links.Establishing long links consist
in repairing level 0 links. Once these links are established
between new neighbors, the higher level links will be even-
tually constructed as a result of the gossip process. Note that
even if the higher level links are faulty just after a failure,
the forwarding of queries can take place as we will describe
shortly. In the presence of multiple simultaneous node fail-
ures, two complementary approaches can be taken for fail-
ure recovery.

A node keeps information aboutR distinct neighbor
nodes (i.e., nodes having different IP addresses) in the im-
mediate vicinity. TheR set of neighbors is similar to the
leaf setstructure in Pastry [16]. The use of distinct IPs helps

to resolve issues that can arise when one physical computer
executesR or more number of peers that are contiguous in
the overlay. The maintenance ofR neighbors is done using
the level 0 messages itself: these messages are likeheart
beatmessages between these nodes. If peer nr+1 fails, the
peer nr will replace nr+1 with nr+2 to form a level 0 link.
As a result, ifR consecutive peers do not fail simultane-
ously, the overlay functions properly. To tolerate more than
R simultaneous failures around a given point in the over-
lay, we use the long higher level links. For example, if the
node nr experiences failures among its neighbors, it can use
higher level links to multicast recovery messages to other
neighbors in the close vicinity. Once the alive nodes in
the vicinity responds, peer nr identifies the closest level
0 neighbor and establishes a new connection. Recovery
using the multicast approach is more time consuming and
comparatively complex to implement than the first solution
based on knowingR set of neighbors.

4 Evaluation

In this section, we describe experimental evaluation of
GosSkip. We present our experimental settings and perfor-
mance evaluations both in static and dynamic scenarios. We
also give results on the behavior of GosSkip in presence of
nodes failures. For evaluating the performance of GosSkip
we implemented the algorithm and carried out a set of ex-
periments on a distributed platform, using computers that
are distributed within EPFL campus and Grid’5000 [1]. We
used 256 processors, each executing several instances of
GosSkip peers to increase the participating peers up to 1000
in the overlay. The parameterk is set to2 and the gossip pe-
riod is set to 20 seconds.

Real workloads. We used a real p2p trace to construct a
sample set of data elements and queries. This trace was col-
lected from a modified FastTrack ultra-peer, implemented
in the MLDonkey multi-network file-sharing p2p client [9].
FastTrack is a hybrid p2p network where peers can act as
ultra-peers, an ultra-peer being responsible for a set of reg-
ular peers. Regular peers send their shared files lists and
requests to their ultra-peer. Ultra-peers forward queries
among themselves and answers queries they receive with
the address of the corresponding regular peer. The trace we
used was collected during four days (Oct 14 to 18 2004)
and contains more than 6 GB of raw data (all applications
messages that passed over the ultra-peer). Collected mes-
sages include (i) search queries issued by peers, defining
constraints on pre-defined attributes and (ii) cache content
advertising by peers to the ultra-peer.

We used the trace to generate the workload as follows.
Every data element has a multidimensional representation
that we map to a single dimension using lexicographic lin-
earization. While FastTrack client applications may specify
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Figure 3. Static scenario results

several attributes for files they publish in the network, only
a very few of them are broadly used, others being used only
by a very few client’s search requests. Early analysis of
the trace has shown that search requests are specifying key-
words (99.9% of requests), genre (among predefined genres
in id3 tags of mp3 audio files) and language (again in the
predefined list of id3 tags). Lexicographic ordering of the
three attributes we used is as follows: language then genre
and finally keywords set. Not surprisigly for a real work-
load, both genres and languages follow a zipf distribution.

Lexicographic ordering is an application-based assump-
tion, but one can use any linearization technique [4, 13] to
map multidimensional data to the GosSkip model, provided
that elements can be ordered without ambiguity.

The following experiments, if not specified explicitly,
are based on a 1000 peers overlay and 1000 queries, both
based upon the real trace. We first examine performances
of GosSkip with static settings and then in a dynamic sce-
nario in presence of peer failures.

Overlay construction and maintenance.We first mea-
sure the amount of messages used to construct and maintain
the links in the overlay. Each peer gossips with its neigh-
bors to create and maintain its neighborhood and long links.
We observe that distribution of number of gossip messages
among peers is between 2 to 5 messages per minute.

Load at each peer.We define the load at a peerp (loadp)
as the ratio between the number of queries it sees for routing
purposes and the number of queries that match its data ele-
ment. The distribution ofloadp shows if the load of prop-
agating queries is balanced among peers. Figure 3(a) de-
picts this distribution in the static scenario. GosSkip differs
from a single skip list as it distribute load of propagation of
queries among peers: there is a low imbalance in the distri-
bution of this load, as no peer is loaded with more than two
times of the mean load (loadp = 13, 5).

Routing performance. We also count the number of
hopsto deliver queries to a matching peer or to a peer that
has sufficient local knowledge to know that the message has
to be discarded. Figure 3(b) presents the hop-count distri-
bution for 1000 queries. Most queries reach corresponding
peers in our 1000 peers overlay in less than 6 hops, a very
few of them using up to 9 hops to deliver the query. This
shows the ability of GosSkip to efficiently route messages,
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Figure 4. Performance of GosSkip in a dy-
namic setting and with failures

confirming the expectedO(logk N) routing property, while
not overloading any peer in the overlay.

Next we show a complementary set of performance re-
sults. More specifically, we examine the performance of the
GosSkip in a dynamic setting and in presence of failures.

Routing performance in a dynamic scenario.This ex-
periment shows how GosSkip deals with dynamic scenarios
concerning routing efficiency. We evaluate how the queries
would be routed to a recently joined peer. To this end, we
first construct an overlay with 300 peers (less than 1/3 of
eventual total of peers). Once the network stabilizes with
this initial set of peers, we did the following steps: 1) at
each cycle, add a new peer and let it joins the overlay 2) just
after this peer establishes level-0 links a query that matches
the new peer’s data element is injected into the overlay (note
that by this time the new peer has no other links to and from
it other than level-0:i.e., no long links). 3) We then count
the number of hops to deliver this query to the new peer.
Above 3 steps are carried out till the total number of peers
in the network is equal to 1000.

In this experiment we use a total of 700 queries that
match newly joined peers. Figure 4(a) depicts the number
of hops taken to deliver queries. The upper bound for hops
for the initial set of peers (i.e., 300 peers) is 8.22: the upper
bound for hops for the eventual total of peers (i.e., 1000) is
9.96. As seen in Figure 4(a) some queries take more step
than this: but in general GosSkip performs well in this kind
of dynamic scenario.

Query spreading. We first evaluated the resilience to
failures of the spreading algorithm. Our results match
the expectedO(log m) (m is the size of the matching
area)complexity. We evaluate the failure resilience of the
algorithm by measuring the proportion of peers reached by
a query when each peer may fail at each round with a proba-
bility p. We compare our algorithm to a basicnearest neigh-
bor algorithm which spreads queries using level-0 links
only and anext neighboralgorithm which forwards queries
to the lowest level alive neighbor. These algorithms spread
queries in linear time. The two latter methods are obvi-
ously better since they consider different level links as well.
However, we observe that the GosSkip spreading algorithm
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outperforms the nearest neighbor algorithm as the propor-
tion of failed nodes increases, thus confirming its ability to
deal with more dynamic scenarii.

Massive nodes failures.We performed an experiment
to check the performance of our system in presence of mas-
sive failures. To that end, we consider the following failure
scenario: after a number of nodes join, form the overlay
and stabilize, we letK% of nodes crash simultaneously:
we consider three different cases whereK = 25%, 35%,
and 45%. Right after the failure we start injecting queries
into the overlay and we measure the performance. This is
an adverse failure scenario such as non independent failures
(e.g., failure of number of nodes due to a power failure in a
given geographic region).

After such a failure, the overlay will reconstruct links
replacing the faulty links and neighbors: this would take
a certain amount of time. Our goal is to measure the per-
formance of the overlay before the recovery of the overlay
takes place. In other terms, we measure the performance of
the query forwarding before any recovery action takes place
after the failure.

The performance is measured in terms of (1) number of
hops taken by an message before being delivered or termi-
nated (2) number of messages that are not delivered to nodes
that exist in the overlay and match the query. Note that be-
cause of failures the number of hops can be larger than in the
case when there are no failures and that there can be queries
which cannot be forwarded because of any anomalies that
can exist in the overlay just after the simultaneous crash of
nodes. To forward queries after the failures peers use alter-
native links instead of faulty ones. Figure 4(b) shows the
number of hops taken to deliver/terminate queries after the
failure. As seen, the number of hops are larger than the
O(log N) (which is equal to 9.96 hops) upper bound: but
still it is limited to a relatively small values in spite of large
percentage of peer failures. In the case of 25%, 35%, and
45% peer failures the number of queries that could not be
delivered to the existing interested peers are 6, 18, and 53
respectively. That is, only a very small fraction of queries
are not delivered to the peers that exist in the overlay. All
other queries are delivered using alternative links in spite of
failures. This shows the very robust nature of the GosSkip
which is a result of the redundancy of links.
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5 Leveraging Physical Locality

So far, we assumed a one-to-one mapping between a
peer and a physical node. However, several peers might
be hosted on the same physical node. In this section, we
propose to leverage this property in order to improve rout-
ing efficiency. We assume that the routing information on
one physical node is accessible to all logical peers hosted
on that node.

Physical routing Communications between peers hosted
on a same physical node are instantaneous since they do
not require network communication latency. We use this
property to improve routing. To this end, we modify the
proximity measure on the overlay. When choosing the next
peer for a query propagation, we do not only consider that
peer’s neighbor, but also other peers present on the physi-
cal nodes as natural candidates. The distance between two
peers(p1, p2) that lie on two different physical nodes is es-
timated onp1 asd(p1, p2) = 1

2
(2lsup −2linf ), wherelsup is

the maximum level at which the associate neighbor ofp1 is
beforep2 in the ordering (respectively the minimum level of
a neighbor that isafter p2 for linf ). The distance between
any two peers that are on the same physical node is0, since
routing between these two nodes incurs no communication.

Efficiency To evaluate the impact of physical routing on
routing efficiency, we distributed onΦ physical nodes uni-
formly at random10Φ peers. Figure 6 shows that using
physical routing permits a shift to a lower value of the mean
route length, while keeping the load balanced: most queries
are sent within 4 hops, while 6 hops were needed for the
regular routing mechanism.

Robustness Physical routing also helps to make GosSkip
more resilient to failures, as if a logical peer has no alive
candidates among its neighbor to forward the query, it can
uses the neighborhood of the other peers on the same phys-
ical node. Experiments show the impact on routing if, at
the same time, all physical nodes have a probabilityp of
crashing. Each physical node amongΦ is given some logi-
cal peers uniformly drawn from10Φ logicals peers in the
network. A large number of queries for peers that were
originally in the overlay are performed: some will fail due
to the absence of the corresponding peer, some other may



fail due to non existent direct routing path. Figure 5 shows
that using physical routing raises the hit ratio by 10 to 15
percent by diminishing the number of these non existent
routing paths, due to the greater number of alive neighbor
choices at each step.

6 Concluding Remarks

Traditional approaches for designing peer-to-peer over-
lays link physical nodes in a distributed data structure pro-
viding a distributed hash table interface. While such sys-
tems provide nice properties in term of routing efficiency,
their ability to handle complex queries is low, due to the
hashing used to map objects to node. On the other hand,
some work has been done to propose distributed data struc-
tures based upon the Skip List principle that do not present
this drawback. However, these approaches were mostly in-
terested in the data structure itself, and did not provide any
implementation details or solutions to deal with dynamic-
ity. The explicit construction mechanism may be an issues
be if the churn is high. In this paper, we follow an ap-
proach that is quite similar to the latter, and we connect
application objects in an efficient and load balanced data
structure that eventually resemble a set of perfect Skip Lists.
We step away from traditional explicit construction mech-
anism by using gossip-based construction algorithms. This
permits the overlay to be highly resilient to nodes failures
and arrivals (churn). Moreover, a spreading algorithm that
deal with node permanent or transient failures is proposed.
Using a real implementation and a trace from a file shar-
ing system workload, experimentations conveyed the good
behavior of GosSkip, both in a static and dynamic sce-
nario. Finally, extensions of the routing protocol to lever-
age the presence of multiple logical peers on a physical
node are proposed. Experiments demonstrate the positive
impact on the routing performance. We are currently work-
ing on the extension of GosSkip to deal with more complex
application patterns, and to adapt the approach to multi-
dimensional description of application objects.
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