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Coarsely Calibrated Visual Servoing
of a Mobile Robot using a Catadioptric Vision System

Romeo Tatsambon Fomena, Han Ul Yoon, Andrea Cherubini, Franc¸ois Chaumette and Seth Hutchinson

Abstract— A catadioptric vision system combines a camera
and a mirror to achieve a wide field of view imaging system.
This type of vision system has many potential applications
in mobile robotics. This paper is concerned with the design
of a robust image-based control scheme using a catadioptric
vision system mounted on a mobile robot. We exploit the fact
that the decoupling property contributes to the robustness of a
control method. More precisely, from the image of a point, we
propose a minimal and decoupled set of features measurable
on any catadioptric vision system. Using the minimal set, a
classical control method is proved to be robust in the presence of
point range errors. Finally, experimental results with a coarsely
calibrated mobile robot validate the robustness of the new
decoupled scheme.

I. INTRODUCTION

There is currently a growing interest in using omnidirec-
tional vision system for mobile robotics [1]. An important
advantage of omnidirectional vision systems over classical
perspective cameras is that the former do not suffer from a
restricted field of view (FOV). This can facilitate landmark
visibility during mobile robot navigation.

Vision-based control of a mobile robot can be applied to
pose stabilization, visual homing and path following. These
applications can require the robot to localize itself in the
environment. Based on the localization approach, several
control techniques have been proposed. To keep a robot
on a desired or predefined path, a homography between
the reference and the current image can be used to define
adequate visual features for navigation [2]. It is also possible
to exploit the epipolar geometry between the reference and
the current image to drive the robot to a desired position [3].
An image memory can be used to guide the robot on a pre-
taught path [4]. In this last application, Cartesian coordinates
of a point centroid have been used as features in the visual
servoing scheme.

Other geometric features have been proposed for robot
visual navigation. A normalized cross correlation can be used
to control the robot heading [5]. The robot can autonomously
move to the desired destination by exploiting the bearing
angle of feature points matched in panoramic images [6].
Polar coordinates of landmarks in omnidirectional images
can be used as inputs for localization in a pose-based control
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scheme [7]. Spherical coordinates of points can be used to
keep a vehicle on a predefined path using a conventional
camera mounted on a pan-tilt head and an omnidirectional
camera [8]: the control using spherical coordinates has been
shown to be robust with respect to (w.r.t.) calibration errors
on omnidirectional vision systems.

This paper deals with an image-based visual servoing
application which consists in positioning a mobile robot
w.r.t. a point using an omnidirectional vision system. The
main problem addressed here is the design of a robust
control scheme. Since the decoupling property has a positive
impact on the robustness of a control method, using the
image of a single point, we propose a decoupled set of
features which ensures a satisfactory robot behavior even
in the case of calibration errors in the robotic platform. The
second section describes the robotic platform and the type of
omnidirectional vision system that can be used as well. In the
latter part of Section II the basic concepts of visual servoing
are reviewed succinctly. Section III exploits the work in [8]
and presents the choice of the set of features used to control
the robot from an initial image to a final image. The set
decouples the control of the robot rotation from the robot
translation. Although the proposed set does not control the
pose of the robot, the set enables a simple pure rotation of
the robot around its inertia axis which is not the case of the
epipolar geometry-based control method proposed in [3]. In
Section IV, using the selected set of features, a classical
control law is shown to be robust in the presence of point
range errors. Finally, Section V presents real experimentsthat
validate the robustness of the proposed decoupled control
scheme w.r.t. both point range and calibration errors.

II. SYSTEM CHARACTERISTICS

A. Mobile robot characteristics

This work focuses on a non-holonomic robot (which is
a differential-drive robot) with the kinematics of unicycle
type (see Fig. 1(a)). As shown in Fig. 1(b), the two control
inputs available are:vr = (υr, ωr) where υr is the linear
velocity andωr is the angular velocity. The robot moves
in a planar workspace. LetFw = (W,x,y, z) be the world
frame. The robot configuration is given byq= (rx, ry, rθ),
where(rx, ry) is the Cartesian position of the robot center
in Fw, andrθ is the robot orientation w.r.t. the world frame
x axis (see Fig. 1(b)). The state equations of the robot are
given by

ṙx = υr cos rθ

ṙy = υr sin rθ

ṙθ = ωr

(1)
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Fig. 1. Visual servoing system. (a) Super scout mobile robot equipped
with a central catadioptric vision system. (b) Robot relevant variables in the
plane.

As shown in Fig. 1(a) and Fig. 2(a), the robot senses its
environment through a wide FOV vision system called cen-
tral catadioptric vision system. The next subsection briefly
presents the principle and the projection model of this type
of vision systems.

B. Central catadioptric vision systems

A central catadioptric vision system consists of a couple
(camera, mirror) which has a single viewpoint [9]. Fig. 2
presents the usual couples (camera, mirror) where the image
of an object consists of the camera image (red rays) of the
reflection (blue rays) of the object into the mirror.
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Fig. 2. Usual couples (camera, mirror). (a) Example of a catadioptric image
formation. (b) Paraboloidal mirror and orthographic camera. (c) Ellipsoidal
mirror and perspective camera. (d) Hyperboloidal mirror and perspective
camera.fm is the mirror focal length anddm is the distance between the
focal points.

The central catadioptric image of an object can be decom-
posed in two steps according to the unified projection model
of catadioptric image formation [10]. Fig. 3(a) shows the
general case of the central catadioptric projection of a feature
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Fig. 3. Central catadioptric image of a point. (a) General case, cut made
perpendicular to the image plane. (b) Paracatadioptric modelwith ξ= 1.

point P, where parametersϕ > 0 and ξ ∈ [0, 1] describe
the mirror shape (see Table I for usual mirrors [11]). The
paracatadioptric case, shown in Fig. 3(b) corresponds to the
coupling of an orthographic camera and a paraboloidal mirror
described byξ= 1. Let Fv be the sensor frame(V,x,y, z)
andFc be the center of projection frame(C,x,y, z) where
C is the unique viewpoint of the vision system. The first
step is the spherical projection ofP onto the unit sphere
S(C,1): ps = P/‖P‖ whereP is the vector coordinates of
P. The pointps is then expressed in the sensor frameFv

and projected onto the catadioptric image planez= ϕ − 2ξ
as follows:

px = psx/(psz + ξ) , py = psy/(psz + ξ) (2)

wherep = (px, py) is the vector coordinates of the projection
of ps = (psx, psy, psz). Note here that we consider a unit
sensor focal length, that isϕ − ξ= 1.

TABLE I

PARAMETERS OF USUAL MIRRORS.

Mirror type ξ ϕ

Paraboloidal 1 1+2fm

Hyperboloidal dm√
d2

m+4f2
m

dm+2fm√
d2

m+4f2
m

Ellipsoidal dm√
d2

m+4f2
m

dm−2fm√
d2

m+4f2
m

In the next section we present a visual servoing scheme
corresponding to our robotic system.

C. Visual servo control

We recall that the interaction matrixLs ∈ R
n×6 related to

a set of featuress ∈ R
n is defined such thaṫs = Lsvc where

vc=(v,ω) ∈ se(3) is the instantaneous camera velocity [12]:
v= (υx, υy, υz) and ω= (ωx, ωy, ωz) are respectively the
translational and the rotational velocities of the camera and
se(3) ≃ R

3 × R
3 is the Lie algebra of the Lie group of

displacementsSE(3).
Visual servoing consists in using data provided by a vision

sensor to control the motion of a dynamic system [13]. The
principle of visual servoing is to regulatee= s − s∗, which
is the error between a current set of visual featuress and a
desired set of featuress∗, to zero. In the center of projection



frame Fc, the regulation can be done using the classical
control law

vc = −λL̂s

+
(s − s∗) (3)

whereλ is a positive gain and̂Ls

+
is the pseudo-inverse of

an approximation of the interaction matrix related tos.
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Fig. 4. Robot and center of projection frames in the ideal case.

In this paper, we consider a positioning task with respect
to a point. For our robotic platform we assume that a vision
system can be ideally placed on top of the robot such that
the center of projection frameFc and the robot frameFr

are aligned as shown on Fig. 4. In this case, since the vision
system is rigidly attached to the robot, the linear and the
angular velocities of the robot correspond to the translation
along the y-axisυy and the rotation about the z-axisωz

respectively (see Fig. 4):

υr = υy, ωr = ωz. (4)

Therefore the appropriate interaction matrix for our visual
servoing system is given by

Ls =
[

Lυy
Lωz

]
. (5)

Since the image of a point enables only to control two DOFs,
it is not possible to control the pose of the robot and the
camera velocity sent to the low level robot controller is given
by

vc = vr = −λL̂s

−1
(s − s∗). (6)

In the next section, we choose a set of two features that
decouples the control of the robot two degrees of freedom
(DOFs).

III. FEATURE MODELING

It is possible to use the two coordinatesp= (px, py) of the
catadioptric image of a point to control the robot two DOFs
υy and ωz. However the corresponding interaction matrix,
obtained from the six DOFs case in [14], is highly coupled:

Lp =

[ ξpxpy

‖P‖ py

−
1+p2

x+p2

y(1−ξ(ξ+λξ))

‖P‖(ξ+λξ) −px

]
, (7)

where ξ is the mirror parameter and
λξ =

√
1 + (1 − ξ2)(p2

x + p2
y).

In the case of a pure rotation of the robot around its inertia
axis, the interaction matrix (7) induces also a translationof
the robot which is not desirable. Indeed, for a180◦ rotation
around the optical axis of a six DOFs manipulator, using
the coordinates of the perspective image of several points
leads to an unachievable motion of the robot [15]. This is the
reason why a decoupled control is desirable. The decoupled

control can be obtained using a partition approach [16],
cylindrical coordinates [17], moment invariants [18] or spher-
ical moments [19].
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Fig. 5. Spherical projection of a point.

A decoupled interaction matrix can be obtained using the
spherical projection of the point object. As shown in Fig. 5,
a point ps = (psx, psy, psz) on a sphere can be minimally
parameterized using its spherical coordinates

s= (φ, θ), with φ= arccos(psz) andθ= arctan(psy/psx).
(8)

By exploiting the coordinatesp= (px, py) of the catadiop-
tric image of the point, it is possible to compute featuress.
Indeed by expressingps as a function ofp from (2) and by
using (8), it is possible to show that

φ= arccos
(

ξ+λξ

p2
x+p2

y+1 − ξ
)

, θ= arctan
(

py

px

)
(9)

whereξ andλξ are defined in (7). From (9), it is important
to note that the sets does not have any singularity in the
image space. Indeed the configuration wherepx = py = 0 in
the catadioptric image plane corresponds to the center of the
dead region in the image space (see Fig. 2(a)), and the dead
region is (of course) not included in the region where the
object is visible.

The pose-based control of a mobile robot using spherical
coordinates of several points has been shown to be robust
to calibration errors on an omnidirectional vision system in
a vehicle prerecorded-path following application [8]. In [8],
the interaction matrix relating the change ofs to the change
of motion in plane (υx, υy and ωz) was presented. In this
paper we do not control the pose of the robot; the appropriate
interaction matrix, related to motionsυy andωz, is given by

Ls =

[
lυ 0

lω,υ −1

]
(10)

where {
lυ = −(sin θ cos φ)/‖P‖
lω,υ = −cos θ/(‖P‖ sin φ),

with ‖P‖ the range or distance of the point from the center
of projectionC.

Note that sinφ 6= 0 in the object visibility region since
sin φ= 0 is equivalent topsx = psy = 0 (see Fig. 5), which
corresponds to centerpx = py = 0 of the dead region in the
catadioptric image plane.



Taking the inverse of the interaction matrix (10) and
plugging it into (6) leads to the ideal control law

{
υy = −λ 1

lυ
(φ − φ∗)

ωz = lω,υ υy + λ(θ − θ∗).
(11)

The decoupling inLs shows that featureθ is the only
feature which is sensitive to the robot rotation around its
inertia axis. Indeed, for a pure rotation of the robot, the value
of φ is constant, i.e.φ= φ∗, from (11) we obtain

υy = 0, ωz = λ (θ − θ∗) . (12)

In addition, in this case (pure rotation), there is no singularity
of the control (12) in the visibility space since the valueθ
is always defined when the object point is visible.

It is important to note that contrary to the work done in [3]
where the image of several points is used, we control neither
the pose of the robot nor the non-holonomic constraint since
we use the image of a single point. However a simple
pure rotation between the current and the desired images
is impossible to realize using theepipolar geometry-based
control law proposed in [3]. This is due to the fact that the
epipoles are not defined in this case.

The interaction matrix (10) loses its rank 2 if and only if
lυ = 0 that is φ= (2k + 1)π/2 or θ= kπ with k ∈ Z. This
corresponds to the cases where the pointP is such that either
Pz = 0 or Py = 0. Using (2), it is possible to show that the
region of rank loss in the image space is defined as follows:

R1 = { (px, py), py = 0 or p2
x + p2

y = 1/ξ2 }. (13)

Fig. 6. RegionR1 in red.

An illustration of R1 is given on Fig. 6 where we can
see that the circle is far from the exploitable space in the
image plane. Altough the linepy = 0 is a serious issue, it is
possible to deal with it easily. Indeed by first controllingωz

using the control law (12), it is always possible to position
the robot so that the image of the point lies in the adequate
half image plane (see Fig. 6) before controlling bothυy and
ωz simultaneously in the image space whereLs is always of
rank 2. Note also that the loss of rank on the linepy = 0 is
due to the nature of our non-holonomic robot, which can be
controlled with only two inputs (υx motion is impossible).

In the next section we analyse the stability of the proposed
control scheme.

IV. ROBUSTNESS ANALYSIS

The interaction matrix (10) depends on the point range
‖P‖ from the center of projection. Since the value of‖P‖

is unknown in practice, we use an estimated valuê‖P‖ which
can be expressed as follows

‖̂P‖= |̂Pz|
√

(Px/Pz)2 + (Py/Pz)2 + 1 (14)

wherePx/Pz = psx/psz andPy/Pz = psy/psz can be mea-
sured, using (2), from the catadioptric image plane.

This section aims at analyzing the robustness of the con-
trol (11) w.r.t. point range estimation errors, that is errors on
the estimation‖̂P‖. In the following, we derive a sufficient
condition for the robustness of the control in the image space.

Here we assume that the interaction matrix never loses
its rank during the servoing, that is we consider the image
space whereLs is always of rank 2. We also suppose that
the point object is visible all times. Assuming that we do
not have neither image processing errors nor vision system
calibration errors, the closed-loop system equation (using the
control law (11)) can be written as:

ė = −λLsL̂s

−1
e (15)

with e= s − s∗,

L̂s

−1
=

[
1/l̂υ 0

l̂ω,υ/l̂υ −1

]
,

where l̂υ = −(sin θ cos φ)/‖̂P‖, l̂ω,υ = −cos θ/(‖̂P‖ sinφ).
The stability of the system (15) can be analysed: in the

ideal case (no errors), (15) becomesė = −λe which means
that the system is globally asymptotically stable (GAS).
Indeed no trajectory will cause feature point to pass into
the dead zone since in the ideal case the system will always
execute the shortest path, i.e. a geodesic on a sphere, from
the initial to the desired (s∗= (φ∗, θ∗)) configurations.

In the case of error on̂‖P‖, the robustness domain of the
control is given by thetheorem 1below. Of course there is
no guarantee that the feature point trajectory will not pass
into the dead zone, but this visibility issue can easily be dealt
with by using path-planning techniques in the image [20].

Theorem 1:the equilibrium pointe= 0 of the system (15)
is GAS in the image space for all range estimateŝ‖P‖ that
satisfy

0 < b1 < ‖̂P‖/‖P‖ < b2,

with b1 = 1 + 2−2
√

a2+1
a2 , b2 = 1 + 2+2

√
a2+1

a2 where
a= − cos θ/(sin φ sin θ cos φ).
The proof of thetheorem 1, given in [21], uses the following
lemma:

Lemma 1: the equilibrium point e= 0 of the system
(15) is GAS in the image space if the symmetric part

Ms =

(
LsL̂s

−1
+

(
LsL̂s

−1
)⊤)

/2 of LsL̂s

−1
is positive

definite.
Proof: [Lemma 1] From Lyapunov theory, the equilib-

rium point e= 0 of the system (15) is asymptotically stable

if LsL̂s

−1
> 0. The real matrixLsL̂s

−1
is given by

LsL̂s

−1
=

[
‖̂P‖/‖P‖ 0

a
(
1 − ‖̂P‖/‖P‖

)
1

]
,



wherea= − cos θ/(sin φ sin θ cos φ).
Since we consider the image space region where the

current interaction matrixLs is always of rank 2, that is
either y < 0 or y > 0 (see Fig. 6), the determinant of

LsL̂s

−1
given by ‖̂P‖/‖P‖ is never nul (|LsL̂s

−1
| 6= 0). In

this case, the equilibrium pointe= 0 is unique. In addition

if LsL̂s

−1
> 0 then for a fixed desired position of the point

in the image spacey < 0 (respectivelyy > 0) the control
converges for any initial position of the point in the image

spacey < 0 (respectivelyy > 0). Therefore ifLsL̂s

−1
> 0,

the asymptotic stability of the equilibriume= 0 is global in
the considered image space.

Since the real matrixLsL̂s

−1
is not symmetric,LsL̂s

−1

is positive definite if and only if its symmetric part

Ms =

(
LsL̂s

−1
+

(
LsL̂s

−1
)⊤)

/2 is positive definite.

Therefore, a sufficient condition for the global asymptotic
stability of the equilibrium pointe= 0 is given by the strict

positiveness of the symmetric matrixMs of LsL̂s

−1
.

As long as the ratio‖̂P‖/‖P‖ lies in the robustness
domain given by the above theorem, for a fixed desired
position of the point in the image spacey > 0 (respectively
y < 0) (see Fig. 6), the control converges from any initial
position of the point in the image spacey > 0 (respectively
y < 0). From a practical point of view the value of̂‖P‖
should not be set constant. Indeed the robustness domain
to point range errors is constrained by the values ofφ
and θ. For example, ifθ= φ= π/4 then a= −1/2 and
0.056 < ‖̂P‖/‖P‖ < 17.94. In the next section, we will
show that the control converges for large errors between the
initial and final images in presence of both point range and
calibration errors.

V. EXPERIMENTAL RESULTS

This section presents relevant experimental results that
validate the robustness of our approach to both modeling
and calibration errors on the visual servoing system. The vi-
sion system intrinsic parameters (principal point coordinates
and focal lengths), obtained using the calibration method
proposed in [22], are given byu0 = 693.60, v0 = 453.14,
fu = 388.40 andfv = 388.67.

Center of projection frame:

Robot frame:

Wheel

υyδ

y

x

x

y
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Fr

Fc

Fig. 7. Robot and center of projection frames in practice.

In order to validate the robustness of our approach to
the robot calibration, we have set rough values for the
parameters of the low level controller of the robot and we
have introduced a misalignment between the robot and the

center of projection frames (see Fig. 7): the shift between
these frames has been roughly estimated toδ= 1 cm.

In addition, for the estimation of̂‖P‖ (see (14)), the value
of |̂Pz| has been set to the constant value 0.8 m which
roughly corresponds to the desired deptĥ|P ∗

z |. Except for
one particular experiment, the value of the gain of the control
(6) has been set toλ= 0.1.

The desired set of featuress∗ has been defined by moving
the robot. Five different initial positions of the robot have
been selected. The behavior of the robot illustrated on the
figures below validates the robustness of the decoupled
scheme to point range and robot calibration errors.

In the first experiment, it is clear from Fig. 8(c)that the
final position of the robot corresponds to the desired position
of the point in the image. Despite the large and abrupt
variations on the visual featuresθ ( see Fig. 8(c) ), the control
sent to the robot does not present oscillations as shown on
Fig. 8(d). The video attached to this paper displays the first
experiment.
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Fig. 8. First case. (a) Initial image. (b) Final image. (c) Errors ons (rad).
(d) Camera velocities (m/s and rad/s).

The abrupt variation on featureθ is due to the low
compensation on the angular velocityωz since lυ and lω,υ

are roughly estimated (see (11)). The low compensation
of the angular velocityωz can also be explained by the
rough approximation of the parameters of the robot low
level controller. For large rotation motions of the robot, the
abrupt variations of featureθ could cause the failure of visual
servoing. We have therefore set the gain of the control to
λ= 0.05 for the second case as shown in Fig. 9. In the
second case, note that the initial image of the point is almost
in the region whereLs can lose its rank (see the line in
Fig. 9(a)). The experiment shows a more smooth variation
on the errors (see Fig. 9(c)) and the velocities (see Fig. 9(d)).
More importantly note also in this case that we have used a
rough approximation of̂‖P‖ while whenθ tends to 0 (i.e.
bothb1 andb2 tend to 1), fromTheorem 1the control is GAS
if the value of ‖̂P‖ is accurately estimated. The robustness
domain to errors on the range estimate is thus larger than
the one given byTheorem 1.



For the last experiment, we have added the follow-
ing errors on the vision system intrinsic parameters:
û0 = u0 − 15%u0, v̂0 = v0 + 17%v0, f̂u = fu + 10%fu and
f̂v = fv + 20%fv. Once again the control converges as
shown on Fig. 10(c) and 10(d).

To sum up, the decoupled control scheme proposed is
robust with respect to both calibration and point range errors.
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Fig. 9. Second case. (a) Initial image. (b) Final image. (c) Errors ons

(rad). (d) Camera velocities (m/s and rad/s).
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Fig. 10. Third case: (a) Initial image. (b) Final image. (c) Errors on s

(rad). (d) Camera velocities (m/s and rad/s).

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have proposed a decoupled scheme for a
robust vision-based control of a mobile robot equipped with
a catadioptric vision system. More precisely, the spherical
coordinates of a point have been used to design a decoupled
visual servoing scheme to position a unicycle with respect to
an object point. Using the new set of features, the control has
been theoretically proved to be GAS in the ideal case, and
robust in the presence of error in the range of the object point.
In practice we have validated the robustness of the control
w.r.t. both point range and calibration errors. Experimental
results demonstrate successful performance. In future work,

it would be interesting to use image path-planning techniques
to keep the feature point in the non-dead zone in the case of
error on the estimated range of the object point.

ACKNOWLEDGMENTS

The authors would like to thank J. Davidson and S.
Candido for their help during experiments.

This work was funded by the INRIA-TALISKER project.

REFERENCES

[1] L. Delahoche, C. Pegard, B. Marhic, and P. Vasseur, “A navigation
system based on an omnidirectional vision sensor,” inIEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, IROS’97, pp. 718–724.

[2] G. Blanc, Y. Mezouar, and P. Martinet, “Indoor navigation of a
wheeled mobile robot along visual routes,” inIEEE Int. Conf. on
Robotics and Automation, 2005.

[3] G. Mariottini, G. Oriolo, and D. Prattichizzo, “Image-based visual
servoing for nonholonomic mobile robots using epipolar geometry,”
IEEE Trans. on Robotics, vol. 23, no. 1, pp. 87–100, February 2007.

[4] A. Diosi, A. Remazeilles, S. Segvic, and F. Chaumette, “Outdoor vi-
sual path following experiments,” inIEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2007.

[5] S. S. Jones, C. Andersen, and J. L. Crowley, “Appearance based
processes for visual navigation,” inIEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 1997.

[6] A. A. Argyros, K. E. Bekris, S. C. Orphanoudakis, and L. E.Kavraki,
“Robot homing by exploiting panoramic vision,”Autonomous Robots,
vol. 19, no. 1, pp. 7–25, 2005.

[7] K. Usher, P. Ridley, and P. Corke, “Visual servoing of a car-like vehicle
- an application of omnidirectional vision,” inIEEE Int. Conf. on
Robotics and Automation, 2003.

[8] D. Burschka and G. Hager, “Vision-based control of mobilerobots,”
in IEEE Int. Conf. on Robotics and Automation, 2001.

[9] S. Baker and S. Nayar, “A theory of catadioptric image formation,” in
IEEE Int. Conf. on Computer Vision, Jan. 1998, pp. 35–42.

[10] C. Geyer and K. Daniilidis, “A unifying theory for central panoramic
systems and practical implications,”European Conference on Com-
puter Vision, vol. 29, pp. 159–179, May 2000.

[11] J. Barreto and H. Araujo, “Geometric properties of central catadioptric
line images,” inECCV, Copenhagen, Denmark, May 2002.

[12] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,”IEEE Trans. on Robotics and Automation, vol. 8,
no. 3, pp. 313–326, Jun. 1992.

[13] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. on Robotics and Automation, vol. 12, no. 3, pp.
651–670, Oct. 1996.

[14] J. Barreto, F. Martin, and R. Horaud, “Visual servoing/tracking using
central catadioptric images,” inInt. Symposium on Experimental
Robotics, Ischia, Italy, Jul. 2002.

[15] F. Chaumette, “Potential problems of stability and convergence in
image-based and position-based visual servoing,” inThe Confluence
of Vision and Control, D. Kriegman, G. Hager, and A. S. Morse, Eds.
LNCIS Series, No 237, Springer-Verlag, 1998, pp. 66–78.

[16] P. Corke and S. Hutchinson, “A new partitioned approachto image-
based visual visual servo control,”IEEE Trans. on Robotics and
Automation, vol. 17, no. 4, pp. 507–515, Aug. 2001.

[17] M. Iwatsuki and N. Okiyama, “A new formulation for visual servoing
based on cylindrical coordinate system,”IEEE Trans. on Robotics,
vol. 21, no. 2, pp. 266–273, Apr. 2005.

[18] O. Tahri and F. Chaumette, “Point-based and region-based image
moments for visual servoing of planar objects,”IEEE Trans. on
Robotics, vol. 21, no. 6, pp. 1116–1127, Dec. 2005.

[19] T. Hamel and R. Mahony, “Visual servoing of an under-actuated
dynamic rigid-body system: an image-based approach,”IEEE Trans.
on Robotics and Automation, vol. 18, no. 2, pp. 187–198, Apr. 2002.

[20] Y. Mezouar and F. Chaumette, “Path planning for robust image-based
control,” IEEE Trans. on Robotics and Automation, vol. 18, no. 4, pp.
534–549, Aug. 2002.

[21] R. Tatsambon Fomena, “Asservissement visuel par projection
sph́erique,” Ph.D. dissertation, Université de Rennes 1, Nov. 2008.
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