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ABSTRACT 

 
A text mining process using association rules generates a very large number of rules. According to 
experts of the domain, most of these rules basically convey a common knowledge, i.e. rules which 
associate terms that experts may likely relate to each other. In order to focus on the result interpretation 
and discover new knowledge units, it is necessary to define criteria for classifying the extracted rules. 
Most of the rule classification methods are based on numerical quality measures. In this chapter, we 
introduce two classification methods: The first one is based on a classical numerical approach, i.e. using 
quality measures, and the other one is based on domain knowledge. We propose the second original 
approach in order to classify association rules according to qualitative criteria using domain model as 
background knowledge. Hence, we extend the classical numerical approach in an effort to combine data 
mining and semantic techniques for post mining and selection of association rules. We mined a corpus of 
texts in molecular biology and present the results of both approaches, compare them, and give a 
discussion on the benefits of taking into account a knowledge domain model of the data. 
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1. INTRODUCTION 
 

From the data mining point of view, texts are complex data giving raise to interesting challenges. First, 
texts may be considered as weakly structured, compared with databases that rely on a predefined schema. 
Moreover, texts are written in natural language, carrying out implicit knowledge, and ambiguities. Hence, 
the representation of the content of a text is often only partial and possibly noisy. One solution for 
handling a text or a collection of texts in a satisfying way is to take advantage of a knowledge model of 
the domain of the texts, for guiding the extraction of knowledge units from the texts. 

In this chapter, we introduce a knowledge-based text mining process (KBTM) relying on the knowledge 
discovery process (KDD) defined in [Fayyad et al., 1996]. The KBTM process relies on an interactive loop, 
where the analyst – an expert of the text domain – controls and guides the mining process. The objective 
of the mining process is to enrich the knowledge model of the text domain, and, in turn, to improve the 
capability of the knowledge-based text mining process itself. 

Following a natural language processing of the texts described in [Cherfi et al., 2006], the text mining 
process (also denoted by TM in the following) is applied to a binary table Texts × Keyterms, and 
produces a set of association rules (AR in the following). The set Keyterms includes a set of keyterms 
giving a kind of summary of the content of each text. The extraction of association rules is carried out 
thanks to a frequent itemset algorithm (namely the Close algorithm [Pasquier et al., 1999]). Association 
rules show some advantages, among which the facts that AR are easily understandable and that they 
highlight regularities existing within the set of texts. 

Two text mining approaches based on association rules are studied hereafter. The first approach is 
based on the use of statistical quality measures for classifying the extracted rules [Cherfi et al., 2006]. A 
set of five quality measures is introduced, each of them expressing some particular aspects of the texts: 
e.g. rare keyterms, functional dependencies, or probabilistic correlations between keyterms. One 
limitation of this approach is due to the numerical characteristics of the classification process, which takes 
into account the distribution of the keyterms, and ignores the semantics carried by the keyterms. By 
contrast, a second approach is based on a domain knowledge model of the texts which is used to classify 
the extracted association rules. The knowledge model is a pair (K, ⊑) where K is a finite set of keyterms 
and ⊑ is a specialisation relation (i.e., a partial ordering). Hence, the quality of a rule depends on the 
conformity of the rule with respect to the knowledge model: a rule is interesting if it includes semantic 
relations that are not already known in the knowledge model. Thus, the knowledge model is used to guide 
the interpretation and the classification of the extracted association rules. This KBTM approach is original 
and relies on a qualitative approach rather than on a more classical approach based on statistical quality 
measures. Two experiments show that the KBTM approach gives substantial and good quality results, 
opening new perspectives in the difficult field of text mining. The objective of these experiments is to 
show how far our proposed Conformity measure is consistent with the text mining task in a specific 
domain (here molecular biology). 

This chapter is organised as follows. Firstly, we introduce the context of association rule extraction for 
text mining, and we present and discuss an example, based on statistical quality measures. Then, we 
introduce the principles of the KBTM process. We analyse thanks to an example –the same as in the first 
part of the chapter – the KBTM process for the so-called simple and complex extracted AR. The following 
section sets up an experiment and a qualitative analysis based on real-world collection of texts with the 
help of an analyst. The AR are classified according to the conformity measure, in contrast with five 
statistical measure classifications. We continue the chapter with a discussion on the benefits of the KBTM 
approach, and we mention some related work. The chapter ends with a conclusion and draws future work. 

 



2. EXTRACTION OF ASSOCIATION RULES FOR TEXT MINING 
 
2.1. Text processing for data mining preparation 
 
In our experiments, we dealt with a collection of texts (hereafter called corpus) in molecular biology. 
Basically, we start with a set of bibliographical records characterised by contextual metadata, e.g., title, 
author(s), date, status (whether published or not), keywords, etc. Hereafter, we explain how we get the 
keyterms associated with each text. 

 
Extracting Textual Fields in the Sources: A first processing of this collection of records consists in 

extracting two textual fields, the title and the abstract. 
 
Part-of-speech (POS) Tagging: It is a natural language processing (NLP) technique which associates 

with each word of the texts a linguistic tag corresponding to its grammatical category (noun, adjective, 
verb, etc.). A POS-tagger needs a learning phase with a manually tagged vocabulary. A POS-tagger 
basically uses a statistical model to learn how to predict the category of a word with respect to the 
preceding word categorisation. Several taggers exist for English and show high performance of 
correctness [Paroubek, 2007]. For example, sentence (1) extracted from one of our texts gives the tagged 
sentence (2): 

 
1. Two resistant strains were isolated after four rounds of selection. 
2. Two/CD resistant/JJ strains/NNS:pl were/VBD isolated/VBN after/IN four/CD rounds/NNS:pl 

of/IN selection/NN. 
 
Terminological Indexing: In our experiments, the texts have been processed and represented by a set 

of keyterms. A keyterm is a noun phrase (i.e., one to many words) of our vocabulary which can be 
associated with a domain concept of our knowledge model, thus, it ensures the transition from the 
linguistic to the knowledge level. 

 
Keyterm Identification and Variants: We have used the FASTR [Jacquemin, 1994] terminological 

extraction system for identifying the keyterms of our vocabulary in the text. It allows us to recognise a 
keyterm in several variant forms. For example, the expression “transfer of capsular biosynthesis genes” is 
considered as a variant form of the keyterm “gene transfer” which belongs to the vocabulary. However, 
all the variants are not acceptable; NLP meta-rules are used to keep the variants preserving the initial sense 
of the keyterm. The keyterm variants are identified using the meta-rules. A meta-rule is a transformation 
rule operating on the grammatical description of a keyterm and the linguistically authorised variation of 
this description. For example, the expression “transfer of genes” is recognised as a variation of the 
keyterm “gene transfer” (which belongs to the vocabulary) by a permutation meta-rule of “gene” and 
“transfer”. The expression “transfer of capsular biosynthesis genes” is recognised as well by applying an 
insertion meta-rule (of “capsular biosynthesis”). In this way, the NLP keyterm identification contributes 
to reduce the word dispersion in the description of a text by unifying variants to a single keyterm. 

 
 
 
 



2.2. Association Rules and Statistical Quality measures  
 
Let T = {t1 , t2, ..., tm} be a set of m texts and K = {k1 , k2 , ... , kn} a set of n keyterms associated with 
these texts. An association rule is a weighted implication such as A → B where A = {k1 , k2, ..., kp} (the 
body ) and B = {kp+1 , kp+2, ..., kq} (the head). The rule A → B means that if a text contains {k1 , k2, ..., 
kp} then it tends to contain also {kp+1 , kp+2, ..., kq} with a probability given by the confidence of the rule. 
Several algorithms aim at extracting association rules: Apriori [Agrawal et al., 1996] or Close [Pasquier 
et al., 1999] that will be used hereafter. The support and the confidence are two quality measures 
related to association rules that are used to reduce the number of the extracted units, hence reducing the 
complexity of the extraction process. The support of a rule A → B measures the number of texts 
containing both keyterms of A and B. The union of the keyterm sets A and B is denoted by A ⊓ B. The 
support may be normalised by the total number of texts. The confidence of a rule is defined by the ratio 
between the number of texts containing the keyterms in A ⊓ B, and the number of texts containing the 
keyterms in A. The confidence is seen as the conditional probability P(B/A). The confidence of a rule 
measures the proportion of examples and counterexamples of the rule. A counterexample states that there 
exist texts having all the keyterms of A, but not necessarily all the keyterms of B. When the confidence 
of a rule is 1, the rule is exact, otherwise it is approximate. Two thresholds are defined, σs for the 
minimum support, and σc for the minimum confidence. A rule is valid whenever its support is greater 
than σs and its confidence is greater than σc. 

Considering a rule such as A → B, if A and B are frequent keyterm sets (i.e., their support is above the 
σs threshold), then they are shared by a large proportion of texts, and the probabilities P(A), P(B), and 
P(A ⊓ B) are high (here probability stands for the number of texts containing a given keyterm set out of 
the total number of the texts). The importance of such frequent keyterm sets is rather small, from the 
KDD point of view. By contrast, when A and B are rare, i.e. they have a low probability, then these 
keyterm sets are shared by a low number of texts, i.e. the keyterms in A and B may be related in the 
context of the mined text set. However, the support and the confidence are not always sufficient for 
classifying extracted association rules in a meaningful way. This reason leads to introduce a number of 
other statistical quality measures attached to the rules enlightening some particular aspects on the rules 
[Lavrac et al.,1999]. Five of these quality measures are presented hereafter, and have been used in our 
two experiments. 

 
1. The interest measures the degree of independence of the keyterm sets A and B, and is defined by 

interest(A → B) = P(A ⊓ B)/P(A) × P(B). The interest is symmetrical (interest(A → B = 
interest(A → B)) and has its range in the interval [0, +∞[. It is equal to 1 whenever the “events” 
A and B are statistically independent. The more A and B are incompatible, the more P(A ⊓ B), 
and hence the interest, tend to 0; 

2. The conviction allows us to select among the rules A → B and A → B the one having the less 
counterexamples. The conviction is defined by conviction(A → B) = P(A) × P(¬B)/P(A ⊓ ¬B). 
The conviction is not symmetrical, and has its range in [0, +∞[. It denotes a dependency between 
A and B whenever it is greater than 1, independence whenever it is equal to 1, and no dependency 
at all whenever it is lower than 1. The conviction is not computable for exact rules because P(A 
⊓ ¬B) is equal to 0 (there is no counterexample for exact rules); 

3. The dependency measures the distance between the confidence of the rule and the independence 
case: dependency(A → B) = |P(B/A) −P( B)|. This measure has its range in [0, 1[, where a 



dependency close to 0 (respectively to 1) means that A and B are independent (respectively 
dependent); 

4. The novelty is defined by novelty(A → B) = P(A ⊓ B) − P(A) × P(B), and has its range within 
]−1, 1[, with a negative value whenever P(A ⊓ B) < P(A) × P(B). The novelty tends to −1 for 
rules with a low support, i.e. P(A ⊓ B) ≃ 0. The novelty is symmetrical although the rule A → B 
may have more counterexamples than the rule B → A. It leads to the definition of the following 
measure; 

5. The satisfaction measure is defined by satisfaction(A → B) = P(¬B) − P(¬B|A)/P(¬B) . The 
satisfaction has its range in [−∞, 1], and is equal to 0 whenever A and B are independent. The 
satisfaction cannot be used for classifying exact rules because, in this case, its value is equal to 
1. 

 
2.3. Using Quality Measures on a Small Example 
 
An example borrowed from [Pasquier et al., 1999] will be used to illustrate the behaviour of the statistical 
quality measures introduced above. Let us consider six texts {t1, t2, t3, t4, t5, t6} described by a set of five 
keyterms, namely {a, b, c, d, e}. So the text t1 is described by the keyterm set {b, c, e} (see Table 1), and 
hereafter more simply denoted by the bce. The extraction of the association rules has been performed 
with the Close algorithm [Pasquier et al., 1999]. Twenty association rules, numbered r1 , . . . , r20 , have 
their support greater than the threshold σs = 1/6 (where 6 is the total number of texts), and their 
confidence is greater than σc = 0.1 (or 10%). The set of extracted association rules is given in Table 2. 
The rules have been extracted from closed frequent keyterm sets. The Close algorithm is based on 
levelwise search of closed frequent keyterm sets in the binary table Texts × Keyterms, starting from the 
smallest closed keyterm sets {ac, be} to the largest closed keyterm set abce. A closed frequent keyterm 
set corresponds to a maximal set of keyterms shared by a given subset of texts, with a support greater 
than the σs threshold. Once the closed frequent keyterm sets have been extracted, the association rules of 
the form P2 → P1 \ P2 may be derived, where for example b → ce stands for “b → bce \ b”. The 
extracted association rules A → B have a minimal body, i.e. A corresponds to a generator, and a maximal 
head, i.e. B corresponds to a closed set for the Galois connection associated with the relation Texts × 
Keyterms (see for example [Bastide et al., 2000]). For example, the association rules b → e and b → c 
∧ e are extracted, because the corresponding keyterm sets be and bce are closed sets in the Galois 
connection. 
 
Table 1.The textual database 
 
Texts Keyterms 
t1 acd 
t2 bce 
t3 abce 
t4 be 
t5 abce 
t6 bce 
 
 
 



Table 2.The set of 20 valid AR 
 
id Rule id Rule 
r1 b → e r11 a → c 
r2 b → c ∧ e r12 b ∧c → a ∧ e 
r3 a ∧b → c ∧ e r13 d → a ∧ c 
r4 a → b ∧ c ∧ e r14 c → b ∧ e 
r5 b ∧ c → e r15 c → a ∧ d 
r6 b → a ∧c ∧ e r16 c → a ∧ b ∧ e 
r7 e → b ∧ c r17 c ∧ e → b 
r8 a ∧e → b ∧ c r18 c ∧e → a ∧ b 
r9 a → c ∧ d r19 e → b 
r10 e → a ∧ b ∧ c r20 c → a 

 
The classification of the rules according to the different quality measures is given in Table 3. In each 

column of the table, the rules are classified according to the value of the measure in a decreasing order. 
Such a rule classification may be presented to an analyst, either for the whole set of measures or only one 
particular measure. An algorithm for classifying extracted association rules according to these quality 
measures (and their roles) is proposed in [Cherfi et al., 2006]. 
 
Table3.Statistical measures for the 20 valid AR in a decreasing order 

 
id support id  confidence id interest id conviction id dependence id novelty id satisfaction 
r1 5 r1 1.000 r9 2.000 r7 1.667 r13 0.500 r1 0.139 r1 1.000 
r2  5 r3 1.000 r13 2.000 r2 1.667 r3 0.333 r19 0.139 r3 1.000 
r6 5 r5 1.000 r3 1.500 r12 1.333 r8 0.333 r2 0.111 r5 1.000 
r7 5 r8 1.000 r8 1.500 r18 1.333 r1 0.167 r3 0.111 r8 1.000 
r10 5 r11 1.000 r12 1.500 r9 1.250 r5 0.167 r5 0.111 r11 1.000 
r14 5 r13 1.000 r18 1.500 r20 1.250 r9 0.167 r7 0.111 r13 1.000 
r15 5 r17 1.000 r1 1.200 r6 1.111 r11 0.167 r8 0.111 r17 1.000 
r16 5 r19 1.000 r2 1.200 r10 1.111 r12 0.167 r9 0.111 r19 1.000 
r19 5 r2 0.800 r5 1.200 r16 1.111 r17 0.167 r11 0.111 r2 0.400 
r20 5 r7 0.800 r6 1.200 r15 1.042 r18 0.167 r12 0.111 r7 0.400 
r5 4 r14 0.800 r7 1.200 r4 1.000 r19 0.167 r13 0.111 r12 0.250 
r12 4 r4 0.667 r10 1.200 r14 0.833 r2 0.133 r17 0.111 r18 0.250 
r17 4 r20 0.600 r11 1.200 r1 0.000 r7 0.133 r18 0.111 r9 0.200 
r18 4 r12 0.500 r15 1.200 r3 0.000 r20 0.100 r20 0.111 r20 0.200 
r4 3 r18 0.500 r16 1.200 r5 0.000 r6 0.067 r6 0.056 r6 0.100 
r9 3 r6 0.400 r17 1.200 r8 0.000 r10 0.067 r10 0.056 r10 0.100 
r11 3  r10 0.400 r19 1.200 r11 0.000 r16 0.067 r16 0.056 r16 0.100 

r3 2 r16 0.400 r20 1.200 r13 0.000 r14 0.033 r15 0.028 r15 0.040 
r8 2 r9 0.333 r4 1.000 r17 0.000 r15 0.033 r4 0.000 r4 0.000 
r13 1 r15 0.200 r14 0.960 r19 0.000 r4 0.000 r14 -0.028 r14 -0.200 

 



3. CONFORMITY OF AN ASSOCIATION RULE WITH RESPECT TO A KNOWLEDGE 
MODEL 
 
3.1. Conformity for a Simple Rule 
 
Definition 1 (Knowledge Model) 
A knowledge model, denoted by (K, ⊑), is a finite, directed graph with K standing for the set of vertices 
(the keyterms), and the relation ⊑ defining the edges of the graph and the partial ordering over the 
keyterms in K. For each x, y ∈ K, x ⊑ y means that each instance of the keyterm concept x is also an 
instance of the keyterm concept y. 

 
The principle of classifying AR according to their conformity with a knowledge model is stated as 

follows: we assign a high value of conformity to any association rule A → B that is “represented” in 
(K, ⊑) with a relation A ⊑ B existing between the keyterms ai ∈ A and bj ∈ B, i, j ≥ 1 . We suppose in 
the following of this section that the rules are simple in the sense that their body and head are restricted to 
a single keyterm, for example b →e. The so-called complex rules where the body and/or the head are 
composed of more than one keyterm are considered in section 3.4. 
 
Definition 2 (Conformity for a Simple AR with the Knowledge Model) 
Let k1, k2 be in K, and let k1→k2 be a valid AR. The conformity measure of k1→k2 with (K, ⊑) is defined 
by the probability of finding out a path from k1 to k2 – called hereafter the probability transition from k1 
to k2 – in the directed graph of (K, ⊑). This path can be composed of one to several edges.  

 
If we consider that updating the knowledge model consists in introducing new keyterms and new 

relations between keyterms in K, then an association rule x→y is conform to (K, ⊑) (i.e., it has a high 
value of conformity) if the relation x ⊑ y exists in (K, ⊑). Otherwise, the rule is not conform to the 
knowledge model (i.e., its conformity value is low). Indeed, we have to notice that a rule x→y extracted 
within the text mining process is not added to (K, ⊑) without the control of the analyst in charge of 
updating a knowledge model of his domain. Any knowledge unit update is supervised by the analyst. The 
computation of the conformity is based on the principles of the spreading activation theory [Collins & 
Loftus,1975] stating that the propagation of an information marker through the graph of the knowledge 
model from a given vertex, say k1 , to another vertex, say k2 , relies on the strength associated to the 
marker. The value of the strength depends on: (i) the length of the path, and (ii) on the number of 
reachable keyterms starting from k1 in (K, ⊑). The strength of the marker monotonically decreases with 
respect to these two factors. 
 
Definition 3 (Calculation of the Conformity Measure for Simple Rules) 
The conformity of a simple rule k1→k2 is defined as the transition probability from the keyterm k1 to the 
keyterm k2 , and is dependent on the minimal path length between k1 and k2 , and the centrality of k1 in 
(K, ⊑) which depends on how many keyterms are related to k1 in (K \ k1). 

 
 
 
 
 



3.2. Transition Probability 
 
Given the domain knowledge model (K, ⊑), a probability transition table is set and used as a basis of the 
conformity calculation. The probability transition of ki and kj depends on the minimal distance d(ki, kj) 
between a keyterm ki and a keyterm kj in (K, ⊑). We distinguish two particular cases: 
 

1. For each ki, d(ki,ki) = 1 in order to take into account the reflexivity of the relation ⊑, and to avoid 
abnormally high probabilities in a case where there is no outgoing edge from ki (as illustrated by 
the vertex c in Figure 1); 

2. If it does not exist a path from a keyterm ki to a keyterm kj , then we set a “minimal” (non zero) 
transition probability by using d(ki,kj) = 2N+1, where N is the cardinal of the set of keyterms in 
K. 

 
The transition probability from ki to kj , denoted by Cty(ki,kj), defines the Conformity measure of the 

rule ki→kj , and relies on the product of two elements: (i) the distance from ki to kj , and (ii) a 
normalisation factor, denoted by δ(ki ). Moreover, two additional principles are used: 

 
1. The higher the distance between two keyterms ki and kj is, the lower the conformity for ki→kj is; 
2. The normalisation factor of a keyterm ki depends on all the keyterms in K, either they are 

reachable from ki or not. Putting things altogether, the formula for calculating the conformity for 
a simple rule is stated as follows: Cty(ki,kj) = [d(ki,kj) × δ(ki)]-1 where the normalisation factor of 
ki is: δ(ki) =  Σx∈K 1/d(ki,x). 

 
Hence, δ(ki) depends on the number of outgoing edges from ki in K: the higher the number of outgoing 

edges from ki is, the lower δ(ki) is. In accordance, when there is no outgoing edge from a keyterm ki; this 
keyterm ki becomes “predominant” because the highest transition probability for ki is the reflexive 
transition as d(ki,ki) = 1. The normalisation factor δ(ki) is computed only once for each keyterm ki of the 
knowledge model, and the following equation holds: Σx∈K Cty(ki,x) = 1. 
 
3.3. A Small Example for Simple AR 
 
 

 

 
Figure 1. The knowledge model K. 
 



Let Figure 1 be an example of a knowledge model, where an edge between ki and kj vertices is interpreted 
as the specialisation relation ki ⊑ kj . Based on this model, we may compute the conformity related to each 
transition as shown in Table 4. Next, we provide details for the computation of the conformity measure 
for two examples: firstly between a and c where there exists a path in the model, and secondly between c 
and d, where a path is missing in (K, ⊑). 

 
Cty(a, c)  = [d(a,c) × Σx∈{a,b,c,d,e} 1/d(a,x)]-1 

= [d(a,c) × (1/d(a,a) + 1/d(a,b) + 1/d(a,c)+ 1/d(a,d) + 1/d(a,e))]-1 
= [3 × (1 + 1 + 1/3 + 1 + 1/2)]-1 = 2/23 = 0.09 

 
Cty(c, d)  = [d(c,d) × Σx∈{a,b,c,d,e} 1/d(c,x)]-1 

= [d(c,d) × (1/d(c,a) + 1/d(c,b) + 1/d(c,c)+ 1/d(c,d) + 1/d(c,e))]-1 
= [11 × (1/11 + 1/11 + 1 + 1/11  + 1/11)]-1 = 1/15 = 0.07 

 
Table4.The conformity scores with the model (K, ⊑) of Figure 1 

 
→ a b c d e    Σ 
a 0.26 0.26 0.09 0.26 0.13    1 
b 0.03 0.37 0.19 0.03 0.37    1 
c 0.07 0.07 0.73 0.07 0.07    1 
d 0.07 0.07 0.07 0.73 0.07    1 
e 0.04 0.04 0.44 0.04 0.44    1 

 
Once the computation of the Table 4 is completed, the conformity for each simple rule ki→kj is given 

by looking up to the corresponding row i and column j of this table. From the previous example given in 
Table 2: r1, r19 and r11, r20 are two pairs of symmetrical simple rules. Hence, the Table 4 gives their 
conformity: 

 
(r19) : e→b with Cty(r19 ) = 0.04    (r20) : c→a with Cty(r20 ) = 0.07 
(r1) : b→e with Cty(r1 ) = 0.37    (r11) : a→c with Cty(r11 ) = 0.09 
 
According to the conformity measure – the classification of the rules is presented in the increasing 

order – the interesting rules have the lowest values in conformity with (K, ⊑). For the four previous 
simple rules, the classification is established as follows: {r19 , r20 , r11 , r1 }.  

The rule r11 (in 3rd position in the classification), is already known in (K, ⊑): its conformity is low 
because the distance between the two vertices (a and c) is the longest one in (K, ⊑). The first two rules r19 
and r20 possibly could enrich the model under the supervision of the analyst. It should be noticed that 
these four rules are classified at very different ranks depending on the statistical measures. Likely because 
we use an extra knowledge source (K, ⊑), along with the textual database used for the classification in 
Table 3. 

If an analyst studies the rules sequentially, following any statistical measure, he may be overwhelmed 
by rules which reflect knowledge already known in (K, ⊑ ). Moreover, a major knowledge loss occurs 
when a number of extracted rules containing new pieces of interesting knowledge are classified at the 
bottom following the statistical classification lists. On the contrary, the classification given by the 
conformity measure may draw the attention of the analyst on the possible enrichment of the current 
domain model (K, ⊑) with interesting extensions and modifications. 



 
3.4. Conformity for Complex Rules 
 
The complex rules have their left and/or right parts composed of more than one keyterm. Three different 
kinds of rules may be distinguished. The first is called a 1—m rule: k1→k2 ∧ ... ∧ km+1 with m ≥ 2, and it 
is composed of one keyterm on the left part and its right part has at least two keyterms. The second is 
called a n—1 rule: k1 ∧ ... ∧ kn→kn+1 with n ≥ 2 that has its left part composed of at least two keyterms 
and a right part with a single keyterm. Finally, an n—m rule: k1 ∧ ... ∧ kn→kn+1 ∧ ... ∧ kn+m where both 
(n, m) ≥ 2 . We generalize the conformity measure for complex rules by examining its definition for the 
three kinds (respectively, 1—m, n—1, and n—m) AR. 

 
1—m rules. Let us consider the example of a 1—2 rule: R1 : x→y ∧ z. Following predicate logic, R1 

can be rewritten in: ¬x ∨ (y ∧ z) = (¬x ∨ y) ∧ (¬x ∨ z). This rule can be normalised in a clausal form and 
decomposed into a conjunction of simple rules: R1 = (x→y) ∧ (x→z). Accordingly, the rule R1 is in 
conformity with (K, ⊑) if each simple rule of the decomposition is in conformity with (K, ⊑). The 
conformity for R1 is then defined by: 

 
Cty(R1 : x→y ∧ z) = min(Cty(x→y), Cty(x→z)) 
 
The conformity measure range stands in [0,1[. The min function ensures that if at least one simple rule 

has a low conformity measure, then the complex rule has also a low conformity measure, i.e., the rule 
may contain some new information for updating (K, ⊑). Conversely, if all the simple rules have a high 
conformity measures, i.e., if they all are conform to the model (K, ⊑), then R1 is also considered to be 
conform to (K, ⊑). 

 
n—1 rules. Let us consider the example of the 2—1 rule R2: x ∧ y→z. Following predicate logic, R2 

can be rewritten in: ¬(x ∧ y) ∨ z = (¬x ∨ ¬y) ∨ z= (¬x ∨ y) ∨ (¬y ∨ z). This rule can be decomposed 
into a disjunction of two simple rules: R2 = (x→z) ∨ (y→z). Thus, the rule R2 is in conformity with (K, ⊑) 
if one of the simple rules of the decomposition is in conformity with (K, ⊑). The conformity for R2 is then 
defined by: Cty(R2 : x ∧ y →z) = max(Cty(x →z), Cty(y →z)). The max function ensures that if at 
least one simple rule has a high conformity measure, then the complex rule has also a high conformity 
measure, i.e., (K, ⊑) already contains the information carried out by R2. Conversely, if all the simple rules 
have a low conformity measure, i.e., if there is no simple rule that is conform to the model (K, ⊑), then R2 
is also considered as being not conform to (K, ⊑). 

 
n—m rules. Following the same two ideas, a n—m rule is considered as a conjunction of disjunction 

of simple rules. The 3—2 rule R3 : x ∧ y ∧ z →v ∧ w can be decomposed into [(x → v) ∨ (y → v) ∨ 
(z → v)] ∧ [(x → w) ∨ (y → w) ∨ (z → w)]. Hence, the conformity for R3 is defined by: min(max(Cty(x 
→v), Cty(y → v),  Cty(z →v)), max(Cty(x →w), Cty(y →w), Cty(z →w))) and can be generalized for 
all simple and complex rules R into: 

 

  

 

Cty(R : x1 ∧...∧ xn → y1 ∧...∧ ym ) = minj=1
m (maxi=1

n (Cty(xi ,x j )))
 

 
In doing so, we have to mention that the combination of min and max in the conformity measure for 

complex rules may lead to loose the fact that some keyterms for R, among all others, are related in (K, ⊑). 



Since other relations are absent in (K, ⊑), R should be presented to the analyst. This case is illustrated by 
the following rule r12: 

Cty(b ∧ c →a ∧ e)  = min(max(Cty(b, a), Cty(c, a)), max(Cty(b, e), Cty(c, e)))  
    = min((max(0.03, 0.07), max(0.37, 0.07)))  
    = min(0.07, 0.37) = 0.07 

 
3.5. A Small Example for Complex AR 
 
Given (K, ⊑) in Figure 1, the Table 5 shows the classification of the 20 valid AR extracted – 16 complex 
and 4 simple – in an increasing order according to their conformity with (K, ⊑). We notice that the 
conformity classification for complex rules is, as we expected, different from the classification with the 
statistical measures given in Table 3. The difference is due to the use of an extra knowledge source (K, ⊑) 
for the former classification, rather than the text collection only as for the latter classification. The next 
section gives the main results of a qualitative analysis on real-word corpus. We follow the same principle 
as used for the simple example: by comparing conformity versus statistical measure classifications1

id Rule Conformity 

, and 
by considering the analyst’s perspective on the appropriate knowledge units carried by the rules. 

 
Table5.Conformity of the 20 AR in Table 2 with the model (K, ⊑) depicted in Figure 1 
 

id Rule Conformity 
r6 b → a ∧c ∧ e 0.03 r18 c ∧ e → a ∧ b 0.07 
r7 e → b ∧ c 0.04 r20 c → a 0.07 
r10 e → a ∧ b ∧ c 0.04 r9 a → c ∧ d 0.09 
r19 e → b 0.04 r4 a → b ∧ c ∧ e 0.09 
r13 d → a ∧ c 0.07 r11 a → c 0.09 
r14 c → b ∧ e 0.07 r2 b → c ∧ e 0.19 
r15 c → a ∧ d 0.07 r3 a ∧ b → c ∧ e 0.19 
r16 c → a ∧ b ∧ e 0.07 r8 a ∧ e → b ∧ c 0.26 
r17 c ∧ e → b 0.07 r5 b ∧ c → e 0.37 
r12 b ∧ c → a ∧ e 0.07 r1 b → e 0.37 

 
4. APPLICATION ON MOLECULAR BIOLOGY CORPUS 
 
4.1. Description of the Experiment 
 
On the one hand, there is a corpus of 1361 scientific paper abstracts holding on molecular biology2

                                                      
1 The statistical measure classification is detailed in [Cherfi et al., 2006], where an algorithm is proposed and an 
evaluation is carried out by an analyst –expert in molecular biology. 
2 The corpus is collected from the Pascal-BioMed documentary database of the French institute for scientific and 
technical information (INIST) 

 of 
about 240,000 words (1.6 M-Bytes). The theme of the texts is the phenomenon of gene mutation causing 
a bacterial resistance to antibiotics. The interpretation results from this specific domain needs a high 
degree of human expertise. On the other hand, there is a domain ontology – a set of semantically related 
concepts – used as a knowledge model (K, ⊑). The concepts of the ontology are the correct keyterms of 



the domain and constitute the pieces of information we mine in the texts. Moreover, we assume that 
cooccurrence of the keyterms in a text reflects a semantic link between keyterms [Anick & Pustejovsky, 
1990]. We used UMLS [UMLS, 2000] restricted to the keyterms of the domain and all their parent 
keyterms represented by the specialisation relation (IsA). A keyterm is a noun phrase in the domain 
ontology which can be associated to a concept, and thus, it ensures the transition from the linguistic to the 
knowledge level. In this way, the corpus has been indexed with 14,374 keyterms, including 632 different 
keyterms. The minimal support σs for the AR extraction is set to 0.7% – occurring, at least in 10 texts – 
and the minimal confidence σc is set to 80%. We obtain 347 valid AR, including 128 exact rules. From 
the set of 347 rules, we kept 333 AR which do not deal with ambiguities in the keyterm meaning – two 
or more concept identifiers (CUI) in the UMLS for the same keyterm. Thus, we discarded 14 AR, and 
there are 510 different concepts remaining (from 632 original ones). When the 510 concepts are 
augmented with their IsA-parents, K is composed of 1,640 vertices (concepts) and 4178 edges (⊑ 
relations). Among them, concepts appear 364 times in the 333 AR. There are 53 concepts in common 
with K (i.e., 56%), whereas 41 concepts are absent in K (i.e., 44%) out of the 94 different concepts from 
the AR set. There is a total number of 2,689,600 transitions probabilities computed from the 510 
keyterms in K. The number of transition probabilities stored for the calculation in the 333 AR is: 
419,906. The conformity computation operates 739 comparisons (min or max) for the probability 
transitions, yielding a total number of 831 values – with 108 ≠ 0 (i.e., 13%) and 21 different transitions, 
including Cty = 0. Finally, the conformity value range is [0, 0.231] with 18 different measure values and 
75 out of 333 rules have their Cty > 0. We have to notice that the conformity measure is set to 0 for 
keyterms that does not appear in the (K, ⊑) rather than a minimal probability as stated in section 3.2, 
because the automatic computation of the probability transitions for (K, ⊑) is done once and regardless of 
the corpus. Finally, there are four classes of AR in the 333 set: 45 (1—1) simple rules (i.e., 13.51%), 5 
(1—n) complex rules (i.e., 1.5%), 250 (n—1) complex rules (i.e., 75.08%), and 33 (n—m) complex 
rules (i.e., 9.9%). Table 6 summarizes these results. 

 
Table6.Results on the model (K, ⊑) and the rule set extracted from our corpus 
 
333 AR set # concepts # different concepts 
 364 94   
(K, ⊑) model # concepts # concepts (Is-A augmented) 
 510 1640   
Transition probability # values # non-zero values   
 831 108 (13%)   
AR class 1—1 1—n n—1 n—m 
 45 5 250 33 

 
4.2. Quality Analysis of AR rankings in the KBTM Process 
 
The analysis is conducted as follows: For each rule in the four AR classes (1—n, 1—n, etc.), we compare 
its conformity measure, its statistical measures and whether or not it belongs to three groups based on the 
analyst’s expertise: (i) interesting rules, (ii) relating known meronyms (especially hypernyms) and 
synonyms, and (iii) useless rules. Thanks to the conformity measure, we focus on a subset of 258 rules 
(i.e., 77.5%) over the 333 rule set that are not conform to (K, ⊑) – as they relate keyterms that either are 
absent in K or isolated concepts following the relation ⊑. This gives a significant improving rate of 22.5% 



of extracted AR that are candidate to be discarded from the rule set. The discarded rules may be examined 
by their own in a further analysis (see summary in Table 7). 

 
Table7.Results of the subset presented to the domain expert for qualitative analysis 
 
AR category # AR Percentage (%) 
interesting (Cty=0) 258 77.5 
useless (Cty>0) 75 22.5 
Total 333 

 
In the following, and without exhaustiveness, we report the outcome through some examples: Firstly, 

we focus on two close n–1 rules interesting according to the analyst: one is conform and the other is not 
conform with regards to (K, ⊑). Next, we show and comment one simple AR belonging to the analyst’s 
class: relating known keyterms. We end with an example of a useless AR according to the analyst. Some 
rules are identified as interesting by the analyst. For example, the mutation of the parC gene is interesting 
to comment in the following two (2—1) rules: 

 
Rule Number: 221 
”gyra gene” ∧ ”substitution” → ”quinolone” 
Interest: ”13.610” Conviction: ”4.706” Dependency: ”0.741” Novelty: ”0.008” 
Satisfaction:”0.788” Conformity: ”0” 
Rule Number: 218 
”gyra gene” ∧ ”sparfloxacin” → ”ciprofloxacin” 
Interest: ”1.073” Conviction: ”6.003” Dependency: ”0.770” Novelty: ”0.007” 
Satisfaction: ”0.833” Conformity: ”0.000215” 
 
The rule #218, with Cty > 0, draws the resistance mechanism for two antibiotics sparfloxacin and 

ciprofloxacin that are subsumed (⊑) by the concept of quinolone (a family of antibiotics) in K. 
Moreover, the rule #221 is more precise by pointing out the specific resistance mechanism (namely 
substitution). We notice that the major good statistical measures for these rules are: conviction and 
satisfaction. Nevertheless, both measures give the reverse classification compared to the conformity and 
the analyst comments below. Some simple AR relate synonyms or hypernyms keyterms. They belong to 
the group: relating known keyterms according to the analyst. This group of rules shows that authors of the 
texts describe the same concept with different keyterms, and the text mining process reveals such usage. 

 
Rule Number: 183: 
”epidemic strain” −→ ”outbreak” 
Interest: ”17.449” Conviction: ”undefined” Dependency: ”0.943” Novelty: ”0.011” 
Satisfaction: ”1.000” Conformity: ”0” 
 
The statistical measure that gives a good quality for rule #183 is the dependency (which is used as the 

3rd quality measure to check following the algorithm given in [Cherfi et al., 2006]). The interest measure 
classes this rule in the middle of the corresponding list. Conversely, the conformity is 0, which gives it a 
chance to be analysed and update (K, ⊑) with two missing relations epidemic strain ⊑ outbreak and 
outbreak ⊑ epidemic strain. 



 
Finally, the rules #268 and #269 are examples which are considered as wrong, hence useless for the 

analysis. It is due to the fact that keyterms: mycobacterium and tuberculosis are not significant in the 
molecular biology domain; however, these keyterms are extracted as keyterm index and are present as 
concepts in the general UMLS. The correct concept, in this context, would be the keyterm mycobacterium 
tuberculosis (see in [Cherfi et al., 2006]). 

 
Rule Number: 268 
”mutation” ∧ ”mycobacterium tuberculosis” → ”tuberculosis” 
Interest: ”14.956” Conviction: ”undefined” Dependency: ”0.933” Novelty: ”0.006” 
Satisfaction: ”1.000” Conformity: ”0.000178”  
Rule Number: 269 
”mutation” ∧ ”mycobacterium” → ”tuberculosis” 
Interest: ”12.463” Conviction: ”5.599” Dependency: ”0.766” Novelty: ”0.010” 
Satisfaction: ”0.821” Conformity: ”0.00017809” 
 
The rules #268 and #269 have the same non zero conformity, and have also good statistical quality 

measures. Hence, they will be presented to the analyst. Using the KBTM process, and without knowledge 
loss, we can discard the rules #268 and #269 from the rule set presented to the analyst because they are 
useless by introducing the artefacts mycobacterium and tuberculosis which are irrelevant in the context 
of molecular biology. 

 
5. DISCUSSION 
 
Among studies that intend to handle the large set of AR extracted with statistical quality measures, [Kuntz 
et al., 2000] is similar to the work presented in section 2.2. This methodology is of great interest to 
highlight rule properties such as resistance to noise in the data set, or to establish whether a rule is 
extracted randomly or not (i.e., by chance). However, the limits of these measures come from the fact that 
they do not consider any knowledge model. 

The background knowledge is used during the data mining process in [Jaroszewicz & Simovici, 2004] 
with a Bayesian Network [Pearl, 1988] to filter interesting frequent itemsets. A Bayesian network is 
similar to the knowledge model (K, ⊑) described in this chapter; except that each vertex (i.e., relation) is 
associated with a weight defined by the relation conditional probability (e.g., for the specialisation ⊑) wrt. 
to the concept parent(s) in the Bayesian network. The distribution probabilities over the relations are set 
up, a priori, by expert’s judgments. The authors propose an algorithm to compute the marginal 
distributions of the itemset (e.g., corresponding to the keyterm sets when dealing with text applications) 
over the Bayesian network. Hence, the itemset marginal distributions are inferred from the Bayesian 
network structure. An itemset is interesting if its support in the corpus (i.e., real support of appearing in 
the texts) deviates, with a given threshold, from the support inferred from the Bayesian network (i.e., its 
conditional probability to occur in the knowledge domain). A sampling-based approach algorithm for fast 
discovery of the interesting itemsets (called unexpected patterns) is given in [Jaroszewicz & Scheffer, 
2005]. 

This methodology is extended in [Faure et al., 2006] to drive both the AR extraction and the Bayesian 
network’s weight updates. Hence, iteratively, the interesting AR identified in this way are candidates to 
update the Bayesian network. The similarities with the approach presented in this chapter are high. 



However, when [Faure et al., 2006] deal with probabilistic reasoning and analyst’s judgments on the 
structure of the Bayesian Network, we rather stick to more formal knowledge conveyed by an ontological 
(i.e., consensual) domain knowledge model. However, the approach in [Faure et al., 2006] could be 
complementary to the KBTM approach presented in this chapter. Further studies can be conducted to study 
the AR rankings given by both approaches for a given domain corpus wrt. to, respectively, a knowledge 
model, and a Bayesian network. 

Another interesting work for the post-mining of association rules involving user interaction as 
backgroung knowledge is [Sahar, 1999; Liu et al., 2003]. Here, the user is asked to interact with the 
system in order to evaluate the quality of the rules. [Sahar, 1999] assumes the following hypothesis: if a 
simple rule k1 → k2 is of low interest for the user, then all related complex rules – related rules are 
defined as rules containing k1 in their body and k2 in their head– are also considered as of low interest. 
The user does not have to study them and the number of rules to study is substantially reduced. The user 
is asked to classify simple rules in one of the four categories: (1) true but uninteresting, (2) false and 
interesting, (3) false and uninteresting, (4) true and interesting. If a simple rule is classified in class (1) or 
(3), then the rule itself and its complex related rules may be deleted from the set of rules. This work has 
some other interesting characteristics: (i) An appropriate algorithm has been developed to select the 
simple rules to be given first to the user. The selected rules are the ones connected to a large number of 
complex rules. In this way, the number of rules to study decreases more rapidly than a random choice. (ii) 
The approach takes into account the direction of the rule: the deletion by the user of the rule k1 → k2 has 
no effect on the rule k2 → k1. (iii) [Sahar, 1999] does not use a knowledge model but the subjective 
judgement of the user which may be seen as an informal knowledge model. (iv) Finally, the major 
difference between our approach and [Sahar, 1999] concerns the interpretation of complex rules. The 
assumption adopted in [Sahar, 1999] is that any complex rule, according to our interpretation, could be 
turned to a conjunction of simple rules. However, we have shown that such decomposition, in clausal 
form, is misleading: 1 — m rules can be rewritten into a conjunction of simple rules; whereas n — 1 
rules are rewritten into a disjunction of simple rules. 

[Basu et al., 2001] proposes another approach and uses WORDNET lexical network to evaluate the 
quality of the rule where keyterms are, actually, words. The quality score of a simple rule word1 → 
word2 is given by the semantic distance between word1 and word2 in the lexical network. The network is 
a weighted graph, and each semantic relation (syno/antonymy, hyper/hyponymy) has its own weight. The 
distance between two words is the lower weight path in the graph. For any complex rule, the quality score 
is the mean of the distance for each pair (wordi , wordj) where wordi is in the body of the rule and wordj 
is in its head. Here, as in [Sahar, 1999], the definition of the score for complex rules is logically false. The 
advantage in [Basu et al., 2001] is the ability to deal with several semantic relations. However, the 
different properties of these relations cannot be formally expressed using a weighted graph and some 
assumptions are made such as: weight(synonymy) > weight(hypernymy), etc. This method, based on a 
network of lexical entities, could be adapted to a formal knowledge model. However, it cannot be used to 
update a knowledge model: the weighting system and the mean calculation of the score for complex rules 
make impossible the association of a rule with a knowledge model as we did in Table 5. 

 
 
 
 
 
 
 



6. CONCLUSION AND FUTURE WORK 
 
In this chapter, we have proposed two methods for classifying association rules extracted within a KBTM 
process: the first one is based on statistical measures, and the second one is based on conformity with a 
knowledge model. Our present research study sets a knowledge-based text mining (KBTM) process driven 
by a knowledge model of the domain. Association rules that do not correspond to known relations of 
specialisation in the knowledge model are identified thanks to the conformity measure. The behaviour of 
the conformity measure is in agreement with the KBTM process. The conformity measure allows us both 
the enrichment of the knowledge model, and the TM process efficiency enhancement. An experiment on 
real-world textual corpus gives a significant improving rate and shows the benefits of the proposed 
approach to an analyst of the domain. 

 
Furthermore, the conformity measure proposed in this first study can be extended to a number of 

promising directions in order to assess its effectiveness in different knowledge domains and contexts. 
Firstly, it could be interesting to take into account in the knowledge model of molecular biology domain 
other relations such as: causality (by considering rules involving instances of antibiotics → bacteria ), 
temporal (the study of gene parC) mutation is anterior to gyrA study, how this relation has an impact on 
the resistance mechanism to antibiotics). In doing so, we will be able to have a deeper understanding of 
the texts and suggest an accurate modification of the knowledge model itself within the KBTM process. 
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