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Abstract In this paper, we propose a descriptor combination
method, which enables to improve significantly the recogni-
tion rate compared to the recognition rates obtained by each
descriptor. This approach is based on a probabilistic graph-
ical model. This model also enables to handle both discrete
and continuous-valued variables. In fact, in order to improve
the recognition rate, we have combined two kinds of fea-
tures: discrete features (corresponding to shape measures)
and continuous features (corresponding to shape descrip-
tors). In order to solve the dimensionality problem due to
the large dimension of visual features, we have adapted a
variable selection method. Experimental results, obtained in
a supervised learning context, on noisy and occluded sym-
bols, show the feasibility of the approach.

Keywords Symbol recognition · Descriptor combination ·
Variable selection · Probabilistic graphical models · Bayesian
networks

1 Introduction

Pattern recognition applications have to face the problem
of describing a large number of different objects for recog-
nition. A recognition system should be robust to variability
(geometric transformations, noise, occlusions, …) and to sca-
lability, when a large number of classes and images should
be recognized. Symbol recognition is a field within pattern
recognition for which a lot of efforts have already been made
[22,37,39,44]. Symbol recognition is usually decomposed
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into two steps: symbol description and classification [1,6,
12]. In order to describe symbols, a lot of different shape
descriptors have been proposed (see surveys [15,33,40]) but
one descriptor is usually not enough to describe all kinds of
shapes properly and therefore to give satisfactory shape rec-
ognition rates. One solution is to combine several descriptors
in a classification task [38] or to use several classifiers and to
combine their outputs [32,34]. Classification is a basic task
in data analysis and pattern recognition. This task requires a
classifier, i.e., a function that assigns a class label to instances
described by a set of features. The induction of classifiers
from training sets (sets of labeled data) is a central problem
in machine learning: it is a problem of supervised learning. In
fact, in numerous applications, the aim is to assign a feature
vector f = { f1, f2, . . . , fn} to a class ci among k classes,
designed by a vector c = {c1, c2, . . . , ck}. Some approaches
to this problem are based on various functional representa-
tions such as decision trees, neural networks, decision graphs
[2,23,29,42], associated with decision rules.

Probabilistic approaches also play a central role in clas-
sification [21,43,24]. A way to reach the previous goal, by
using probabilities, is to compute the conditional probabil-
ity distribution P(ci | f ),∀i ∈ {1, 2, . . . , k} and assign the
instance f to the class ci for which this probability is max-
imal. In order to represent probability distributions over a
large set of variables, we introduce several conditional inde-
pendence assumptions that will help to reduce the complexity
of the model and provide a tractable model. Within the frame-
work of the graphical models [16], a class of models called
Bayesian networks allows an efficient representation of any
probability distribution that can be factorized according to
a set of independence assumptions. This factorization will
help to reduce the computational complexity of the model.
Moreover, this framework comes with many algorithms for
performing inference (i.e., the computation of posteriors)
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and learning (factorization of parameters fitting, computation
of probability distributions …). We propose, in this paper,
an original method of descriptor combination applied to
symbol classification. Thus, we have adapted the proba-
bilistic graphical model theory to the symbol recognition
problem. In this model, continuous and discrete variables
are combined. Continuous variables correspond to shape
descriptors, and the discrete ones correspond to shape mea-
sures. Thanks to this combination, the proposed classifier
is more robust to deformations and to the size of database,
when the number of symbols increases. The originality of our
approach also relies on the use of a variable selection method
[35], to overcome the dimensionality problem related to the
size of feature vectors and the inherent network complexity.

The organization of the paper is as follows. In Sect. 2, the
main properties of a Bayesian network-based classifier are
introduced and lead to the presentation of our probabilistic
model for symbol recognition. The visual features used to
represent the symbols are described in Sect. 3. The feature
selection algorithm which allows us to increase the recogni-
tion rate by focusing only on the main features while reducing
the dimensionality problem is also explained in Sect. 4. Our
method is evaluated on a database of noisy and occluded
symbols (Sect. 5). Finally, Sect. 6 brings conclusions and
opens new perspectives to our work.

2 Representation and classification of images

2.1 Context and objectives

Our work is focused on symbol recognition by combining
descriptors. Given an image database, where each image con-
tains one symbol, we try to recognize the “perfect” symbol
(the model) represented in each image. In fact, the symbols
contained in the images are not perfect: they can be noisy,
deformed and can have occlusions. This recognition problem
can be view as a classification problem: our aim is to assign
each image to the class corresponding to the perfect sym-
bol (the model) of this image. However, no perfect symbol
is available. Therefore, we cannot just minimize a distance
between each image of the database and each perfect sym-
bol. On the other hand, this classification task can be resolved
by using a supervised learning method, from a subset of the
database where the class label (the perfect symbol) is known
for each image.

Moreover, in order to describe all kinds of shapes prop-
erly, even deformed or noisy shapes, and thus increase the
recognition rate, our proposition is to combine several shape
descriptors. Now, shape descriptors can provide vectors of
continuous or discrete values:

let f j be a query image characterized by a set of features
F composed of:

– m continuous visual features, denoted v1, . . . , vm ,
– n discrete visual features, denoted DF 1, . . . , DF n.

The chosen visual features are issued from 3 shape
descriptors and 3 shape measures. Shape descriptors pro-
vide vectors of continuous values, and each shape measure
provides a single discrete value.

Consequently, it seems appropriate to propose a classifier
that enables to manage both discrete and continuous features.
Although most classification methods handle only discrete
data and thus require a pre-processing step of discretization in
order to transform each continuous-valued variable into a dis-
crete one, few classification methods can handle both discrete
and continuous-valued variables. It is the case of Support
Vector Machines [4], Random Forests [3], and Bayesian clas-
sifiers [13]. Support Vector Machines (SVM) and Random
Forests (RF) are well known for their ability to handle high-
dimensional data. On the contrary, Bayesian classifiers are
sensitive to the dimensionality of the data, but they often per-
form well in many domains. Therefore, we have chosen to
construct a Bayesian classifier for its ability to combine dis-
crete and continuous-valued variables. Moreover, we show
that this Bayesian classifier, associated with a variable selec-
tion method, is competitive with SVM, even on high-dimen-
sional data.

2.2 Bayesian classifiers

Let I be a new image designed by a particular instance f =
{ f1, . . . , fn} of the feature vector F = {F1, . . . , Fn}. Our
aim is to assign I to a class ci among k classes. Each ci is a
particular instance of the variable C . The Naïve Bayes (N B)
is a simple probabilistic classification algorithm that often
performs well in many domains. This classifier encodes a
distribution PN B(F1, . . . , Fn, C), from a given training set
(composed of labeled data). The resulting probabilistic model
can be used to classify the new instance I . In fact, the Bayes
rule is applied to compute the probability of ci given the par-
ticular instance f . Then the classifier based on N B returns
the label ci , i ∈ {1, . . . , k}, that maximizes the posterior
probability Pi = PN B(ci | f1, . . . , fn), where:

Pi = PN B( f1, . . . , fn|ci ) × PN B(ci )

PN B( f1, . . . , fn)

and PN B( f1, . . . , fn) = ∑k
j=1 PN B( f1, . . . , fn|c j ) ×

PN B(c j ).
However, we are interested in the probability distribu-

tions of discrete and continuous features and their conditional
dependence relations. Let us consider each component of
continuous vectors (issued from shape descriptors) as a con-
tinuous random variable and the discrete values (provided
by shape measures) as discrete variables. This model is too
big to be represented as a unique joint probability distribu-
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tion. Therefore, it is required to introduce some sparse and
structural a priori knowledge: the Naïve Bayes has to
be extended to take into account continuous and discrete
variables. In this perspective, the probabilistic graphical
models, and especially Bayesian networks, are a good way to
solve this kind of problem. In fact, within Bayesian networks,
the joint probability distribution is replaced by a sparse rep-
resentation only among the variables directly influencing one
another. Interactions among indirectly related variables are
then computed by propagating inference through a graph of
these direct connections. Consequently, Bayesian networks
are a simple way to represent a joint probability distribution
over a set of random variables, to visualize the conditional
properties and to compute complex operations like probabil-
ity learning and inference, according to graph-based compu-
tations.

2.3 Bayesian networks

2.3.1 Definitions

Formally, a Bayesian network for a set of random variables
V (continuous or/and discrete) is a pair B = 〈G,�〉. The
first component, G, is a directed acyclic graph whose verti-
ces correspond to random variables V1, . . . , Vn , and whose
edges represent direct dependencies between variables. The
graph G encodes independence assumptions: each variable
Vi is independent of its non-descendants given its parents in
G. The second component of the pair, �, represents the set of
parameters that quantifies the network. It contains a parame-
ter θvi |Pa(vi ) = PB(vi |Pa(vi )) for each possible value vi of
Vi , and Pa(vi ) of Pa(Vi ), where Pa(Vi ) denotes the set of
parents of Vi in G. That is, the Bayesian network, in its initial
state, contains the initial a priori probabilities of each node of
the network: PB(vi |Pa(vi )). Thanks to the conditional inde-
pendence assumption of each variable given its parents, the
joint probability distribution PB(V1, . . . , Vn) can be reduced
to this formula:

PB(V1, . . . , Vn) =
n∏

i=1

PB(Vi |Pa(Vi )) =
n∏

i=1

θvi |Pa(vi )

The framework of Bayesian networks comes with many
algorithms for performing inference (i.e., the computation of
posteriors probabilities) and learning (factorization of param-
eters fitting, computation of probability distributions,…).
The algorithms we used in this work are briefly described
below.

2.3.2 Parameter learning

Only one has a description of a model, knowing the structure
of the graph and probabilistic forms for each variables, one
wants to estimate the numerical values of each parameter.

Let assume we have either discrete or continuous variables
(or a mix of them), and, for the simple case, a set of data
describing many possible cases for each variables. The data
set can either be complete or have missing data. In each case,
a different solution will be used. In the case, where the data
set has no missing values, an approach is to consider the
parameters having the highest probabilities to generate the
most similar data set if the Bayesian network was used to
draw random values according to the probability distribu-
tion it describes (hence the name “generative model”). This
method is known as the Maximum Likelihood. Let call D
the data set, then P(d|M) is the probability of a data d ∈ D
to be generated by the model M and is called the likelihood
of M given d. Therefore, the likelihood of M given the full
data set D is:

L(M |D) = P(D|M) =
∏

d∈D

P(d|M)

For the sake of computational simplicity (or to help deriving
an analytic form), the log-likelihood is often used:

L(M |D) =
∑

d∈D
log2 P(d|M)

Therefore, the principle of maximum likelihood prefers to
choose parameters with the highest likelihood:

θ̂ = argmaxθ L(Mθ |D)

In general, a maximum likelihood is obtained by counting the
frequencies over the total count. Whenever you do not have
enough data for each case (missing data) one of the most pop-
ular algorithm is the Expectation-Maximization (EM) algo-
rithm. The general purpose of this algorithm is explained in
detail in [7]. During the Expectation phase, the data set is
locally completed, then a Maximization step is performed
to find the current maximum likelihood estimate (as seen
above) using the completed data. In a Bayesian network, the
first step of the EM algorithm can be easily done using a
map a posteriori algorithm, i.e., computing the most proba-
ble values of the missing data variables given other known
variables. The second step is then executed and can either
be done with an optimization algorithm if no analytical form
of the maximum likelihood is known, or with the previous
approach. These two steps are repeated until convergence.
The algorithm is initialized with random probability distri-
bution parameters.

The EM algorithm is also used to learn the parameters
of Gaussian distributions, which are considered as missing
data.

2.3.3 Inference

An inference algorithm is necessary to compute the posterior
probability distributions of unobserved nodes. According to
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Fig. 1 Naïve Bayes

the Bayesian network topology, the inference process propa-
gates the values from the leaf level to the inferred node. Many
algorithms can be used [17]. The most popular is the message
passing algorithm [20]. In this technique, each node is asso-
ciated with a processor, which can send some messages to its
neighbors, in an asynchronous way, until it reaches stability.

2.3.4 Bayesian network classifiers

Bayesian networks can be used as classifiers. For example,
the Naïve Bayes can be represented by the structure in Fig. 1,
where:

– C refers to the class variable,
– F1, . . . , Fn are the feature variables.

The Naïve Bayes is a simple and efficient model, but it
requires discrete variables. Since, we have to manage con-
tinuous (values provided by shape descriptors) and discrete
(values provided by shape measures) variables, this model
has to be extended to take into account continuous and dis-
crete variables.

2.4 A Gaussian-Mixtures and Bernoulli Mixture model

A Bayesian network classifier, which handles both discrete
and continuous-valued variables, is proposed. We present a
hierarchical probabilistic model, the Gaussian-Mixtures and
Bernoulli Mixture model, in order to classify large databases
of symbols. In fact, the observation of some peaks on the
different histograms of the vector components provided by
shape descriptors has led us to consider that the continuous
visual features can be estimated by mixtures of Gaussian den-
sities. The discrete variables have a Bernoulli distribution. In
fact, these variables can take two values: 1 if the correspond-
ing shape measure provides a value smaller than 0.5, or else
2. Finally, the proposed model is inspired by the Naïve Bayes.
Indeed, the class variable is connected to each other.

Now let F be the training set composed of m instances
f j = { f j1 , . . . , f jn },∀ j ∈ {1, . . . , m},∀i ∈ {1, . . . , n},
where n is the dimension of the signatures provided by the
concatenation of the feature vectors issued from the compu-
tation of all the descriptors for each image on the training

Gaussian

Class

Component

GMM

Fig. 2 A Probabilistic graphical model as GMMs

set. Each instance f j ,∀ j ∈ {1, . . . , m} is then character-
ized by n continuous variables. A supervised classification
is considered; then, F instances are divided into k classes
c1, . . . , ck . Let G1, . . . , Gg be g groups whose each has a
Gaussian density with a mean µl ,∀l ∈ {1, . . . , g} and a
covariance matrix

∑
l . Besides, let π1, . . . , πg be the propor-

tions of the different groups, θl = (µl ,
∑

l) be the parame-
ter of each Gaussian and � = (π1, . . . , πg, θ1, . . . , θg) the
global mixture parameter. The probability density of F con-
ditionally to the class ci ,∀i ∈ {1, . . . , k} can be defined by

Pi ( f,�) =
g∑

l=1

πl p( f, θl)

where p( f, θl) is the multivariate Gaussian defined by the
parameter θl .

We have one Gaussian Mixture model per class, which
can be represented by the probabilistic graphical model in
Fig. 2, where:

– The “Class” node is a discrete node, which can take k val-
ues corresponding to the pre-defined classes c1, . . . , ck .

– The “Component” node is a discrete node which corre-
sponds to the components (i.e., the groups G1, . . . , Gg)
of the mixtures. This variable can take g values, i.e., the
number of Gaussians used to compute the mixtures. It is
an hidden variable which represents the weight of each
group (i.e., the πl ,∀l ∈ {1, . . . , g}).

– The “Gaussian” node is a continuous variable which rep-
resents each Gaussian Gl ,∀ ∈ {l = 1, . . . , g} with its
own parameter (θl = (µl ,

∑
l)). It corresponds to the set

of feature vectors in each class.
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Fig. 3 The Gaussian-mixtures and Bernoulli mixture model

– Finally, the edges represent the effect of the class on each
Gaussian parameter and its associated weight. The green
circle does not belong to the graphical model: it is just
a way to show the relation between the proposed proba-
bilistic graphical model and GMMs: we have one GMM
(encircled in green), composed of Gaussians and their
associated weight, per class.

The model can be completed by the discrete variables,
denoted DF 1, . . . , DF n, where n is the number of shape
measures, and DFi represents the value of each shape mea-
sure. Dirichlet priors [27] have been used for the probability
estimation of the variables DF 1, . . . , DF n. That is we
introduce additional pseudo counts at every instance in order
to ensure that they are all “virtually” represented in the train-
ing set. Therefore every instance, even if it is not represented
in the training set, will have a not null probability. Like the
continuous variables, the discrete variables corresponding to
the discrete measures are included in the graphical model by
connecting them to the class variable.

Now our classifier can be depicted by the Fig. 3. The hid-
den variable “α” shows that a Dirichlet prior is used. The
box around the variable DF denotes n repetitions of DF for
each shape measure.

This Bayesian classifier means that continuous and shape
features, representing images, are assumed to have been
generated conditional on the same class. Therefore, the
resulting Bernoulli and Gaussian mixture parameters should
correspond: concretely if an image, represented by continu-
ous visual descriptors, has an high probability under a certain
class, then its discrete shape measures should have an high
probability under the same class.

In order to classify a query image f j , the class node C is
inferred thanks to the massage passing algorithm. This image,
characterized by its continuous shape features v j1, . . . , v jm
and its discrete shape features DF 1 j , . . . , DF k j is consid-
ered as an “evidence” represented by:

P( f j ) = P(v j1 , . . . , v jm , DF 1 j , . . . , DF n j ) = 1

when the network is evaluated. Thanks to the inference algo-
rithm, the probabilities of each node are updated in func-
tion of this evidence. After the belief propagation, we know,
∀i ∈ {1, . . . , k}, the posterior probability:

P(ci | f j ) = P(ci |v j1 , . . . , v jm , DF 1 j , . . . , DF n j )

The query f j is assigned to the class ci which maximizes this
probability.

3 Symbol description

This section explains how we have adapted the theoretical
method before mentioned to a symbol recognition problem.
We present the visual features we used. The set of chosen fea-
tures is composed of 3 different off-the-shelf shape descrip-
tors and 3 shape measures. The choice of these features is
not really important because, the aim of this paper is to show
that combining shape features improves the symbol classifi-
cation, whatever the used features. The distinction between
shape descriptors and shape measures is determined by the
size of the features: we consider single value features as shape
measures and feature vectors as shape descriptors. Moreover,
shape measures are discretized with a discretization thresh-
old fixed at 0.5. This discretization has sense with this kind of
features, because each of them is composed of a single value
normalized between 0 and 1. Thus, a shape measure has an
intrinsic meaning. Finally, this discretization enables to con-
sider shape measures as discrete variables and thus to show
the interest of discrete and continuous features combination
for shape recognition.

In this perspective, we have chosen three pixel shape
descriptors: the Generic Fourier Descriptor (GFD), the
Zernike descriptor, and the R-signature 1D and three shape
measures: compactness, rectangularity and ellipticity. We
briefly present each descriptor and measures below.

3.1 Shape descriptors

Generic Fourier descriptor: Generic Fourier descriptor is
based on Fourier transform [41]. The rotation invariance
is achieved by using the modified polar Fourier transform
(MPFT), and the scaling invariance is achieved after nor-
malization.

Zernike descriptor: Zernike descriptor [14] is a descriptor
based on Zernike moments. Zernike moments of a given
shape are calculated as correlation values of the shape
with Zernike basis functions, in that all the pixels of the
shape, independently of their position, contribute with the
same weight to the Zernike moments. These moments are
rotation invariant. To make the Zernike moments of the
shape descriptor invariant also to translation and scaling, a
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given shape is normalized, by obtaining the smallest circle
centered at the center of mass, covering all the shape pixels.
Then the obtained circle is adjusted to match the radius of
Zernike moment basis functions. The Zernike shape descrip-
tor consists of low-order magnitudes of Zernike moments.

R-signature 1D: The R-signature 1D [30] uses Radon
transform to represent an image. The Radon transform is the
projection of an image in a particular plan. This projection
has interesting properties. According to these geometrical
properties, a 1D signature of the transform is created. This
signature checks the properties of invariance to some geo-
metrical transformations, such as the translation and the scal-
ing (after normalization). The rotation invariance is achieved
by a cyclic permutation of the signature, or directly from its
Fourier transform.

3.2 Shape measures

Compactness: The compactness measure C represents the
ratio of the shape area to the area of a circle (the most com-
pact shape) having the same perimeter:

C = 4π A

P2

where P is the perimeter and A, the area.
This measure is invariant to translation, rotation, and scaling.

Rectangularity: The rectangularity degree [28] R is equal to
the ratio of the shape area to the area of its minimal bounding
box:

R = A

L ∗ l

where A is the shape area and L (respectively l) is the length
(respectively the width) of the minimal bounding box.

Ellipticity: The ellipticity degree ε is obtained from the ratio
of the major axis to the minor axis [31]:

ε = 1 − b

a

where a is the major axis and b the minor axis. This measure
is invariant to rotation, translation, and homothety.

4 Dimensionality reduction

Only the n, n ∈ {1, 2, 3} continuous descriptors we want to
combine are computed on each image, we dispose of n signa-
tures per image. The concatenation of these signatures pro-
vides us a new feature vector per image. The large dimensions

of initial visual signatures and their concatenation imply a
dimensionality problem. In fact, a too large feature dimension
increases the computation time and causes a wrong Gauss-
ian mixture learning, because of the Small Sample Size (SSS)
problem: there is a disproportion between the training set size
and the feature vector dimension. To overcome this problem,
we have used a dimensionality reduction method. A lot of
methods have been proposed in the literature to reduce the
dimension of vectors [8,25]. Among dimensionality reduc-
tion methods, we consider especially feature selection meth-
ods, because they enable to reduce dimension by selecting
a subset of initial features, on the contrary to the methods
which reduce dimension by providing new variables issued
from initial variable combinations [10]. Methods of variable
selection are then more suitable to our problem, because our
aim is to reduce the number of features, in order to reduce
the size of our Bayesian network and our method complexity.
The most popular methods of variable selection are heuristics
based on sequential runs, which consist in iteratively adding
or removing variables [9]. In these approaches, it is possible
to begin with an empty set of variables and to add variables to
the variables which are already selected (it is the Sequential
Forward Selection (SFS) [26]), or to begin with the set of all
variables et to remove variables in this set (it is the Sequential
Backward Selection (SBS)). These methods are known for
their simplicity and their rapidity. However, they are known
for their instability too. Moreover, since they do not explore
all possible subsets of variables and they do not enable to
come back during the process, they are not optimal.
Thus, we have chosen a feature selection method since it
enables to extract from the feature vectors, just the most rele-
vant and discriminating features, with a minimal information
loss. The regression method LASSO (Least Absolute Shrink-
age and Selection Operator) [35] has been used for its sta-
bility and implementation efficiency. Moreover, the LASSO
method especially enables to select variables and takes into
account the class variable values to select a subset of vari-
ables. In Sect. 5, we compare the results obtained on our
database, by the LASSO and the SFS method which stay one
of the most popular.
The principle of LASSO is to shrink the regression coeffi-
cients by imposing a penalty on their size (we speak of shrink-
age methods too). These coefficients minimize a penalized
residual sum of squares:

βlasso = arg min
β

N∑

i=1

(yi − β0 −
p∑

j=1

xi jβ j )
2

subject to
∑p

j=1 |β j | ≤ s.
The linear form of the LASSO has been applied in a

pre-processing stage, totally independent of our Bayesian
classifier, on our visual features. For each training set, yi
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represents the sum of the mean vector features of the class ci ,
and x j = {x j1 , x j2 , . . . , x jp } the p features of the instance j .
Then, just the subset of the selected variables is used in our
model.

The LASSO uses a L1 penalty:
∑p

j=1 |β j |. This con-
straint implies that for small values of s (s ≥ 0), some of
the coefficients β will be null. So choosing s is like choosing
the number of predictors in a regression model. Therefore,
the variables corresponding to the coefficients different from
zero are selected.

The LASSO solutions have been computed by the Least
Angle Regression (LAR) procedure [11]. This algorithm
exploits the special structure of the LASSO problem and
provides an efficient way to compute the solutions simulta-
neously for all values of s.

Thus, we can distinguish two independent phases in our
method: first, the LASSO is used to select the most rele-
vant visual features. Secondly, our Gaussian-Mixtures and
Bernoulli Mixture model is used to classify new images rep-
resented by the pre-selected continuous visual features and
the three discrete shape measures.

5 Experimental results

We have used the symbols of GREC database [36] for our
tests (see Fig. 4), especially created for the symbol recogni-
tion contest GREC’2005.

This database is mainly defined from two application
domains, architecture and electronic, because these symbols
are most largely used by graphic recognition teams and rep-
resent a great number of different forms. We have 50 differ-
ent symbol models for which we have applied some noises
based on Kanungo [18] model. These noises are similar to
noise obtained when a document is scanned, printed, or pho-
tocopied. Moreover, we have applied to these symbols some
rotations of different degrees and different zooms, in order to
obtain a database of 3, 600 images, constituted of 72 different
images per model.

Fig. 4 GREC symbol database

Table 1 Mean numbers of variables in function of variable selection
method

Number of variables from GFD Zernike R-signature 1D

Without selection 225 34 180

SFS 141 34 48

LASSO 13 15 13

We have evaluated our method by performing a cross-
validation by using 75% of the database for the training and
the remaining 25% for the tests. The tests are repeated four
times in order to use each database instance for the training
and the tests. The recognition rate is obtained by taking the
mean recognition rate of the 4 tests.

Since, we want to improve the recognition rate by com-
bining descriptors and selecting variables, we limit ourselves
to the experiments comparing:

– the classification after variable selection with the LASSO
vs. the classification without automatic variable selection
and with a well-known variable selection method,

– the classification by combining 2 or 3 continuous descrip-
tors vs. the classification with only one continuous
descriptor,

– the classification by combining discrete and continuous
features vs. the classification with continuous descriptors
only,

– the classification by combining 3 continuous descriptors
with our method vs. two state-of-art classifiers.

First of all, we can remark that the reducing the size of
the descriptors improves the recognition rate for all the clas-
sifiers. Moreover, the variable selection with the LASSO
method has enabled us to significantly reduce the number
of variables. Table 1 shows the mean number of variables
selected for each descriptor with the LASSO method com-
pared to the well-known SFS method [26]. We can see that
the LASSO method enables to select fewer variables than the
SFS method (see Table 1). Table 2 shows the mean recogni-
tion rates in function of different variable selection methods,
by combining the 3 available descriptors with our Gauss-
ian-Mixtures and Bernoulli Mixture model (GM-B) and two
state-of-art classifiers: a classical SVM classifier [5] and the
fuzzy k-nearest neighbor (FKNN) [19]. The recognition rates
for these three classifiers without variable selection and after
a variable subset selection with the SFS and LASSO meth-
ods, or with some random selections, are compared. For the
random selection, the number of variables chosen randomly
is set to the one obtained with the LASSO. The FKNN has
been computed with k = 1 and with k = m where m is
the mean number of images per class in the training set.
The results in Table 2 show that the variable selection with
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Table 2 Mean recognition rates
(in %) for SVM classifier,
FKNN and GM-B in function of
variable selection method

Variable selection method SVM classifier FKNN k = 1 FKNN k = m GM-B

Without selection 87.6 89.9 88.6 89.8

Random selection 90.8 93.7 91.5 93.3

SFS 94.1 97.2 95.3 96.7

LASSO 95.7 98.8 96.2 100

Table 3 Mean recognition rates (in %) of GM-B after variable selection
with the LASSO

G Z R G + Z G + R Z + R G + Z+ R

99 100 46.1 100 99.3 100 100

the LASSO method improves the recognition rate by 8.7%
on average compared to the classification without variable
selection, by 5.3% on average with random selection, and
by 1.8% on average compared to the SFS selection. Thus
the LASSO method is more robust, experimentally, on this
database, than the SFS method. In fact, the shrinkage meth-
ods like the LASSO are well known to be more stable than
iterative methods, to select variables among a large set of
variables but with few examples. Thus, the variables selected
with the LASSO method have been used for our following
experiments.

Let us consider Table 3. The notation G (respectively
Z and R) means that the GFD descriptor (respectively the
Zernike descriptor and the R-signature 1D) has been used.
Finally, the “+” operator indicates that we have combined
the descriptors. The recognition rates confirm that combin-
ing 2 or 3 descriptors performs always better than any of
them alone. In fact, we observe that the combination of 2
descriptors increases the recognition rate by 18% on average
compared to the use of only one descriptor. Besides we can
notice that the combination of the 3 descriptors is better, by
18.3% on average, to use just one of them. Moreover, even
if we obtain a high recognition rate with Zernike descriptor,
this rate will not decrease when we combine this descriptor
with one or two other descriptors, whatever these descriptors
and even if the added descriptors have a low rate (it is the case
with the R-signature 1D). The bad behavior of a descriptor
does not impede the other descriptor behaviors.

Finally, the last line of the Table 2 shows the effec-
tiveness of our approach compared to the SVM classifier
and the FKNN. The results have been obtained by combin-
ing the 3 descriptors and after using the variable selection
method LASSO. It appears that the proposed GM-B results
are always better than the ones of SVM and FKNN.

The initial database of 3,600 instances has been extended
to a database of 5,400 instances by randomly generating
occlusions on the half image set of each class from the initial

database. In fact, we can meet this kind of degradation when
we have to segment a graphical document where symbols
are embedded into the graphic or are partially occluded by
text for example. The generated occlusions are from differ-
ent sizes, and their locations in the images have been chosen
randomly. Now we have a larger and more distorted data-
base, composed of 108 instances per class. For example, the
Fig. 5 presents 4 symbol models (first column) and 5 occluded
images disturbed by some noises derived from these models.
Our classifier has been applied after variable subset selection
with the LASSO. This time, our method has been evaluated
by performing 3 cross-validations whose each proportion of
the training set is 25,50 and 75% of the database, the remain-
ing, respectively, 75,50, and 25% are hold for testing set. In
each case, the tests are repeated 10 times in order that each
database instance would be used for the training and the test.
For each training set size, the recognition rate is obtained
by taking the mean recognition rate of the 10 tests. On this
database the LASSO method has enabled to select quite the
same number of variables than with the initial database: 12
variables on average from GFD features, 13 from Zernike fea-
tures and 13 from R-signature 1D features. Let us consider
Table 4. The used notations are the same as the ones previ-
ously used in Table 3. Moreover, the notation DF means that
the three discrete shape measures have been used. The recog-
nition rates show the descriptor combination interest. Indeed,
even if the classification is less efficient on this database than
on the initial one, the results show the combination of con-
tinuous descriptors improves the recognition rate. Moreover,
the addition of the 3 discrete shape measures outperforms
these results. In fact, the integration of the discrete measures
improves the recognition rate by 3.8% on average compared
to the recognition rate obtained by the combination of the 3
continuous descriptors. Finally, Table 5 shows that the pro-
posed GM-B classifier performs always better than the SVM
and the FKNN classifiers. In the same way, Table 6 shows the
maximal and minimal values and the mean and the standard
deviation of the recognition rates obtained by the 3 compared
classifiers, during the 10 tests for a training on 50% of the
database. The standard deviation is small whatever the classi-
fier and shows a low variability of recognition rate following
the different training and testing sets.

Table 7 shows CPU times of the SVM classifier, the
FKNN, and the proposed GM-B classifier, for training and
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Fig. 5 Examples of noisy and occluded symbols for different models

test stages, with the same experimental conditions like in the
Table 5. All the experiments have been performed with a
processor Intel Core 2 Duo 2.40 GHz, 2 Go RAM, Windows
OS. The three classifiers have been run with Matlab©. If we
consider only the test stages (training has been made off line
for the SVM and the GM-B classifier), the SVM classifier
is faster than the two others. The CPU time is higher for the
GM-B model because it depends on the number of Gaussians
(in this case, 2) and the pre-defined precision of the EM algo-
rithm. However, the processing time remains weak since it
takes less than 0, 03 s per image. Following the discussion

in Sect. 4, we can remark that without variable selection the
CPU time raises drastically for the GM-B classifier.

6 Conclusion and future works

In this paper, we have proposed an original adaptation of the
Bayesian theory to combine descriptors. We have shown that
a Bayesian network has good properties for symbol recogni-
tion. In the proposed model, the bad behavior of a descriptor
does not impede the behavior of the others. Moreover, we
can take into account different types of descriptors. Indeed,
we have combined discrete shape measures with continu-
ous shape descriptors. This combination provides a classifier
more robust to variability and scalability. Moreover, we have
adapted the LASSO method, which solves our dimensional-
ity problem and thus decreases our method complexity and
especially increases the recognition rate. The experimental
results are very promising and show the efficiency of our
method.

In our future works, we want to use our approach in the
case of very complex symbols like electrical wiring diagrams.
In this case, to recover the maximum amount of information,
it is useful to add more descriptors in our combination frame-
work. Even if the LASSO has shown good results, it does
not take into account correlation between variables and after
selection, variables are always correlated. However, it is well

Table 4 Mean recognition rates
(in %) of GM-B after variable
selection with the
LASSO—database including
occluded symbols

Training part (%) G Z R G + Z G + R Z + R G + Z + R G + Z + R + DF

25 70.4 79 39.3 85.5 75.5 82.2 93.3 96.8

50 71 80.7 40.2 87.6 76.3 83.4 93.7 98.6

75 75.7 85.1 41.2 89.4 79.1 87.6 96.2 99.2

Table 5 Mean recognition rates (in %), by combining continous and discrete features (G + Z + R + DF), for SVM classifier, FKNN and GM-B after
variable selection with the LASSO—database including occluded symbols

Training part (%) SVM classifier FKNN k = 1 FKNN k = m GM-B

25 89.2 91.9 91.7 96.8

50 91 95.2 93 98.6

75 92.5 97.1 94.7 99.2

Table 6 Statistical measures (in %) for SVM classifier, FKNN and GM-B recognition rates, after variable selection with the LASSO, by combining
continous and discrete features (G + Z + R + DF)—database including occluded symbols (training set = 50% of the database)

Measure SVM classifier FKNN k = 1 FKNN k = m GM-B

Min 90.4 94.8 92.9 98.5

Max 91.7 95.4 93.03 98.65

Mean 91 95.2 93 98.6

Standard deviation 0.4 0.17 0.04 0.07
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Table 7 CPU times (in seconds), for SVM classifier, FKNN and GM-B

Training part SVM classifier FKNN k = 1 FKNN k = m GM-B with variable selection GM-B without variable selection

Training (%) Test Training Test Training Test

25 4 5 40 41 58 78 2726 25608

50 10 6 56 58 117 52 5696 17291

75 19 4 42 45 168 24 8110 8453

The CPU times are given for all the test images

known that the descriptors are often partially redundant since
they address the same task. In this case, a more appropriate
reduction method should be investigated.

Moreover, it can be interesting to annotate some symbols
and add the information given by possible keywords associ-
ated with a subset of training data. Our motivation is based
on the property of Bayesian networks to enable to manage,
in a same network, different kinds of information (in this
case different media), and to their ability to handle missing
values.
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