Current state of the art in TDDFT code
 Petr Koval, Olivier Coulaud, Dietrich Foerster

To cite this version:

Petr Koval, Olivier Coulaud, Dietrich Foerster. Current state of the art in TDDFT code. NOSSI 2009
(annual meeting), Oct 2009, Biarritz, France. pp.40. inria-00437612

HAL Id: inria-00437612
 https://hal.inria.fr/inria-00437612

Submitted on 1 Dec 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Current state of the art in TDDFT code

Peter Koval, Olivier Coulaud, Dietrich Foerster

Biarritz 07/10/2009

Spectroscopy versus linear response theory

- Spectroscopic properties of molecules can be explained with linear response theory
- Linear response theory: all observables can be computed with ground state wave function
- Key quantity is linear density response:

$$
\delta n(\boldsymbol{r}, t)=\int \chi\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, t^{\prime}-t\right) \delta V\left(\boldsymbol{r}^{\prime}, t^{\prime}\right) \mathrm{d}^{3} r^{\prime} \mathrm{d} t^{\prime}
$$

In dipole approximation, the polarizability reads

$$
P_{i k}(\omega)=\int \boldsymbol{r}_{i} \chi\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, \omega\right) \boldsymbol{r}_{k}^{\prime} \mathrm{d}^{3} r \mathrm{~d}^{3} r^{\prime}
$$

TDDFT linear response theory

If

$$
(T+V) \psi_{E}=E \psi_{E}
$$

then

$$
\chi=\frac{\delta n}{\delta V}=\sum_{E \cdot F<0}\left(f_{E}-f_{F}\right) \frac{\psi_{E}(\boldsymbol{r}) \psi_{F}(\boldsymbol{r}) \psi_{F}\left(\boldsymbol{r}^{\prime}\right) \psi_{E}\left(\boldsymbol{r}^{\prime}\right)}{\omega-(E-F)+\mathrm{i} \varepsilon}
$$

Erwin Schrödinger

$$
V=V_{\mathrm{ext}}
$$

$$
V=V_{\mathrm{eff}}=V_{\mathrm{ext}}+V_{\mathrm{Hxc}}
$$

TDDFT linear response theory

Kohn-Sham response χ_{0} and interacting response χ are connected ${ }^{1}$

$$
\begin{gathered}
\chi_{0}=\frac{\delta n}{\delta V_{\mathrm{eff}}} \\
V_{\mathrm{eff}}=V_{\mathrm{ext}}+V_{\mathrm{Hxc}} \Rightarrow \frac{\delta n}{\delta V_{\mathrm{ext}}} \\
\delta n \\
V_{\mathrm{eff}} \\
\chi_{0}^{-1}=\chi^{-1}+\Sigma \Rightarrow \\
\chi=\frac{1}{1-\chi_{0} \Sigma} \chi_{0}
\end{gathered}
$$

The problem is to effectively compute the interacting polarizability

$$
P_{i k}=\left\langle\boldsymbol{r}_{i}\right| \chi\left|\boldsymbol{r}_{k}\right\rangle .
$$

Suitable basis for non interacting response

Kohn-Sham density response reads

$$
\chi=\frac{\delta n}{\delta V}=\sum_{E \cdot F<0}\left(f_{E}-f_{F}\right) \frac{\psi_{E}(\boldsymbol{r}) \psi_{F}(\boldsymbol{r}) \psi_{F}\left(\boldsymbol{r}^{\prime}\right) \psi_{E}\left(\boldsymbol{r}^{\prime}\right)}{\omega-(E-F)+\mathrm{i} \varepsilon}
$$

Note: formula contains products of eigenstates $\psi_{E}(\boldsymbol{r}) \psi_{F}(\boldsymbol{r})$
Using method of LCAO (linear combination of atomic orbitals), we get

$$
\psi_{E}(\boldsymbol{r})=\sum_{a} X_{a}^{E} f^{a}(\boldsymbol{r}) \Rightarrow \psi_{E}(\boldsymbol{r}) \psi_{F}(\boldsymbol{r})=\sum_{a b} X_{a}^{E} X_{b}^{F} f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r})
$$

There are $O(N)$ localized products $f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r})$ $O\left(N^{2}\right)$ products of eigenstates $\psi_{E}(\boldsymbol{r}) \psi_{F}(\boldsymbol{r})$

Dominant products ${ }^{2}$

Set of localized products $f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r})$ linearly dependent \Rightarrow redundant
－find most important linear combinations of original products
－use these linear combinations as a basis
Compute a Gram matrix or metric $\quad g^{a b, c d}=\int f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r}) f^{c}(\boldsymbol{r}) f^{d}(\boldsymbol{r}) d^{3} r$
Diagonalize metric

$$
\begin{array}{r}
g X^{\lambda}=\lambda X^{\lambda} \\
F^{\lambda}(\boldsymbol{r})=\sum_{a b} X_{a b}^{\lambda} f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r})
\end{array}
$$

Form orthogonal products
Find vertex $V=X^{-1}=X^{\top}$

$$
f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r})=\sum_{\lambda} V_{\lambda}^{a b} F^{\lambda}(\boldsymbol{r})
$$

Use eigenvalue λ to define important dominant products
${ }^{2}$ D．Foerster，J．Chem．Phys．128， 034108 （2008）

Dominant products: constrains

- Dominant products must preserve a simple form:

$$
F^{\lambda}(\boldsymbol{r})=\sum_{j} F_{j}^{\lambda}(r) Y_{j m}(\boldsymbol{R} \boldsymbol{r})
$$

\Rightarrow expand the dominant products about a midpoint
\Rightarrow define the dominant products in a rotated frame \boldsymbol{R}

- Metric g must be easily diagonalizable (small):
\Rightarrow define metric g within a given atomic pair

Implication: vertex becomes a sparse object

$$
f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r})=\sum_{\lambda} V_{\lambda}^{a b} F^{\lambda}(\boldsymbol{r})
$$

For a given product index λ only few $V_{\lambda}^{a b}$ will be non zero.

Construction of χ_{0} in $O\left(N^{2} N_{\omega}\right)$ operations ${ }^{3}$

- Ansatz $f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r})=\sum_{\mu} V_{\mu}^{a b} F^{\mu}(\boldsymbol{r})$ leads to

$$
\chi_{\mu \nu}^{0}(\omega)=\sum_{E<0, F>0} \sum_{\text {pqrs }} X_{p}^{E} X_{q}^{F} X_{r}^{E} X_{s}^{F} \frac{V_{\mu}^{p q} V_{\nu}^{r s}}{\omega-(E-F)+\mathrm{i} \varepsilon}
$$

- Spectral function $a_{\mu \nu}=\operatorname{Im} \chi_{\mu \nu}^{0}$

$$
a_{\mu \nu}(\lambda)=\sum_{E<0, F>0} \delta(\lambda-(E-F)) \sum_{p q r s} X_{q}^{F} X_{s}^{F} X_{p}^{E} X_{r}^{E} V_{\mu}^{p q} V_{\nu}^{r s}
$$

- $a_{\mu \nu}(\lambda)$ via convolution

$$
a_{\mu \nu}(\lambda)=\sum_{F} \sum_{p q r s} \rho_{-}^{q s}(-F) * \rho_{+}^{p r}(\lambda-F) V_{\mu}^{p q} V_{\nu}^{r s}
$$

$$
\text { electronic spectral function } \rho_{-}^{q s}(F)=\sum_{\nu<0} \delta(\nu-F) X_{q}^{F} X_{s}^{F}
$$

- Discretise $\lambda=E-F \Rightarrow \chi_{\mu \nu}^{0}(\omega)$ is again convolution

$$
\chi_{\mu \nu}^{0}(\omega)=\sum_{\lambda} a_{\mu \nu}(\lambda) \cdot(\omega-\lambda+\mathrm{i} \varepsilon)^{-1}
$$

${ }^{3}$ D. Foerster, P. Koval, J. Chem. Phys. 131, 044103 (2009)

Spectral function: discretisation

- FFT needs equidistant grid, but energy differences do not fit any equidistant grid

■ Solution: "occupy" adjacent nodes

\checkmark Result: χ_{0} exact up to discretisation

Spectral function：second window

－Spectral range of DFT eigenenergies is large：$\approx 110 \mathrm{eV}$ for benzene
－Only low energy relevant \Rightarrow need $\chi_{0}(\omega)$ in a small target window
－$a(\lambda)$ outside of target window contributes to $\chi_{0}(\omega)$ inside

$$
\chi_{0}(\omega)=\int_{-\infty}^{\infty} d \lambda \frac{a(\lambda)}{\omega-\lambda}
$$

－Solution：resonant and non－resonant spectral functions

$$
\begin{aligned}
& \chi_{0}(\omega)=\int_{-\infty}^{-\omega_{\max }} d \lambda \frac{b(\lambda)}{\omega-\lambda+\mathrm{i} \varepsilon}+\int_{-\omega_{\max }}^{+\omega_{\max }} d \lambda \frac{a(\lambda)}{\omega-\lambda+\mathrm{i} \varepsilon}+\int_{\omega_{\max }}^{+\infty} d \lambda \frac{b(\lambda)}{\omega-\lambda+\mathrm{i} \varepsilon} \\
& \hline \text { Nonresonant range } \\
& \hline \omega_{\max } \\
& \text { Resonant range } \\
& \omega_{\text {max }} \\
& \text { Nonresonant range } \\
& \omega
\end{aligned}
$$

Coulomb self energy Σ_{H} : sketch of basis

- In the basis of dominant products Σ_{H} reads

$$
\Sigma_{\mathrm{H}}^{\mu \nu}=\int d \boldsymbol{r} d \boldsymbol{r}^{\prime} F^{\mu}(\boldsymbol{r})\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{-1} F^{\nu}\left(\boldsymbol{r}^{\prime}\right) .
$$

Dominant functions $F^{\mu}(\boldsymbol{r})$ are either local or bilocal.

- Generally $F^{\mu}(\boldsymbol{r})=\sum_{j} F_{j}^{\mu}\left(r^{\prime}\right) S_{j m}\left(\boldsymbol{R}_{\mu} \boldsymbol{r}^{\prime}\right), \boldsymbol{r}^{\prime}=\boldsymbol{r}-\boldsymbol{C}_{\mu}$.
- Radial functions $F_{j}^{\mu}\left(r^{\prime}\right)$ are given on a logarithmic grid.

Coulomb self energy Σ_{H} : method

- $\Sigma_{\mathrm{H}}^{\mu \nu}$ can be reduced to a sum over elementary Coulomb interactions

$$
\begin{aligned}
E_{j m, j^{\prime} m^{\prime}}\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right) & =\int d \boldsymbol{r} d \boldsymbol{r}^{\prime} \frac{g_{j m}(\boldsymbol{r}-\boldsymbol{c}) g_{j^{\prime} m^{\prime}}\left(\boldsymbol{r}^{\prime}-\boldsymbol{c}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \\
g_{j m}(\boldsymbol{r}) & =g_{j}(r) S_{j m}(\boldsymbol{r})
\end{aligned}
$$

- $E_{j m, j^{\prime} m^{\prime}}\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right)=\left\langle g_{j m}\right| p^{-2}\left|g_{j^{\prime} m^{\prime}}\right\rangle$ in momentum space.
- Conversion to momentum space by Talman's fast Bessel transform ${ }^{4}$.
${ }^{4}$ Talman J. D., Comput. Phys. Commun. 180332 (2009)

Coulomb self energy Σ_{H} : CPU cost

- For small molecules $\Sigma_{\mathrm{H}}^{\mu \nu}$ costs $O\left(N^{2}\right)$
- For large molecules $\sum_{\mathrm{H}}^{\mu \nu}$ costs $O(N)$, because non overlapping $F^{\mu}(\boldsymbol{r}), F^{\nu}(\boldsymbol{r})$
interact via their multipoles.

\checkmark No 4-center integrals involved

Exchange-correlation self energy Σ_{xc}

$$
\begin{aligned}
& \text { ALDA: } f_{\mathrm{xc}}(\boldsymbol{r}) \equiv \delta\left(t-t^{\prime}\right) \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \frac{d V_{\mathrm{xc}}}{d n}(\boldsymbol{r}) \\
& \Rightarrow \sum_{\mathrm{xc}}^{\mu \nu}=\int d \boldsymbol{r} F^{\mu}(\boldsymbol{r}) f_{\mathrm{xc}}(\boldsymbol{r}) F^{\nu}(\boldsymbol{r})
\end{aligned}
$$

- Spherical coordinates $\int d \boldsymbol{r}=\int r^{2} d r d \Omega$
- Lebedev method for solid angle $\int d \Omega$, Gauss-Legendre for $\int r^{2} d r$.
- Organize calculation in batches.
$\checkmark \Sigma_{\mathrm{xc}} \operatorname{costs} O(N)$.

Polarizability: CPU costs

- Non interacting response χ_{0}
- Self energies $\Sigma_{\mathrm{H}}, \Sigma_{\mathrm{xc}}$ $O(N)$
- Solving $\chi^{-1}=\chi_{0}^{-1}-\Sigma$ with direct methods
(3) Fortunately $P^{i k}=d^{i} \chi d^{k}$ can be calculated iteratively
- Thanks to iterative methods
\checkmark Interacting polarizability $P^{i k}$, total CPU

Polarizability: method

$P^{i k}=d^{i} \frac{1}{1-\chi_{0} \Sigma} \chi_{0} d^{k} \Rightarrow$ avoid $O\left(N^{3}\right)$ inversion.

- Bi-orthogonal Lanczos method for non-hermitian matrices

1. $A=1-\chi_{0} \Sigma \rightarrow$ tridiagonal form $t_{n m}$

$$
\begin{array}{r}
A=|n\rangle t_{n m}\langle m| \\
A^{-1}=|n\rangle t_{n m}^{-1}\langle m| \\
P=P_{0} t_{11}^{-1}
\end{array}
$$

2. A^{-1} is easy because $t_{n m}$ is tridiagonal

- GMRES allows to control precision during iterations

1. Solve by GMRES
2. Compute polarizability

$$
\begin{array}{r}
\left(1-\chi_{0} \Sigma\right) x=\chi_{0} d_{i} \\
P^{i i}=\left\langle d_{i} \mid x\right\rangle
\end{array}
$$

3. Mean polarizability is trace of $P^{i i}$.

Dominant products basis: compression

How many dominant products $F^{\mu}(\boldsymbol{r})$ needed?

- Compare with exact result in the conventional basis.
- $\chi_{E F, P Q}^{0}$ is diagonal ©, but interaction kernel costs $\left.O\left(N^{3}\right)\right)^{-2}$
interaction kernel K via self energy Σ, vertex V and density matrix D :
$K=(D V) \Sigma\left(V^{\top} D\right)$

- Original basis 5832 products $f_{a}(\boldsymbol{r}) f_{b}(\boldsymbol{r})$
ω, eV
Dominant basis 1236 products $F^{\mu}(\boldsymbol{r})$.

Dominant products basis: Coulomb versus Cartesian metric

Metric	Number of products	Run $t i m e^{5}, \mathbf{s}$	Expression for metric
Cartesian	1158	1207	$f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r}) f^{c}(\boldsymbol{r}) f^{d}(\boldsymbol{r})$
Coulomb	921	816.8	$f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r}) f^{c}\left(\boldsymbol{r}^{\prime}\right) f^{d}\left(\boldsymbol{r}^{\prime}\right) /\left\|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right\|$

${ }^{5}$ (Dell laptop, one thread)

Dominant products basis: indigo

Program	TDDFT_LR	ADF
Wall time ${ }^{6}$, hours	3.0	17

[*] Ross Brown, IPREM unpublished (2008)
${ }^{6}$ ADF with one thread on Dell laptop; TDDFT_LR with one thread on Grid5000.

Implementation：a bird＇s eye overview

－Input data from DFT calculation $H, S, f^{a}(\boldsymbol{r})$
－Diagonalize H ，check S
－Construct product basis

$$
f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r})=V_{\mu}^{a b} F^{\mu}(\boldsymbol{r})
$$

－Compute response matrix
－．．．self－energies

$$
\begin{gathered}
\chi_{0}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, \omega\right)=F^{\mu}(\boldsymbol{r}) \chi_{\mu \nu}^{0}(\omega) F^{\nu}\left(\boldsymbol{r}^{\prime}\right) \\
\Sigma^{\mu \nu}=\iint d \boldsymbol{r} d \boldsymbol{r}^{\prime} F^{\mu}(\boldsymbol{r}) \Sigma\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) F^{\nu}\left(\boldsymbol{r}^{\prime}\right)
\end{gathered}
$$

－．．．electronic excitation spectrum

$$
P^{i k}=\boldsymbol{d}_{i}\left(1-\chi_{0} \Sigma\right)^{-1} \chi_{0} \boldsymbol{d}_{k}
$$

Implementation：a bird＇s eye overview

－Input data from DFT calculation $H, S, f^{a}(\boldsymbol{r})$
－Diagonalize H ，check S
－Construct product basis

$$
f^{a}(\boldsymbol{r}) f^{b}(\boldsymbol{r})=V_{\mu}^{a b} F^{\mu}(\boldsymbol{r})
$$

－Compute response matrix
－．．．self－energies

$$
\begin{gathered}
\chi_{0}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, \omega\right)=F^{\mu}(\boldsymbol{r}) \chi_{\mu \nu}^{0}(\omega) F^{\nu}\left(\boldsymbol{r}^{\prime}\right) \\
\Sigma^{\mu \nu}=\iint d \boldsymbol{r} d \boldsymbol{r}^{\prime} F^{\mu}(\boldsymbol{r}) \Sigma\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) F^{\nu}\left(\boldsymbol{r}^{\prime}\right)
\end{gathered}
$$

－．．．electronic excitation spectrum

$$
P^{i k}=\boldsymbol{d}_{i}\left(1-\chi_{0} \Sigma\right)^{-1} \chi_{0} \boldsymbol{d}_{k}
$$

Points to mention for each step of the program

- Sketch the algorithm and implementation
- Type of parallelization chosen/implemented
- Improvements done (since June 2009)
- Wall time and speedup factors on Grid5000 / M3PEC / Dell Laptop

Construct product basis: algorithm

Algorithm 1: Generation of bilocal vertex

1 forall atom pairs do

Compute an expansion of $f_{a}(\boldsymbol{r}) f_{b}(\boldsymbol{r})=\sum_{j} F_{j}(r) Y_{j m}(\boldsymbol{r})$ (Talman)
Convert the expansion to momentum space $F_{j}(r) \rightarrow F_{j}(p)$ (Talman)
Build Coulomb metric g using $F_{j}(p)$
Diagonalize the metric $g X^{\lambda}=\lambda X^{\lambda}$
Build dominant products and vertex with $\lambda=\lambda / 10$
Allocate intermediate storage for dominant products and vertex
Store the generated data

Construct product basis: parallelization

- Local vertex is a fast operation - no reason to parallelize
- Generation of bilocal vertices takes few seconds ($\sim 10 \mathrm{~s}$)
- Vertices and products are needed on all nodes
\checkmark Bilocal vertices to be parallelized with OpenMP: done

Construct product basis: improvements

1. Intermediate storage introduced: storage requirements grows $O(N)$
2. Cartesian metric is implemented for testing
3. Loop over atom pairs is rewritten
4. Rotation matrices are initialized once
5. Talman's fast Bessel transform is reshaped in FFTW fashion
6. Loop over atom pairs is parallelized (OpenMP)

Construct product basis: timing with benzene

OMP_NUM_THREADS	Dell laptop	Grid5000	M3PEC
Sequential	4.58	4.30	7.99
1	8.60	4.51	9.01
2	2.60	2.24	4.58
8	-	0.913	1.35
16	-	-	0.924
Max speedup	3.30	4.94	9.75

Construct product basis: timing with indigo

OMP_NUM_THREADS	Grid5000	M3PEC
Sequential	20.7	38.8
1	21.3	42.3
2	10.8	21.3
8	2.88	5.58
16	-	3.28
Max speedup	7.40	12.9

Compute response matrix: algorithm

Algorithm 2: Calculation of response matrix
1 Generate Fourier transform of density matrices $\rho^{ \pm}(\tau)$
2 forall atom quadruplets do

1. Multiply $\rho^{ \pm}(\tau)$ with vertices $V_{_}$rho $=V \rho^{ \pm}(\tau)$
2. Find Fourier transform of spectral function $a(\tau)=V_{_}$rho $\cdot V_{_}$rho

Do steps 1 and 2 for $\omega_{\max 2}$ - compute spectral function $b(\tau)$
Nullify $b(\tau)$ in first (target) window
Prepare second convolution $\chi^{0}(\tau)=a(\tau) * F F T(\omega-\lambda+\mathrm{i} \varepsilon)$
Fourier transform of response $\chi^{0}(\omega)=F F T\left(\chi^{0}(\right.$ tau $\left.)\right)$
Interpolation of second window response $\chi_{2}^{0}(\omega)$, update $\chi^{0}(\omega)$
Store the generated data

Compute response matrix: parallelization

- Response matrix takes much memory (currently 11 GB for indigo)
- Although $O\left(N^{2} N_{\omega}\right)$, calculation is long (3 hours for indigo)
- Calculation of matrix elements is independent task
- Available machines contain few CPU on one node (16 on M3PEC)
- Available machines consists of many nodes (hundreds)
- Response matrices to be parallelized with OpenMP and MPI

Compute response matrix: parallelization

- Amount of work is different for atom quadruplets: load balancing

Computational cost

- Reorder quadruplets to obtain a good schedule for OpenMP
- Iterative method requires matrix-vector products
- There are MPI parallelized BLACS implementations: use them
- Give up the "natural" blocks in favor of block-cyclic decomposition

Compute response matrix: OpenMP parallelization

Algorithm 3: OpenMP parallelization of quadruplet loop
1 !\$OMP PARALLEL
2 allocate private and threadprivate variables here
3 !\$OMP DO SCHEDULE(DYNAMIC,10)
4 forall atom quadruplets do
5 Compute block of response matrix
6 Store the generated data
7 !\$OMP END DO
8 deallocate private and threadprivate variables here
9 !\$OMP END PARALLEL
\checkmark OpenMP parallelization is done.

Compute response matrix: improvements

- Sparse data storage for vertex (less memory \& more speed)
- Quadruplets of atoms introduced (half of second convolutions \boldsymbol{X})
- Result is saved in single precision (halves memory requirement)
- Skip unnecessary vertex-matrix multiplications in diagonal blocks X
- Automatic arrays removed \boldsymbol{X}
- Storage of intermediate vertex-matrix products shaped
- Single precision in vertex-matrix products
- OpenMP parallelization of the main loop
- Threadprivate variables for temporary arrays
\checkmark At least factor 6 speedup. OpenMP scaling on Grid5000 improved.

Compute response matrix: timing with benzene

OMP_NUM_THREADS	Dell laptop	Grid5000	M3PEC
Sequential	709	725	752
1	646	734	751
2	625	375	376
8	-	108	95.0
16			53.0
Max speedup	1.03	6.79	14.2
	nber of threads		

Compute response matrix: timing with indigo

OMP_NUM_THREADS	Grid5000	M3PEC
Sequential	9351	10701
1	9664	10697
2	4840	5346
8	1479	1351
16	-	741
Max speedup	6.32	14.4

Coulomb interaction matrix: algorithm

Algorithm 4: Calculation of Coulomb interaction matrix
1 Compute fast Bessel transform of all radial functions $F_{l}^{\lambda}(p)$
2 Compute Wigner rotation matrices
3 forall atom quadruplets do

8

Integrate products of radial functions with $j_{l}(p R) / p^{2}$
Rotate contributions to Coulomb integral
Sum up the contributions from different angular momentum
Store the generated data

Interaction matrices: parallelization

- Interaction matrices take less memory
- Calculation of matrix elements is independent task
- Parallelization strategy depends on speed of communication during last step (iterative construction of polarizability)
- Response matrices to be parallelized with OpenMP and possibly MPI
\checkmark OpenMP parallelization is done.

Interaction matrices: improvements

- Quadruplets of atoms introduced
- OpenMP parallelization of the main loop
- Automatic arrays removed \boldsymbol{X}
- Threadprivate variables for temporary arrays
- Indexing array is remove \boldsymbol{X}
\checkmark Some speedup. Good scaling on Grid5000.

Coulomb interaction: timing with benzene

OMP_NUM_THREADS	Dell laptop	Grid5000	M3PEC
Sequential	42.7	38.2	78.6
1	42.5	37.4	210
2	21.4	18.6	105
8	-	4.71	26.7
16	-	-	13.5
Max speedup	1.98	7.93	15.6
	mber of threads		

Coulomb interaction: timing with indigo

OMP_NUM_THREADS	Grid5000	M3PEC
Sequential	393	757
1	365	2765
2	181	1380
8	45.6	346
16	-	174
Max speedup	8.04	15.9

Exchange-correlation matrix: algorithm

Algorithm 5: Calculation of exchange-correlation interaction matrix
1 Precompute rotation matrices for fast computation of $F^{\lambda}(\boldsymbol{r})$
2 forall atom quadruplets do
3 Initialize batch variables; Nullify the result;
4 forall Gauss-Legendre points $\int \mathrm{d} r$ do
forall Lebedev points $\int \mathrm{d} \Omega$ do
$\boldsymbol{r}=(r, \Omega)$
Compute values of all dominant functions
Compute value of $\Sigma_{x}(\boldsymbol{r})$ and $\Sigma_{c}(\boldsymbol{r})$
Update corresponding integral

Store the generated data

Exchange-correlation interaction: timing with benzene

OMP_NUM_THREADS	Dell laptop	Grid5000	M3PEC
Sequential	79.29	97.22	141.2
1	80.45	99.20	190.4
2	41.86	49.61	96.37
8	-	13.12	24.81
16	-	-	13.34
Max speedup	1.92	7.56	14.27
	nber of threads		

Exchange-correlation interaction: timing with indigo

OMP_NUM_THREADS	Grid5000	M3PEC
Sequential	365	524
1	368	583
2	186	293
8	50.9	74.7
16	-	40.3
Max speedup	7.23	13.0

Sequential remnants in the code: indigo

Subprogram	Grid5000, 8 threads	M3PEC, 16 threads
$V_{\mu}^{a b}$	2.88	3.28
$\chi_{\mu \nu}^{0}$	1479	741
Σ_{H}	45.6	174
Σ_{xc}	50.9	40.3
$P_{i k}$	755	686
Total time	2345	1677
Remnants	11.6	32.4

Conclusions

- Fast algorithm allows for a $O\left(N^{2} N_{\omega}\right)$ scaling in true polarizability
\checkmark Most of improvements have been done in response
\checkmark Current implementation is faster than ADF in indigo molecule
\checkmark Most of the program is parallelized with OpenMP
© C MPI parallelization remains to do

Acknowledgments

－James Talman，London，Canada
－Mark Casida，Grenoble，France
－Ross Brown，Pau，France

\＄\＄Work supported by ANR－project NOSSI
Nouveaux Outils pour la Simulation des Solides et des Interfaces

Largest molecule computed with our method $-\mathrm{C}_{60}$

- Number of dominant products
- Memory (7800*7800/2*8*(128-53)/1024/1024/1024)
- Walltime (Grid5000, 8 threads, 128 freq. points, for χ_{0})
[1] Dario Rocca, PhD Thesis (2007)
[2] Bauernschmitt et al, Am. Chem. Soc. 120, 5052 (1998) (in hexane).

