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INTEGRAL REPRESENTATION RESULTS FOR ENERGIES DEFINED

ON STOCHASTIC LATTICES AND APPLICATION TO NONLINEAR

ELASTICITY

ROBERTO ALICANDRO, MARCO CICALESE, AND ANTOINE GLORIA

Abstract. This article is devoted to the study of the asymptotic behavior of a class of
energies defined on stochastic lattices. Under polynomial growth assumptions, we prove
that the energy functionals Fε stored in the deformation of an ε-scaling of a stochastic
lattice Γ-converge to a continuous energy functional when ε goes to zero. In particular,
the limiting energy functional is of integral type, and deterministic if the lattice is ergodic.
We also generalize to systems and nonlinear settings well-known results on stochastic
homogenization of discrete elliptic equations. As an application of the main result, we
prove the convergence of a discrete model for rubber towards the nonlinear theory of
continuum mechanics. We finally address some mechanical properties of the limiting
models, such as frame-invariance, isotropy and natural states.
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1. Introduction

The derivation of continuum models from discrete systems has drawn the attention of
many authors in many areas of the physical sciences, namely micromagnetics, quantum
chemistry, molecular dynamics or classical mechanics to cite a few. In the framework of
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mechanics, many papers have been devoted to the justification of several elasticity theories
for crystals starting from discrete models at the “atomic” scale. Modeling assumptions
cover a wide spectrum: From quantum chemistry models in [6, 8] to Lennard-Jones po-
tentials in [16] and [26], or even linear springs in [17]. On the other hand much effort
has been done in predicting the overall behavior of some hand-made composite structures
without resolving all the details in the spirit of the homogenization theory (see the case
of truss-like structures, [19], [21], and [41, 42]). The point of view we adopt here borrows
from both approaches. We aim at analyzing the convergence of a discrete model for rubber
described in Subsection 4.1 (see also [33]). To this end we need to rigorously relate two
existing theories of physics: The statistical mechanics description of cross-linked polymers
and the continuum theory of rubber elasticity.

The derivation of a continuum theory from simple atomistic models in the case of crystals,
whose reference configuration is a periodic lattice, has been initiated by Braides and
collaborators in [14, 15] in the framework of Γ-convergence (see [12]). Here we follow
the same general approach. However, in order to derive rubber elasticity models from
a statistical mechanics description, we need to go beyond periodicity. To this end, we
study the Γ-convergence of energy functionals defined on stochastic lattices, combining the
techniques developed by two of the authors in [2] with the notions of stochastic lattices
and stochastic diffeomorphisms introduced and studied by Blanc, Le Bris and Lions in
[6, 7, 8, 9], and the related work [31] of the third author. Some of the results of this paper
have been announced in [3].

We are interested in finding the configurations of minimal energy, among an admissible
set of deformations, of a given discrete structure representing the reference configuration
of a discrete system. In particular we aim at studying its asymptotic behavior as a small
parameter ε, proportional to the typical distance between the particles, goes to zero,
thus encoding the passage from a discrete to a continuum model. In [2], dealing with
the discrete-to-continuum limit for crystalline materials, the geometric structure of the
reference configuration was given by a periodic lattice, typically Z

d (where d denotes the
space dimension). However, as shown in Subsection 4.3, in the case under investigation,
such a derivation does not give rise, in the continuum limit, to isotropic energy densities.
As a matter of fact, in the case of rubber (see details in [33]), isotropy is a consequence of a
statistical property satisfied by the discrete network of polymer chains. As a consequence,
we need to introduce the required disorder at the level of the geometric structure of the
reference configuration (while still allowing for the existence of a notion of mean energy).
To this end we turn to a stochastic setting exploiting the definition and properties of the
stochastic lattices introduced by Blanc, Le Bris and Lions to study quantum chemistry
models (see [6, 7, 8, 9]). Note that their choice of giving more freedom to the relative
positions of the particles in the reference configuration is related to the use of the Cauchy-
Born (CB) rule, which may appear drastic in the periodic case (see however the recent
works by Theil [46] and E and Ming [26]). Our use of stochastic lattices is different.
In the present setting, randomness is an intrinsic feature of the physics of reticulated
polymers. In particular, it is not related with relaxation properties or with the crystal
problem. Actually the randomness of the reference configuration implies, as it will be clear
in the definition of the energy of the system, that the interacting pairs in the system are
not deterministically predictable: They depend on the random positions of the particles
themselves in the reference configuration, the latter being one of the main features of any
realistic microscopic model of interacting polymers.

In order to rigorously derive a variational continuum theory for rubber elasticity starting
from a variational discrete model we follow a strategy inspired by that of Treloar in [47],
and further motivated in [33]. In his approach, Treloar considers rubber as a network
of cross-linked polymer chains. Each polymer chain is modeled by a dumbbell, whose
head and tail are connected to each other through a chain of monomers. These monomers
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are assumed to obey a random walk (potentially self-avoiding etc.), whose probability
gives rise to the free energy of an isolated dumbbell in the theory of statistical mechanics.
Explicit forms for this free energy have been derived by Kuhn and Grün in [39] (see also
the monograph by Flory [28]). In Treloar’s model, the dumbbells are cross-linked and
form a network of polymer chains. These cross-links mainly appear during the chemical
process of polymerization and their positions may be considered random. This description
allows us to see the cross-links as the reference configuration of the discrete model. At
this point, Treloar assumes what we call the Cauchy-Born rule in quantum contexts, and
which is called the affine assumption in mechanics. In other words, if the boundary of the
network is linearly deformed, the cross-links are assumed to spontaneously linearly deform
as well, and the effective energy of the deformed network is assumed to be the sum of the
free energies of the deformed dumbbells. We depart from Treloar’s approach at this very
point and let the network relax its energy instead of imposing the CB rule. As shown
heuristically in [33] (and as recalled in Section 4.1), this procedure is more consistent with
a full statistical mechanics treatment of the network of polymer chains. Other models,
based on dynamics, also exist in the litetature (see Edwards [27]). They are not considered
here.

Let us now make precise the description of the network of cross-links. A reference config-
uration is given by an admissible stochastic lattice defined as follows. Given a countable
set of points Σ = {xi}i∈N in R

d, we say that Σ is admissible if

(i) there exists R > 0 such that infz∈Rd #(Σ∩B(z,R)) ≥ 1 (i.e., arbitrarily big empty
regions are not allowed),

(ii) there exists r > 0 such that inf{|x − y|, x, y ∈ Σ, x 6= y} ≥ r (i.e., clusters are
not allowed).

Then, given a probability space (Ω,F , P), a random variable L : Ω → (Rd)Zd
is called an

admissible stochastic lattice if, uniformly with respect to ω ∈ Ω, L(ω) is an admissible set
of points. Moreover, as in the papers by Blanc, Le Bris and Lions, we will assume that
the stochastic lattice is stationary. This means that, for all z ∈ Z, L(ω) and L(ω) + z
have the same statistics. Note that this hypothesis plays the same role as periodicity in
the deterministic case treated in [2] and that, as in stochastic homogenization problems,
it appears as a natural assumption here.

With every given stationary stochastic lattice L(ω) we associate a Voronoi tesselation
V(L(ω)) and define the set of nearest neighboring points, namely NN (ω), as the set of
those couples of points of the stochastic lattice L(ω) which share a (d − 1)-dimensional
edge of the associated Voronoi tesselation. Let D ⊂ R

d be a bounded open set, and
ε > 0 be a small parameter. We assume that the energy accounting for nearest-neighbors
interactions which is stored to deform the system εL(ω)∩D by a field u : εL(ω)∩D → R

n

has the form (see (107))

Fnn,ε(ω)(u) =
∑

(x, y) ∈ NN (ω)
εx, εy ⊂ D

εdfnn

(
y − x,

u(εy) − u(εx)

ε|y − x|

)
, (1)

where fnn is a non-negative potential on which we make standard superlinear growth
assumptions. As a natural generalization of this nearest-neighbors model we may also
account for the interactions of arbitrarily far apart particles in the system by adding to
Fnn,ε a term of the form

Flr,ε(ω)(u) =
∑

(x, y) 6∈ NN (ω)
εx, εy ⊂ D

εdflr

(
y − x,

u(εy) − u(εx)

ε|y − x|

)
,
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where flr satisfies, besides a superlinear growth condition as for fnn, a long-range-decay
hypothesis (see (15)), which allows us to obtain a local energy functional at the limit
ε → 0.
The total energy of the system thus reads

Fε(ω)(u) = Fnn,ε(ω)(u) + Flr,ε(ω)(u). (2)

We study the limit of Fε, as ε tends to zero, in the framework of Γ-convergence. To this
end we identify the field u with its piecewise-constant interpolation taking the value u(x)
on the Voronoi cell centered at x. In such a way we can regard the energies as defined on
Lp(D, Rn) and we can perform the Γ-limit in that space. In Theorem 2, we prove that the
limiting energy Fhom(ω) is finite only on W 1,p(D, Rn) and has the form

Fhom(ω)(u) =

∫

D

Whom(∇u(x);ω) dx (3)

where, for P-almost every ω and for all Λ ∈ Mn×d, Whom(Λ;ω) is given by an asymp-
totic type homogenization formula (see (17)). If in addition L is ergodic, the limit is
deterministic and Whom is given by an asymptotic homogenization formula in which the
ω dependence disappears.

To prove these results we combine the abstract method of Γ-convergence, developed in the
discrete setting in [2] in the case of a periodic reference configuration, with the subadditive
ergodic theorem by Ackoglu and Krengel in [1]. This proof is not a straightforward com-
bination of the previous two methods due to the generality of the geometry of admissible
stochastic lattices and to the generality of the potentials. Our arguments also apply to
more general cases. On the one hand the energies may also take into account non-pairwise
interactions. In particular in Section 3.2 we consider the case of (d + 1)-body potentials
which may account, in the case d = n, for the energy stored in changing the volume of
a given element of a (Delaunay) tesselation of the reference configuration (see below).
On the other hand we may also consider models in which randomness and geometry are
combined in a different fashion. In fact, in Section 3.3 we state the analogue of the main
theorem in the following two cases: A discrete system having a periodic reference config-
uration and subject to random interaction potentials; A stochastically deformed lattice

which is a discrete system whose reference configuration is the image through a stochastic
diffeomorphism (see Definitions 6 & 7) of a periodic lattice.

The second half of the paper is devoted to the study of the mechanical properties of the
homogenized continuum energy Whom. In Section 4.3 we first consider two examples of
discrete systems with a periodic reference configuration to point out that, depending on
the geometry of the lattice and on the discrete energy, the symmetry properties of the
continuous energy density, and in particular isotropy, may change. Such an evidence,
and the fact that continuum models for rubbers are indeed isotropic, motivates us to
introduce at the microscopic level a stochastic notion of isotropy (see Definition 14). We
say that a set of points in R

d is isotropic if L(ω) and RL(ω) have the same statistics for
all R ∈ SO(d). In Theorem 9 we then prove that, if fnn and flr depend on the points of
the lattice through their distances only and if the volume term is isotropic, then, assuming
the reference configuration to be isotropic, the continuum energy density Whom is isotropic
too.

In the continuum theory of elasticity one needs to consider a term accounting for non
interpenetrability of matter. This term constrains the deformation to be an injective
function. Such a property can be insured by imposing that the density of the volumetric
term in the energy functional blows up as the determinant of the deformation field goes
to zero. To define a volumetric term at the discrete level we first remark that with every
admissible stochastic lattice L(ω) one can associate a Delaunay tesselation T , and that
exploiting such a property one can define the volume term as a function of the gradient
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of the piecewise-affine interpolation of the deformation field on the Delaunay tesselation.
The volumetric term of the energy then takes the form

Fvol,ε(ω)(u) =
∑

εT∈εT (ω)∩D

εd|T |Wvol(∇u|εT ),

where, in physically relevant cases, d = n = 3 and Wvol : R
3×3 → R is typically the

Helmholtz energy

Wvol(Λ) = c(det Λ2 − 1 − 2 ln det Λ),

with c > 0. It turns out that Wvol does not satisfy the superlinear growth assumption we
need to prove the analogue of the main theorem (see Theorem 5). Instead, we consider an
easier volume term in the energy by proceeding as follows. We penalize volume changes
up to a certain threshold, thus keeping the growth assumptions we need, and proceed
to the discrete-to-continuum limit. In a second step we recover non-interpenetrability by
removing, through a limit process, the dependence of the limit energy on this threshold
in the continuum setting (see Theorem 11).

As a further issue, we determine natural states of the continuum limit Whom we get
proceeding as above. In Theorem 12 we prove that the limit energy density Whom is
continuous on the space of d × d matrices with positive determinant. This implies that
Whom fulfills the hypotheses of a result by Mizel (see [43]), which ensures there is a dilation
among the natural states of Whom.

Besides the motivation of the derivation of a nonlinear elasticity model from discrete
systems, the results obtained in this paper generalize some well-known results on stochastic
homogenization of difference operators (see results by Künnemann [40], by Kozlov [37],
and by Iosifescu, Licht and Michaille [34, 35]) in two directions: The properties (dimension
and nonlinearity) of the difference operator (or of the associated Dirichlet form) and the
graph considered for the difference operator (beyond periodic lattices).

2. Notation and preliminaries

In this section we introduce the notation used throughout this paper and we state some
preliminary results.

We denote by {e1, e2, . . . , ed} the canonical basis of R
d, by | · | the usual Euclidean norm

and by 〈·, ·〉 the scalar product in R
d. We denote by Mn×d and Mn×n

sym the space of n× d
real matrices and symmetric n × n real matrices, respectively. When n = d, we simply
write Mn in place of Mn×n. For P ∈ Mn×d, Q ∈ Md×l, P · Q denotes the standard row
by column product. For x, y ∈ R

d, [x, y] denotes the segment between x and y. If B ⊂ R
d

is a Borel set, |B| denotes its Lebesgue measure. If D is a bounded open subset of R
d,

A(D) is the family of all open subsets of D and Areg(D) denotes the family of those sets
in A ∈ A(D) such that |∂A| = 0. Moreover we let dimH(A) be the Hausdorff dimension
of the set A.

2.1. Admissible set of points. Let us introduce the class of discrete systems considered
in this paper. We first give the geometric properties that a countable set of points has
to fulfill in order to be admissible. This property corresponds to the “regularity” in the
sense of Delaunay (or Delone) [25]. We then set the stochastic framework and define a
stochastic lattice as a random variable taking values in the family of admissible sets of
points.

Definition 1. Let Σ be a countable set of points in R
d. We say that Σ is an admissible

set of points if it satisfies the following two conditions:

(i) There exists R > 0 such that inf
x∈Rd

#Σ ∩ B(x,R) ≥ 1;

(ii) There exists r > 0 such that |x − y| ≥ r for all x, y ∈ Σ, x 6= y.
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Definition 2. Let Σ be a countable set of points in R
d. We denote by V(Σ) the Voronoi

tesselation of R
d associated with Σ. That is, V(Σ) := {C(x)}x∈Σ, where

C(x) := {z ∈ R
d : |z − x| ≤ |z − y| ∀ y ∈ Σ}. (4)

The result contained in the following lemma directly follows from the previous two defi-
nitions and will be useful to prove the coercivity of the energy density in Lemma 3. We
display its proof for completeness.

Lemma 1. Let Σ be an admissible set of points. Then for all x ∈ Σ,

B(x,
r

2
) ⊂ C(x) ⊂ B(x, 4R),

where r and R are as in Definition 1.

Proof. Let y ∈ Σ \ {x}, then |y − x| ≥ r. Hence, for all z ∈ B(x, r/2),

|z − x| ≤ |z − y|.
By definition of the Voronoi diagram, B(x, r

2 ) ⊂ C(x).

We now turn to the second inclusion. First note that if Σ̂ ⊆ Σ, then for all x ∈ Σ̂

CΣ(x) ⊂ C
bΣ
(x),

where CΣ(x) and C
bΣ(x) denote the Voronoi cells centered in x of the sets of points Σ

and Σ̂, respectively. Let us now construct a suitable set of points Σ̂ as follows: For all
i ∈ {1, . . . , d}, choose x−i and xi in Σ∩B(x−3Rei, R) and L∩B(x−3Rei, R) respectively,
and define

Σ̂ :=

d⋃

i=−d

{xi},

where x0 := x, and {ei}i=1,...,d is the canonical basis of R
d. We then have:

C
bΣ
(x) ⊂ Co

(
d⋃

i=1

B(x + 3Rei, R) ∪ B(x − 3Rei, R)

)

⊂ B(x, 4R),

where Co denotes the convex envelope.

We also recall the definition of a Delaunay tesselation associated with an admissible set of
points Σ, that we will use to identify functions defined on Σ with suitable piecewise-affine
interpolations.

Definition 3. Let Σ be an admissible set of points. A Delaunay tesselation T associated
with Σ is a partition of R

d in d-simplices whose vertices are in Σ and which is such that
no point of Σ is inside the circum-hypersphere of any simplex in T .

Definition 4. Let Σ ∈ R
d be an admissible set of points. We say that Σ is general if no

d + 1 points lie in the same hyperplane and if no d + 2 points lie in the same hypersphere.

We recall that if Σ is a general admissible set of points, then the Delaunay tesselation
associated with Σ is unique and is the dual graph of its Voronoi tesselation.

2.2. Stochastic lattices. Throughout the paper, (Ω,F , P) denotes a probability space.
We recall that an additive group action {τz}z∈Zd on Ω is said to be measure preserving if

P(τzB) = P(B), ∀B ∈ F , z ∈ Z
d.

Moreover {τz}z∈Zd is called ergodic if for all B ∈ F
(τz(B) = B ∀z ∈ Z

d) =⇒ P(B) = 0 or P(B) = 1. (5)
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Definition 5. A random variable L : Ω →
(
R

d
)Zd

, ω 7→ L(ω) = {L(ω)(i)}i∈Zd is called a
stochastic lattice. L is said to be admissible if L(ω) is an admissible set of points with R, r
in Definition 1 independent of ω P-almost surely. The lattice L is said to be stationary
if there exists a measure preserving group action {τz}z∈Zd on Ω such that, for P-almost
every ω ∈ Ω,

L(τzω) = L(ω) + z.

Moreover L is said to be ergodic if {τz}z∈Zd is ergodic.

For general facts on stochastic sets of points, and their associated Voronoi and Delaunay
tesselations, we refer the reader to the monographs by Møller [44] and Okabe et.al. [45].
Note that, if we assume that for P-almost every ω ∈ Ω, L(ω) is general according to Defi-
nition 4, then the Delaunay tesselation of L is stationary if L is stationary. In particular,
denoting by T (ω) the Delaunay tesselation of L(ω), one has for all z ∈ Z

d

T (τzω) = z + T (ω)

P-almost surely.

In this paper we will also be interested in another class of stochastic lattices, namely
stochastically deformed periodic lattices, introduced in [8] by Blanc, Le Bris and Lions.
The construction of such stochastic lattices relies on the following notion of stochastic
diffeomorphism.

Definition 6. An application Φ : R
d × Ω → R

d, which is continuous in the first variable
and measurable in the second variable, is said to be a stochastic diffeomorphism if

(i) for P-almost all ω, Φ(·;ω) is a diffeomorphism from R
d onto itself,

(ii) ∇Φ is stationary with respect to a measure preserving action group {τz}z∈Zd , that

is, for P-almost every ω ∈ Ω, for all z ∈ Z
d and for almost every x ∈ R

d,

∇Φ(x + z;ω) = ∇Φ(x; τzω). (6)

(iii) the Jacobian of Φ is uniformly bounded from below:

Ess Infω∈Ω x∈Rd [det(∇Φ(x;ω))] ≥ ν > 0, (7)

(iv) the gradient of Φ is uniformly bounded from above:

Ess Supω∈Ω x∈Rd(|∇Φ(x;ω)|) ≤ M < ∞. (8)

Let L∗ be a periodic lattice of R
d. Then, L := Φ(L∗; ·) is called a stochastically deformed

periodic lattice. Note that L is an admissible stochastic lattice, which is not stationary in
general. In order to use the strategy developed in [31], the stochastic diffeomorphism needs
to be adapted to the periodic lattice L∗. To this aim, we define T ∗-admissible stochastic
diffeomorphisms1 as follows.

Definition 7. Let L∗ be a periodic lattice of R
d, and T ∗ be a periodic tesselation of L∗

in d-simplices. A stochastic diffeomorphism Φ : R
d × Ω → R

d is said to be T ∗-admissible
iff for P-almost all ω, Φ(·;ω) is affine on each element of T ∗.

From Definitions 6 and 7, we deduce that if Φ is a T ∗-admissible stochastic diffeomorphism,
then Φ(T ∗, ω) is P-almost surely a tesselation of Φ(L∗, ω) into d-simplices.

1We abusively denote by “diffeomorphism” this “bi-Lipschitz homomorphism”. Yet we only need a
change of variables formula, which also holds in that case.
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2.3. Ergodic theorems. We recall here the subadditive theorem due to Akcoglu and
Krengel in [1], that we will use in the spirit of the paper [24] by Dal Maso and Modica.
Let I = {[a, b[; a, b ∈ Z

d, a 6= b}.
Definition 8. Let {Ik}k∈N be a family of sets in I. Then {Ik} is called regular if there
exist a constant C > 0 and another family {I ′k}k∈N of sets in I such that

(i) Ik ⊂ I ′k for all k,
(ii) I ′k ⊂ I ′h whenever k < h,
(iii) 0 < |I ′k| ≤ C|Ik| for all k

Furthermore, if {I ′k} can be chosen in such a way that R
d =

⋃
k I ′k then we write limk→∞ Ik =

R
d

Definition 9. We say that µ : I → L1(Ω) is a subadditive stochastic process if P-almost
surely the following two properties hold:

(i) for every I ∈ I and for every finite family (Ik)k∈K in I such that

Ih ∩ Ik = ∅ ∀h, k ∈ K,h 6= h, I = ∪k∈KIk,

it holds that
µ(I;ω) ≤

∑

k∈K

µ(Ik;ω).

(ii) inf

{
1

|I|

∫

Ω
µ(I;ω) dP(ω) : I ∈ I

}
> −∞.

Theorem 1. [1, Theorem 2.9] Let µ : I → L1(Ω) be a subadditive stochastic process and
let {Ik}k∈N be a regular family of sets in I with limk→∞ Ik = R

d. If µ is stationary with
respect to a measure-preserving group action {τz}z∈Zd; i.e.,

∀I ∈ I, ∀z ∈ Z
d, µ(I + z;ω) = µ(I; τzω) almost surely,

then there exists φ : Ω → R such that for P-almost every ω

lim
k→∞

µ(Ik;ω)

|Ik|
= φ(ω).

Furthermore if {τz}z∈Zd is ergodic, then φ is constant.

Remark 1. Theorem 1 also holds if the action group {τz} is parametrized by z ∈ R
d

instead of z ∈ Z
d, provided stationarity is replaced by

∀I ∈ I, ∀z ∈ R
d, µ(I + z;ω) = µ(I; τzω) almost surely,

and ergodicity by: For all B ∈ F ,

(τz(B) = B ∀z ∈ R
d) =⇒ P(B) = 0 or P(B) = 1.

To conclude this subsection, we recall a result related to stochastic diffeomorphisms, that
we will need to prove the main results of the paper in the case of stochastically deformed
lattices, namely Theorem 7 and Theorem 10. In what follows we set Q = (0, 1)d and, for
every random variable X ∈ L1(Ω, dP), we denote by E(X) =

∫
Ω X(ω)dP(ω) its expecta-

tion.

Lemma 2. Let Φ be a stochastic diffeomorphism such that the group action {τz}z∈Zd in
(6) is ergodic. Then, there exist M > 0 and L ∈ Md with det L 6= 0 such that

Ess Infω∈Ω x∈Rd min([det(∇Φ(x;ω))], [det(∇Φ−1(x;ω))]) ≥ 1

M
Ess Supω∈Ω x∈Rd max(|∇Φ(x;ω)|, |∇Φ−1(x;ω)|) ≤ M,

(9)

and

∇Φ
(x

ε
;ω
)

⇀∗ L := E

(∫

Q

∇Φ(z; ·)dz

)
in (L∞(Rd))d P − almost surely. (10)
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Therefore, P−almost surely,

εΦ( ·
ε
;ω) → L(·) strongly in L∞

loc(R
d)

εΦ−1( ·
ε
;ω) → L−1(·) strongly in L∞

loc(R
d)

(11)

The main results in Lemma 2 are due to [7, Lemma 2.1]. The second convergence of (11)
is a straightforward consequence, which is proved in [31, Section 4.2].

3. Integral representation results and discrete homogenization

In this section we present the main result of this paper: The integral representation of
the continuum limit of the energy of a stochastic discrete system. We first state and prove it
in the case of pairwise interactions for stationary stochastic lattices. We then generalize its
statement to the case when the energy also involves an integral term (such as a volumetric
energy), and to other stochastic frameworks (namely to the case of periodic lattices with
stochastic interaction potentials on the one hand, and to stochastically deformed periodic
lattices on the other hand).

3.1. Pairwise interaction energies on stationary stochastic lattices. Let D ⊂ R
d

be a bounded open set with a Lipschitz boundary and let L(ω) be an admissible stochastic
lattice. In order to state our hypotheses, we split the energy of the lattice εL(ω)∩D into
a short-range and a long-range terms. To this end we take advantage of the Voronoi
tesselation associated with the lattice in order to properly define the notion of nearest
neighbors. We use the shorthand notation V(ω) for V(L(ω)), the Voronoi tesselation
associated with L(ω).

Definition 10. The set of nearest neighbors points of L(ω) is defined by

NN (ω) := {(x, y) ∈ (L(ω))2 : dimH C(x) ∩ C(y) = d − 1}.

Remark 2. Note that in the periodic case L(ω) = Z
d, Definition 10 provides the usual

notion of nearest neighbors. Indeed in this case, for x ∈ Z
d, C(x) = x + [−1

2 , 1
2 ]d, and

x, y ∈ Z
d are nearest neighbors if y = x ± ei for some i ∈ {1, . . . , d}.

Let ω ∈ Ω be fixed. For all u : εL(ω) → R
n we set

Fε(ω)(u) := Fnn,ε(ω)(u,D) + Flr,ε(ω)(u,D),

where for all A ∈ A(Rd)

Fnn,ε(ω)(u,A) =
∑

(x, y) ∈ NN (ω)
[εx, εy] ⊂ A

εdfnn

(
y − x,

u(εy) − u(εx)

ε|y − x|

)
,

Flr,ε(ω)(u,A) =
∑

(x, y) 6∈ NN (ω)
[εx, εy] ⊂ A

εdflr

(
y − x,

u(εy) − u(εx)

ε|y − x|

)
,

(12)

and where fnn : R
d × R

n → [0,+∞) and flr : R
d × R

n → [0,+∞) satisfy the following
assumptions.

Hypothesis 1. The functions fnn and flr belong to C0(Rd×R
n, R+) and there exist p > 1,

C1, C2 > 0 and a decreasing function Jlr : R
+ → R

+ with
∫

Rd

Jlr(|x|) dx = J < +∞ (13)
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such that, for all ζ ∈ R
n,

1

C1
|ζ|p − C1 ≤ fnn(·, ζ) ≤ C2(|ζ|p + 1), (14)

flr(x, ζ) ≤ Jlr(|x|)(|ζ|p + 1). (15)

Remark 3. From (15) & (13), we deduce the following bound: For all ζ ∈ R
n

∑

(x, y) 6∈ NN (ω)
[εx, εy] ⊂ D

εdflr (y − x, ζ) ≤ 2

r2d
J |D|(1 + |ζ|p).

In order to make use of the notion of Γ-convergence, we regard the energy Fε as defined
on a subset of Lp(D, Rn). To this end, for all ε > 0 and for P-almost every ω ∈ Ω we set

Sε(ω) := {u : D → R
n : ∀C ∈ V(ω)with εC ∩ D 6= ∅, u|εC∩D is constant}.

This way, we identify u : εL(ω) ∩ D → R
n with its piecewise constant interpolation

(still denoted by u) in Sε(ω) ⊂ Lp(D, Rn). We then consider the family of functionals
Fε(ω) : Lp(D, Rn) → [0,+∞] defined by

Fε(ω)(u) =

{
Fnn,ε(ω)(u,D) + Flr,ε(ω)(u,D) if u ∈ Sε(ω)

+∞ otherwise.
(16)

The main result of this paper is the following theorem.

Theorem 2 (main result). Let L be a stationary admissible stochastic lattice, and let fnn

and flr satisfy Hypothesis 1. For P-almost every ω and for all Λ ∈ Mn×d, the following
limit exists

Whom(Λ;ω) = lim
N→∞

1

Nd
inf
{
F1(ω)(u, (0, N)d), u ∈ SΛ

1 (ω)((0, N)d)
}

, (17)

where SΛ
1 (ω)(A) := {u ∈ S1(ω) : u(x) = Λ · x if x ∈ L(ω), dist(x, ∂A) ≤ R} for all

A ∈ A(Rd) and R is as in Definition 5. The function Whom(·;ω) : Mn×d → [0,+∞) is
quasiconvex and satisfies a standard growth condition of order p: There exist C > c > 0
such that P-almost surely and for all Λ ∈ Mn×d,

1

c
|Λ|p − c ≤ Whom(Λ;ω) ≤ C(|Λ|p + 1).

The functionals Fε(ω) Γ(Lp(D, Rn))-converge, as ε goes to 0, to the integral functional
Fhom(ω) : Lp(D, Rn) → [0,+∞] defined by

Fhom(ω)(u) =

{∫
D

Whom(∇u(x);ω) dx if u ∈ W 1,p(D, Rn)

+∞ otherwise.
(18)

If in addition L is ergodic, then Whom(·;ω) is constant P-almost surely and satisfies

Whom(Λ) = lim
N→∞

1

Nd

∫

Ω
inf
{
F1(ω)(u, (0, N)d), u ∈ SΛ

1 (ω)((0, N)d)
}

dP(ω). (19)

Remark 4. Note that, in order to regard the discrete energies as defined on a subset of
some Sobolev space, we need to use a suitable piecewise-affine interpolation of discrete
functions instead of a piecewise-constant interpolation. This does not affect the results
of Theorem 2, provided the interpolation is as follows. For P-almost every ω ∈ Ω, let
T (ω) denote a Delaunay tesselation associated with L(ω). Assumption (i) in Definition 1
implies that ρ := sup{|x − y|, [x, y] is an edge of T (ω), ω ∈ Ω} < +∞. Thus, setting

Aε(ω) := {u : D → R
n, ∀T ∈ T (ω), with εT ∩ D 6= ∅, u|εT∩D is affine}, (20)

one may identify u : εL(ω) ∩ D → R
n with its piecewise-affine interpolation in Aε(ω).

Hence, appealing to [4, Lemma A.1] proves that, given a family of discrete functions
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uε : εL(ω) ∩ D → R
n, and S(uε) and A(uε) their piecewise-constant and piecewise-affine

interpolations, S(uε) converges to u in Lp(D, Rn) if and only if A(uε) converges to u in
Lp(D, Rn).

The remaining part of this subsection is devoted to the proof of Theorem 2. To this end
we need a localized version of Fε(ω).

Definition 11. For all A ∈ A(Rd) and P-almost every ω ∈ Ω, let Fε(ω)(·, A) : Lp(D, Rn) →
[0,+∞] be defined by

Fε(ω)(u,A) =

{
Fnn,ε(ω)(u,A) + Flr,ε(ω)(u,A) if u ∈ Sε(ω)

+∞ otherwise,

where Fnn,ε(ω)(u,A) and Flr,ε(ω)(u,A) are as in (12). Moreover we set

F ′(ω)(u,A) := Γ(Lp(D, Rn))- lim inf
ε→0

Fε(u,A),

F ′(ω)(u,A) := Γ(Lp(D, Rn))- lim sup
ε→0

Fε(u,A).

The proof of Theorem 2 relies on compactness and integral representation results for
the Γ-limits of Fε, which generalize [2, Theorem 3.1]. Let us first state the individual
compactness result (that is a localized version of Theorem 2).

Theorem 3 (individual compactness). Let L be a stationary admissible stochastic lat-
tice, and let fnn and flr satisfy Hypothesis 1. For P-almost every ω ∈ Ω and for every
sequence (εj) of positive real numbers converging to 0, there exists a subsequence (εjk

)
such that the sequence of functionals Fεjk

(ω) Γ(Lp(D, Rn))-converges to the functional

F (ω) : Lp(D, Rn) → [0,+∞] defined by

F (ω)(u) =

{∫
D

W (x,∇u;ω) dx if u ∈ W 1,p(D, Rn)

+∞ otherwise,
(21)

where W (·, ·;ω) : D × Mn×d → [0,+∞) is a Carathéodory function quasiconvex in the
second variable. There exist 0 < c < C such that P-almost surely

1

c
|Λ|p − c ≤ W (x,Λ;ω) ≤ C(|Λ|p + 1), (22)

for all Λ ∈ Mn×d and almost every x ∈ D. Moreover, for all u ∈ W 1,p(D, Rn) and
A ∈ Areg(D)

Γ- lim
k

Fεjk
(ω)(u,A) =

∫

A

W (x,∇u;ω) dx.

In order to prove Theorem 3 we use a standard argument in the abstract method of Γ-
convergence, which amount to showing that the limit functionals satisfy the hypotheses
of an integral representation result on W 1,p(D, Rn).

The following technical lemma shows that the coercivity assumption in (14) not only
gives a control on difference quotients related to nearest neighbors but also on long range
difference quotients.

Lemma 3. Let A ∈ A(Rd) be bounded and set Aε := {x ∈ A : dist(x, ∂A) > 8Rε} where
R is as in Definition 5. Let ξε ∈ R

d and yε : L(ω) 7→ L(ω) be such that, for all x ∈ L(ω),

yε(x) 6= x, |yε(x) − x − ξε| ≤ R, (23)

for some positive constant R independent on ε and ω. Then, there exists a constant C > 0
depending only on R and r,R in Definition 5, such that for all u ∈ Sε(ω) we have P-almost
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surely

∑

x ∈ L(ω)
[εx, εyε(x)] ⊂ Aε

∣∣∣∣
u(εyε(x)) − u(εx)

ε|yε(x) − x|

∣∣∣∣
p

≤ C
∑

(x′, y′) ∈ NN (ω)
[εx′, εy′] ⊂ A

∣∣∣∣
u(εy′) − u(εx′)

ε|y′ − x′|

∣∣∣∣
p

. (24)

Proof. Set ξε(x) := yε(x)−x. Note that, by Definition 5, |ξε(x)| ≥ r. Thus, by (23), there
exist two positive constants c1, c2 such that

c1rε ≤ |ξε(x)| ≤ c2rε, ∀x ∈ L(ω), (25)

where

rε := max{|ξε|, R}.
Actually, for R ≤ 1/2|ξε|, we take c1 = 1/2 and c2 = 3/2. For |ξε| ≤ 2R, we take
c1 = r/(2R) and c2 = 3.

Step 1. Estimate for
∣∣∣u(εyε(x))−u(εx)

ε|yε(x)−x|

∣∣∣
p

.

For all x ∈ L(ω) such that [εx, εyε(x)] ⊂ Aε, we set

Iε(x) := {y ∈ L(ω) : C(y) ∩ [x, yε(x)] 6= ∅}.
Lemma 1 shows that ⋃

y∈Iε(x)

C(y) ⊂ [x, yε(x)] + B8R(0),

where Bρ(0) denotes the closed ball centered in 0 of radius ρ. Therefore, by definition of
Aε, Lemma 1 and (25), we infer that Iε(x) ⊂ 1

ε
A and that there exists C depending only

on R and r such that

#Iε(x) ≤ Crε. (26)

Hence, there exist Mε(x) ∈ N and a path (x1, . . . , xMε(x)) of points in Iε(x) satisfying the
following properties:

(i) x1 = x, xMε(x) = yε(x),
(ii) for all i ∈ {1, . . . ,Mε(x) − 1}, (xi, xi+1) ∈ NN (ω) and [εxi, εxi+1] ⊂ A.

From (26) and Definition 1, we deduce that there exist c, C > 0 such that

crε ≤ Mε(x) ≤ Crε. (27)

We may now turn to the estimate of the difference quotient proper. Jensen’s inequality
yields

∣∣∣∣
u(εyε(x)) − u(εx)

ε|yε(x) − x|

∣∣∣∣
p

=

(
Mε(x)

|ξε(x)|

)p

∣∣∣∣∣∣
1

Mε(x)

Mε(x)∑

h=1

u(εxh+1) − u(εxh)

ε|xh+1 − xh|
|xh+1 − xh|

∣∣∣∣∣∣

p

≤ C

Mε(x)

Mε(x)∑

h=1

∣∣∣∣
u(εxh+1) − u(εxh)

ε|xh+1 − xh|

∣∣∣∣
p

≤ C

rε

Mε(x)∑

h=1

∣∣∣∣
u(εxh+1) − u(εxh)

ε|xh+1 − xh|

∣∣∣∣
p

, (28)

where we have used (25) & (27), and that |x − y| ≤ 8R for all (x, y) ∈ NN (ω).

Step 2. Proof of (24).
For all (x′, y′) ∈ NN (ω) with [εx′, εy′] ⊂ A, we set

Gε(x
′, y′) := {x ∈ L(ω) : x′, y′ ∈ Iε(x)},

γε(x
′, y′) := #Gε(x

′, y′).
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From (23), we infer that

Gε(x
′, y′) ⊂ {x = z + tξε, z ∈ C(x′) + BR(0), t ∈ [0, 1]},

and deduce that
γε(x

′, y′) ≤ Crε. (29)

Summing now (28) over x, we obtain by definition of γε:

∑

x ∈ L(ω)
[εx, εyε(x)] ⊂ Aε

∣∣∣∣
u(εyε(x)) − u(εx)

ε|yε(x) − x|

∣∣∣∣
p

≤ C

rε

∑

(x′, y′) ∈ NN (ω)
[εx′, εy′] ⊂ A

γε(x
′, y′)

∣∣∣∣
u(εy′) − u(εx′)

ε|y′ − x′|

∣∣∣∣
p

,

which yields the claim using (29).

In the following two propositions we prove that F ′(ω)(·, A) and F ′′(ω)(·, A) satisfy standard
p-growth conditions uniformly with respect to ω ∈ Ω and A ∈ Areg(D).

Proposition 1. Let fnn and flr satisfy Hypothesis 1. Let A ∈ Areg(D) and let u ∈
Lp(D, Rn) be such that F ′(ω)(u,A) < +∞. Then u ∈ W 1,p(A; Rn) P-almost surely, and

F ′(ω)(u,A) ≥ c(‖∇u‖p
Lp(A,Rn) − |A|),

for some positive constant c independent on ω, u and A.

Proof. Using the characterization of the Sobolev space W 1,p by difference quotients, it
suffices to show that there exists a constant C such that for every open set A′ ⊂⊂ A and
for all h ∈ R

d with |h| < dist(A′, Ac) one has

‖τhu − u‖p
Lp(A′,Rn) ≤ C(F ′(ω)(u,A) + |A|)|h|p, (30)

where
τhu(x) := u(x + h).

Let uε → u in Lp(D; Rn) be such that lim infε Fε(ω)(uε, A) < +∞. Since

lim
ε

‖τhuε − uε‖Lp(A′,Rn) = ‖τhu − u‖Lp(A′,Rn),

(30) is proved if we show that

‖τhuε − uε‖p
Lp(A′,Rn) ≤ C(Fε(ω)(uε, A) + |A|)|h|p + O(ε). (31)

We have ∫

A′

|uε(x + h) − uε(x)|p dx =
∑

i

∫

A′∩εC(xi)
|uε(x + h) − uε(εxi)|p dx

=
∑

i

∫

A′∩εC(xi)+h

|uε(x) − uε(εxi)|p dx. (32)

We set Ih
i := {xj ∈ L(ω) : εC(xj)∩ (A′∩εC(xi)+h) 6= ∅}. By Lemma 1, #Ih

i is uniformly

bounded, and we may write Ih
i = {xh

i,1, . . . , x
h
i,M} for some M ∈ N independent of i, ε and

h. Hence, (32) and Lemma 1 yield
∫

A′

|uε(x + h) − uε(x)|p dx ≤
∑

i

M∑

j=1

∫

εC(xh
i,j)

|uε(x) − uε(εxi)|p dx

=

M∑

j=1

∑

i

εd|C(xh
i,j)||uε(εx

h
i,j) − uε(εxi)|p ≤ C

M∑

j=1

∑

i

εd|uε(εx
h
i,j) − uε(εxi)|p. (33)

Note that |xh
i,j − xi − h

ε
| ≤ 8R, so that

∑

i

εd|uε(εx
h
i,j) − uε(εxi)|p ≤ C|h|p

∑

i

εd

∣∣∣∣∣
uε(εx

h
i,j) − uε(εxi)

ε|xh
i,j − xi|

∣∣∣∣∣

p

. (34)
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Hence, using Hypothesis 1 and Lemma 3 with ξε = h
ε
, R ≥ 8R and yε : L(ω) 7→ L(ω) such

that yε(xi) = xh
i,j, the claim (31) follows from (33) and (34), applied to j ∈ {1, . . . ,M}.

Proposition 2. Let fnn and flr satisfy Hypothesis 1. There exists a constant C such that
for all u ∈ W 1,p(D, Rn) and A ∈ Areg(D),

F ′′(ω)(u,A) ≤ C
(
‖∇u‖p

Lp(A,Mn×d)
+ |A|

)
(35)

P-almost surely.

Proof. We prove the claim taking into account only the long-range term Flr,ε(ω)(u,A)
in the energy. The same argument holds for Fnn,ε(ω)(u,A), at the expense of heavier

notation. Let r be as in Definition 5 and r′ := r√
d
. Note that for all α ∈ r′Zd, #{L(ω) ∩

{α + [0, r′)d}} ≤ 1. Set

Zr′(ω) := {α ∈ r′Zd : L(ω) ∩ {α + [0, r′)d} 6= ∅},
xα := L(ω) ∩ {α + [0, r′)d}, α ∈ Zr′(ω).

We rewrite the energy as

Flr,ε(ω)(u,A) =
∑

ξ∈r′Zd

εd
∑

α,α + ξ ∈ Zr′(ω)
[εxα, εxα+ξ ] ⊂ A

flr

(
xα+ξ − xα,

u(εxα+ξ) − u(εxα)

ε|xα+ξ − xα|

)
,(36)

where, with a slight abuse of notation we set flr

(
xα+ξ − xα,

u(εxα+ξ)−u(εxα)
ε|xα+ξ−xα|

)
:= 0 when-

ever xα = xα+ξ. By a density argument, it is enough to prove inequality (35) for
u ∈ C∞(D, Rn). Let now u ∈ C∞(D, Rn), and define uε ∈ Sε(ω) by

uε(εxα) := u(εxα), α ∈ Zr′(ω).

Then uε → u in Lp
loc(R

d, Rn) as ε → 0+. Moreover, given α such that α, α + ξ ∈ Zr′(ω),
and setting ξα := xα+ξ − xα, we have

uε(εxα+ξ) − uε(εxα)

ε|xα+ξ − xα|
=

1

ε|ξα|

∫ 1

0
∇u(εxα + εξαs)εξα ds.

Jensen’s inequality implies
∣∣∣∣
uε(εxα+ξ) − uε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

=
1

|ξα|p
∣∣∣∣

∫ 1

0
∇u(εxα + εξαs)ξα ds

∣∣∣∣
p

≤ 1

|ξα|p
∫ 1

0
|∇u(εxα + εξαs)ξα|p ds

≤
∫ 1

0
|∇u(εxα + εξαs)|p ds.

By the regularity of u and Fubini’s theorem, one obtains

εd

∫ 1

0
|∇u(εxα + εξαs)|p ds

=
1

r′d

∫

εα+[0,r′ε)d

∫ 1

0
|∇u(εxα + εξαs)|p ds dx

≤ 1

r′d

∫

εα+[0,r′ε)d

∫ 1

0
|∇u(x + εξαs)|p ds dx +

c(u)

r′d

∫

εα+[0,r′ε)d

∫ 1

0
|x − εxα|p ds dx

≤ 1

r′d

∫ 1

0

∫

εα+sεξα+[0,r′ε)d

|∇u(x)|p dx ds + εdc(u)(εr′)p,
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where c(u) is the Lipschitz constant of ∇u. For all ξ ∈ r′Zd, let ξ̂ ∈ ξ + (−r′, r′)d be

such that |ξ̂| = dist([0, r′)d, [0, r′)d + ξ). Since Jlr is decreasing, Jlr(|ξα|) ≤ Jlr(|ξ̂|) for all
α ∈ Zr′(ω) such that α+ξ ∈ Zr′(ω). Combined with Hypothesis 1, the previous inequality
yields

Flr,ε(ω)(uε, A) ≤
∑

ξ∈r′Zd

Jlr(|ξ̂|)
∑

α,α + ξ ∈ Zr′(ω)
[εxα, εxα+ξ ] ⊂ A

1

r′d

∫ 1

0

∫

εα+sεξα+[0,r′ε)d

|∇u(x)|p dx ds

+
(
1 + c(u)(εr′)p

) ∑

ξ∈r′Zd

Jlr(|ξ̂|)
∑

α,α + ξ ∈ Zr′(ω)
[εxα, εxα+ξ] ⊂ A

εd. (37)

Observe that for all s ∈ [0, 1],
⋃

α,α + ξ ∈ Zr′(ω)
[εxα, εxα+ξ] ⊂ A

(
εα + sεξα + [0, r′ε)d

)
⊆ Aε := A + (−r′ε, r′ε)d.

In addition, since ξα ∈ ξ + (−r′, r′)d, one has εα + sεξα ∈ εα + sεξ + s(−r′ε, r′ε)d, and

εα + sεξα + [0, r′ε)d ⊆ εα + sεξ + (−r′ε, 2r′ε)d.

Hence, the integral of |∇u|p over Aε is taken into account at most 3d times, and (37) turns
into

Flr,ε(ω)(uε, A) ≤ 1

r′d
∑

ξ∈r′Zd

Jlr(|ξ̂|)
(

3d

∫

Aε

|∇u(x)|p dx + (r′d + c(u)εpr′d+p)|Aε|
)

.

Eventually, since Jlr is summable, we get

lim sup
ε→0

Flr,ε(ω)(uε, A) ≤ C

(∫

A

|∇u(x)|p dx + |A|
)

and the conclusion follows from the definition of F ′′.

In the following two propositions we prove the subadditivity and inner-regularity of the
limit functionals as set functions by generalizing the arguments of [2]. Note however that
such a generalization is not immediate and requires to suitably combine the long-range
decay assumption with the coercivity assumption on nearest neighbors interactions and
Lemma 3.

Proposition 3. Let fnn and flr satisfy Hypothesis 1, let A,B ∈ A(D) be bounded and
A′, B′ be such that A′ ⊂⊂ A and B′ ⊂⊂ B. Then, for all u ∈ W 1,p(D, Rn),

F ′′(ω)
(
u,A′ ∪ B′) ≤ F ′′(ω) (u,A) + F ′′(ω) (u,B) (38)

P-almost surely.

Proof. We prove the proposition taking into account the long-range term Flr,ε only. The
same argument allows one to deal with Fnn,ε as well. W. l. o. g. we suppose that
F ′′(ω)(u,A) and F ′′(ω)(u,B) are finite, and that dist(A′, Ac) ≤ dist(B′, Bc). Let uε, vε ∈
Sε(ω) both converge to u in Lp(D, Rn) and be such that

lim sup
ε→0

Fε(ω)(uε, A) = F ′′(ω)(u,A), lim sup
ε→0

Fε(ω)(vε, B) = F ′′(ω)(u,B). (39)

In what follows we let r′, Zr′(ω) and xα be as in the proof of Proposition 2. We divide
the proof in six steps.

Step 1. Lp bounds.
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The uniform bounds on the size of the Voronoi cells provided by Lemma 1 imply that for
all D′ ⊂⊂ A ∪ B,

∑

α∈r′Zd∩D′: εxα∈D′

εd (|uε(εxα)|p + |vε(εxα)|p) ≤ C(‖uε‖p
Lp(A∪B,Rn) + ‖vε‖p

Lp(A∪B,Rn)) ≤ C < +∞, (40)

∑

α∈r′Zd∩D′: εxα∈D′

εd|uε(εxα) − vε(εxα)|p ≤ C‖uε − vε‖p
Lp(A∪B,Rn) → 0.(41)

Combined with the growth conditions (14) on fnn and Lemma 3 (with ξε = ξ, R = 2R
and yε : L(ω) 7→ L(ω) such that yε(xα) = xα+ξ), (39) implies the last two inequalities of
this step

sup
ξ∈r′Zd

sup
ε

∑

α,α + ξ ∈ Zr′(ω)
xα 6= xα+ξ

[εxα, εxα+ξ ] ⊂ Aε

εd

∣∣∣∣
u(εxα+ξ) − u(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

≤ C < +∞, (42)

sup
ξ∈r′Zd

sup
ε

∑

α,α + ξ ∈ Zr′(ω)
xα 6= xα+ξ

[εxα, εxα+ξ] ⊂ Bε

εd

∣∣∣∣
v(εxα+ξ) − v(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

≤ C < +∞, (43)

where Aε and Bε are as in Lemma 3.

Step 2. Fundamental estimate.
Let δ := dist (A′, Ac) ≤ dist (B′, Bc)}, and let N ∈ N

∗. For all i ∈ {1, . . . , N} we set

Ai :=

{
x ∈ A : dist(x,A′) < i

δ

2N

}
.

Let ϕi be a cut-off function between Ai and Ai+1, with ‖∇ϕi‖∞ ≤ 4N
δ
. Then for all

i ∈ {1, . . . , N}, we consider the family of functions wi
ε ∈ Sε(ω) defined by

wi
ε(εxα) := ϕi(εxα)uε(εxα) + (1 − ϕi(εxα)) vε(εxα). (44)

Note that wi
ε → u in Lp(D, Rn) for all i ∈ {1, . . . , N}. Fix now some i in {1, 2, . . . , N −3}.

Given ξ ∈ r′Zd and D′ ∈ A(D) we define the following three sets:

Rξ
ε(D

′) := {α : α, α + ξ ∈ Zr′(ω), xα 6= xα+ξ, [εxα, εxα+ξ] ⊂ D′},
(
Ai+1 \ Ai

)ε,ξ
:= {x = y + tξ′, y ∈ Ai+1 \ Ai, |t| ≤ ε, ξ′ ∈ ξ + [−r′, r′]d},

Sε,ξ
i :=

(
Ai+1 \ Ai

)ε,ξ ∩
(
A′ ∪ B′) .

Defining now the energy contribution for all ξ ∈ r′Zd on D′ by

Fξ
lr,ε(ω)(u,D′) :=

∑

α∈R
ξ
ε(D′)

εdflr

(
xα+ξ − xα,

u(εxα+ξ) − u(εxα)

ε|xα+ξ − xα|

)
,

we are in position to state the fundamental estimate: P-almost surely,

Fξ
lr,ε(ω)(wi

ε, A
′ ∪ B′) ≤ Fξ

lr,ε(ω)(uε, Ai) + Fξ
lr,ε(ω)(vε, B

′ \ Ai+1)

+
∑

α∈R
ξ
ε(Sε,ξ

i )

εd Jlr(|ξ̂|)
(∣∣∣∣

wi
ε(εxα+ξ) − wi

ε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

+ 1

)

︸ ︷︷ ︸
=: ρi

ε(α, ξ)

, (45)

where ξ̂ ∈ ξ + [−r′, r′]d is such that |ξ̂| := dist([0, r′)d, [0, r′)d + ξ).
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In order to prove (45), we split the contributions of α ∈ Rξ
ε(A′ ∪B′) into three categories:

Interactions within Ai, interactions within B′ \ Ai+1 and the rest. More precisely, for all

α ∈ Rξ
ε(A′ ∪ B′), one of the following holds true:

(i) α ∈ Rξ
ε(Ai),

(ii) α ∈ Rξ
ε(B′ \ Ai+1),

(iii) [εxα, εxα+ξ ] ∩
(
Ai+1 \ Ai

)
∩ B′ 6= ∅.

The combination of (i), (ii) and (iii) turns into the following inclusion

Rξ
ε(A

′ ∪ B′) ⊆ Rξ
ε(Ai) ∪ Rξ

ε(B
′ \ Ai+1) ∪ Rξ

ε

(
Sε,ξ

i

)
.

This decomposition yields

Fξ
lr,ε(ω)(wi

ε, A
′ ∪ B′) ≤ Fξ

lr,ε(ω)(wi
ε, Ai) + Fξ

lr,ε(ω)(wi
ε, B

′\Ai+1)

+
∑

α∈R
ξ
ε(Sε,ξ

i )

εdflr

(
xα+ξ − xα,

wi
ε(εxα+ξ) − wi

ε(εxα)

ε|xα+ξ − xα|

)
. (46)

Therefore it remains to argue that each term of the r. h. s. of (46) is controlled by the
corresponding term in (45). From (44) we deduce that wi

ε ≡ uε in Ai and wi
ε ≡ vε in

B′ \ Ai+1. Hence, the first two terms of the r. h. s. of (45) and (46) coincide. The claim
is now a consequence of

flr

(
xα+ξ − xα,

wi
ε(εxα+ξ) − wi

ε(εxα)

ε|xα+ξ − xα|

)
≤ Jlr(|ξ̂|)

(∣∣∣∣
wi

ε(εxα+ξ) − wi
ε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

+ 1

)
,

which holds using (15) and combining the definition of |ξ̂| with the monotonicity of Jlr.

Summing the fundamental estimate over ξ yields the claim of the lemma provided we can
control ρi

ε(α, ξ) and their sums. This is the aim of the following four steps.

Step 3. Control of ρi
ε(α, ξ).

We need to control the difference quotients
∣∣∣∣
wi

ε(εxα+ξ) − wi
ε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

for all α ∈ Rξ
ε(S

ε,ξ
i ).

Note that (44) yields for all ξ ∈ r′Zd

wi
ε(εxα+ξ) − wi

ε(εxα)

= ϕi(εxα+ξ)(u
i
ε(εxα+ξ) − ui

ε(εxα)) + (1 − ϕi(εxα+ξ)) (vi
ε(εxα+ξ) − vi

ε(εxα))

+(ϕ(εxα+ξ) − ϕ(εxα))(uε(εxα) − vε(εxα)). (47)

From now on in the proof, we assume w. l. o. g. that

8εR ≤ δ

4
. (48)

Let εxα, εxα+ξ ∈ A′∪B′ be such that α ∈ Rξ
ε(S

ε,ξ
i ). We distinguish three exhaustive cases:

(i) If εxα, εxα+ξ ∈ Aε ∩ Bε, we use (47) and the uniform bound on ∇φi to obtain
∣∣∣∣
wi

ε(εxα+ξ) − wi
ε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

(49)

≤ Cp

[∣∣∣∣
uε(εxα+ξ) − uε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

+

∣∣∣∣
vε(εxα+ξ) − vε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

+ (4δ−1N)p |uε(εxα) − vε(εxα)|p
]

,

where Cp only depends on p.
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(ii) If εxα ∈ B′\Aε and εxα+ξ ∈ Ai+1 (or vice-versa), then ε|xα+ξ−xα| ≥ d(Aε
c, Ai+1) ≥

δ
2 − 8εR

(48)

≥ δ
4 . Hence

(
1

ε|xα+ξ − xα|

)p

≤
(

4

δ

)p

.

Combined with (44), this implies
∣∣∣∣
wi

ε(εxα+ξ) − wi
ε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

(50)

≤ Cp(4δ
−1)p(|uε(εxα)|p + |uε(εxα+ξ)|p + |vε(εxα)|p + |vε(εxα+ξ)|p),

where Cp only depends on p.
(iii) Finally, if εxα ∈ A′ \ Bε and εxα+ξ ∈ B′ \ Ai (or vice-versa), then ε|xα+ξ − xα| ≥

d(Bε
c, B′) ≥ δ − 8εR

(48)

≥ 3δ
4 , we proceed as for Case (ii), and (50) holds as well.

These three cases are sketched on Fig. 1. The dots represent typical couples of points
in each case (one point in each light-colored zone). The dashed lines, which represent
xα+ξ − xα, do cross the dark-colored zones (that is (Ai+1 \Ai) ∩B′). Note that the cases
(ii) and (iii) are not exclusive.

Step 4. Proof of (38).
Summing (45) over ξ yields

Fε(ω)(wi
ε, A

′ ∪ B′) ≤ Fε(ω)(uε, A) + Fε(ω)(vε, B) +
∑

ξ∈r′Zd

εd
∑

α∈R
ξ
ε(Sε,ξ

i )

ρi
ε(α, ξ) (51)

using the non-negativity of the interaction potentials. In order to control the last term
of the r. h. s., we use two arguments according to the range of ξ. For long-range inter-
actions we take advantage of the decay of Jlr: For all η, there exists Mη > 0 such that∑

ξ∈r′Zd,|ξ|>Mη
Jlr(|ξ̂|) < η, while for short-range interactions (which are roughly speaking

local), we appeal to De Giorgi’s averaging method.
We proceed as follows. We first fix η > 0 and set

Σi,η,ε :=
∑

|ξ|≤Mη

εd
∑

α∈R
ξ
ε(Sε,ξ

i )

ρi
ε(α, ξ)

Σ′
i,η,ε :=

∑

|ξ|>Mη

εd
∑

α∈R
ξ
ε(Sε,ξ

i )

ρi
ε(α, ξ).

Hence, (51) can be rewritten as

Fε(ω)(wi
ε, A

′ ∪ B′) ≤ Fε(ω)(uε, A) + Fε(ω)(vε, B) + Σi,η,ε + Σ′
i,η,ε. (52)

For the time being, let us assume that

lim
N→∞

lim
η→0

lim sup
ε→0

1

N − 3

N−3∑

i=1

Σi,η,ε = 0, (53)

lim
N→∞

lim
η→0

lim sup
ε→0

1

N − 3

N−3∑

i=1

Σ′
i,η,ε = 0. (54)

For all ε > 0, there exists h(ε) ∈ {1, . . . , N − 3} such that

Fε(ω)(wh(ε)
ε , A′ ∪ B′) ≤ 1

N − 3

N−3∑

i=1

Fε(ω)(wi
ε, A

′ ∪ B′). (55)
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Figure 1. Cases (i), (ii) & (iii) in Step 3.

Since w
h(ε)
ε converges to u in Lp(D, Rn),

F ′′(ω)(u,A′ ∪ B′) ≤ lim sup
ε→0

Fε(ω)(wh(ε)
ε , A′ ∪ B′).

Hence (39), (52), (53), (54) and (55) finally imply

F ′′(ω)(u,A′ ∪ B′) ≤ F ′′(ω)(u,A) + F ′′(ω)(u,B).

The last two steps are devoted to the proofs of (53) & (54).

Step 5. Proof of (53).

By definition of Rξ
ε and Sε,ξ

i there exists εη > 0 such that, for all ε < εη,

(|ξ| ≤ Mη) =⇒
(
Rξ

ε(S
ε,ξ
i ) ∩ Rξ

ε(S
ε,ξ
j ) 6= ∅ =⇒ |i − j| ≤ 1

)
. (56)
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Note that (56) implies ∪i∈{1,...,N−3}S
ε,ξ
i ⊂ Aε ∩Bε for ε < min{εη ,

δ
16R

}. Hence, averaging
yields:

1

N − 3

N−3∑

i=1

Σi,η,ε ≤ 2

N − 3

∑

|ξ|≤Mη

εd
∑

α∈R
ξ
ε(Aε∩Bε)

sup
i

ρi
ε(α, ξ). (57)

Using (49) and the definition of ρi
ε, (57) turns into

1

N − 3

N−3∑

i=1

Σi,η,ε ≤ 2Cp

N − 3

∑

|ξ|≤Mη

εdJlr(|ξ̂|)
∑

α∈R
ξ
ε(Aε∩Bε)

(∣∣∣∣
uε(εxα+ξ) − uε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

+

∣∣∣∣
vε(εxα+ξ) − vε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

+ (4δ−1N)p |uε(εxα) − vε(εxα)|p + 1

)
.

Taking into account (41)-(43) and the integrability and the boundedness of Jlr in [r,+∞),
this yields

1

N − 3

N−3∑

i=1

Σi,η,ε ≤ 2Cp

N − 3



C(4δ−1N)p‖uε − vε‖p

Lp(A′∪B′) +
∑

|ξ|≤Mη

CJlr(|ξ̂|)





≤ C(δ−1N)p

N − 3
‖uε − vε‖p

Lp(A′∪B′) +
C

N − 3
.

Hence,

lim
N→∞

lim sup
ε→0

1

N − 3

N−3∑

i=1

Σi,η,ε = 0, (58)

uniformly in η ≥ 0 once the limit in ε has been taken. This shows (53).

Step 6. Proof of (54).
Recall that the sum runs over the couples (α, ξ) such that εxα, εxα+ξ ∈ A′ ∪ B′. We use
Step 3 to split the contributions into two categories: Either (α, ξ) is such that εxα, εxα+ξ ∈
Aε ∩ Bε and we use (49), or (50) holds. Hence, we obtain

Σ′
i,η,ε =

∑

|ξ|>Mη

εd
∑

α∈R
ξ
ε(Sε,ξ

i )

ρi
ε(α, ξ)

≤ Cp

∑

|ξ|>Mη

Jnl(|ξ̂|)εd
∑

α∈R
ξ
ε(Aε∩Bε)

( ∣∣∣∣
uε(εxα+ξ) − uε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

+

∣∣∣∣
vε(εxα+ξ) − vε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

+(4δ−1N)p |uε(εxα) − vε(εxα)|p + 1
)

+Cp

∑

|ξ|>Mη

Jnl(|ξ̂|)εd
∑

α∈R
ξ
ε(A′∪B′)

(4δ−1)p(|uε(εxα)|p + |uε(εxα+ξ)|p + |vε(εxα)|p + |vε(εxα+ξ)|p).

Simplifying further, we get

Σ′
i,η,ε ≤ Cp

∑

|ξ|>Mη

Jnl(|ξ̂|)εd
∑

α∈R
ξ
ε(Aε∩Bε)

(∣∣∣∣
uε(εxα+ξ) − uε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

+

∣∣∣∣
vε(εxα+ξ) − vε(εxα)

ε|xα+ξ − xα|

∣∣∣∣
p

+ 1

)

+Cp




∑

|ξ|>Mη

Jnl(|ξ̂|)



 (4δ−1N)p‖uε − vε‖p
Lp(A′∪B′)

+Cp




∑

|ξ|>Mη

Jnl(|ξ̂|)



 (4δ−1)p(‖uε‖p

Lp(A′∪B′) + ‖vε‖p

Lp(A′∪B′)),
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from which we deduce

lim
η→0

lim sup
ε→0

Σ′
i,η,ε = 0,

uniformly in i, using (40)-(43) and the definition of Mη. This shows (54) and concludes
the proof of the proposition.

Proposition 4. Let fnn and flr satisfy Hypothesis 1. Then, for all u ∈ W 1,p(D, Rn) and
for all A ∈ Areg(D) , we have

sup
A′⊂⊂A

F ′(ω) (u,A) = F ′(ω) (u,A) ,

sup
A′⊂⊂A

F ′′(ω) (u,A) = F ′′(ω) (u,A) ,
(59)

P-almost surely.

Proof. The argument is the same for F ′ and F ′′, and we only treat the latter. Since
F ′′(ω)(u, ·) is an increasing set function, it is enough to prove that

sup
A′⊂⊂A

F ′′(ω)(u,A′) ≥ F ′′(ω)(u,A).

This inequality is a consequence of Propositions 2 and 3. Given η > 0, there exist
A0

η, A
1
η, A

2
η , A

3
η, A

4
η ∈ Areg(Rd) such that A4

η ⊂⊂ A3
η ⊂⊂ A2

η ⊂⊂ A1
η ⊂⊂ A ⊂⊂ A0

η and

|A0
η \ A4

η| ≤ η. (60)

Noting that A2
η ⊂⊂ A1

η, A \A3
η ⊂⊂ A0

η \A4
η and A = A2

η ∪ (A \A3
η), Proposition 3 implies

F ′′(ω)(u,A) ≤ F ′′(ω)(u,A1
η) + F ′′(ω)(u,A0

η \ A4
η). (61)

Taking first the supremum over A1
η ⊂⊂ A, we then pass to the limit in (61) as η → 0 to

prove (59). Indeed, Proposition 2 implies

F ′′(ω)(u,A0
η \ A4

η) ≤ C(|A0
η \ A4

η| + ‖∇u‖p

Lp(A0
η\A4

η)
)

(60)→ 0.

The last property we need in order to apply an integral representation result and conclude
the proof of Theorem 3 is the “locality” property of the following Proposition.

Proposition 5. Let fnn and flr satisfy Hypothesis 1. Then, for all A ∈ Areg(D), P-almost
every ω ∈ Ω, and for all u, v ∈ W 1,p(D, Rn) such that u = v almost everywhere in A, one
has

F ′′(ω) (u,A) = F ′′(ω) (v,A) .

Proof. Let uε, vε ∈ Sε(ω) be such that

uε → u in Lp(D, Rn), vε → v in Lp(D, Rn),

and

lim sup
ε→0

Fε(ω)(uε, A) = F ′′(ω)(u,A). (62)

We then define wε ∈ Sε(ω) by its values at x ∈ εL(ω):

wε(x) = uε(x)1A(x) + vε(x)(1 − 1A(x)), (63)

where 1A denotes the characteristic function of the set A. Since u = v almost everywhere
in A,

wε → v in Lp(D, Rn).

Hence, by definition of the Γ − lim sup,

F ′′(ω)(v,A) ≤ lim sup
ε→0

Fε(ω)(wε, A). (64)
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Using the fact that Fε(wε, A) only depends on the values of wε in A, (63) implies

Fε(ω)(wε, A) = Fε(ω)(uε, A). (65)

From (64), (65) and (62), we deduce

F ′′(ω)(v,A) ≤ F ′′(ω)(u,A).

The claim is now proved by reversing the roles of u and v.

of Theorem 3. By the compactness property of Γ-convergence (see [13, Theorem 10.3]),
Proposition 4 implies that for P-almost every ω ∈ Ω there exists a subsequence (εjk

) such
that, for all (u,A) ∈ W 1,p(D, Rn) ×Areg(D), we have

Γ(Lp)- lim
k→∞

Fεjk
(ω)(u,A) =: F (ω)(u,A).

Eventually, Propositions 1, 2, 3, 4 & 5 and the lower semicontinuity property of Γ-limits
show that for all (u,A) ∈ W 1,p(D, Rn)×Areg(D), F (ω)(u,A) satisfies the following prop-
erties:

((1)) (locality) F (ω) is local, i.e. F (ω)(u,A) = F (ω)(v,A) if u = v almost everywhere
in A;

((2)) (measure properties) The set function F (ω)(u, ·) is superadditive on disjoints sets,
subadditive and inner-regular;

((3)) (growth condition) There exist C > 0 and a ∈ L1(Ω) such that

F (ω)(u,A) ≤ C

∫

A

(a(x) + |∇u(x)|p) dx;

((4)) (translation invariance in u) F (ω)(u + z,A) = F (ω)(u,A) for all z ∈ R
n;

((5)) (lower semicontinuity) F (ω)(·, A) is sequentially lower semicontinuous with respect
to the weak convergence in W 1,p(A, Rn).

Next we extend F (ω)(u, ·) to A(D) by setting: For all A ∈ A(D) \ Areg(D),

F (ω)(u,A) := sup{F (ω)(u,A′), A′ ∈ Areg(D), A′ ⊂⊂ A}.
Extended this way, F (ω) satisfies ((1))-((5)) above on A(D). Hence, by De Giorgi - Letta’s
criterion (see [13, Theorem 10.2]) F (ω)(u, ·) is the restriction of a Borel measure on A(D).
We are now in position to apply the integral representation theorem by Buttazzo and Dal
Maso on Sobolev spaces (see [18] or [13, Theorem 9.1]). In particular, for P-almost every
ω ∈ Ω, there exists a Carathéodory function W (·, ·;ω) : D ×Mn×d → [0,+∞) satisfying
the growth condition: For almost every x ∈ D, and for all Λ ∈ Mn×d,

1

c
|Λ|p − c ≤ W (x,Λ;ω) ≤ C(|Λ|p + 1),

for some 0 < c < C independent of ω, and such that

F (ω)(u,A) =

∫

A

W (x,∇u(x);ω) dx

for all u ∈ W 1,p(D, Rn) and A ∈ A(D).

In order to study minimum problems with boundary data, we also need to define the
energies when discrete-type Dirichlet boundary conditions on the deformation field u are
considered. Those are imposed in this discrete setting by introducing an arbitrary pa-
rameter l ∈ N and fixing the value of uε on a εRl-neighborhood of the boundary of the
domain.
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Definition 12. For all ε > 0, l ∈ N, A ∈ A(D), ϕ ∈ Lip (Rd, Rn), and for P-almost
every ω ∈ Ω, we define the set of admissible deformations taking value ϕ on the boundary
of A by

Sϕ,l
ε (ω)(A) := {u ∈ Sε(ω) : u(x) = ϕ(x) if x ∈ L(ω), dist(x, ∂A) ≤ lRε}, (66)

where R is as in Definition 1.

For P-almost every ω ∈ Ω and for all A ∈ A(D), we may now consider the family of

functionals Fϕ,l
ε (ω) : Lp(D, Rn) → [0,+∞] defined by

Fϕ,l
ε (ω)(u,A) =

{
Fε(ω)(u,A) if u ∈ Sϕ,l

ε (ω)(A)

+∞ otherwise.
(67)

For simplicity of notation, if ϕ(x) ≡ Λx we simply write SΛ,l
ε (ω)(A) instead of Sϕ,l

e (ω)(A).

In addition we use the notation Sϕ
ε (ω)(A) := Sϕ,1

ε (ω)(A) and Fϕ
ε := Fϕ,1

ε .

We now state the analogue of Theorem 3 in the case when Dirichlet-type boundary con-
ditions are considered. We omit its proof, which is similar to the proof of Theorem 3 (the
adaptation of the latter is the same as for the periodic case, see [2, Theorem 3.10]).

Theorem 4. Let fnn and flr satisfy Hypothesis 1. For P-almost every ω ∈ Ω, given
(εj) a sequence of positive real numbers converging to 0, let (εjk

) and W be as in Theo-

rem 3. For all ϕ ∈ Lip (Rd, Rn), A ∈ A(D) with Lipschitz boundary and for all l ∈ N,

Fϕ,l
εjk

(ω)(·, A) Γ(Lp(D, Rn))-converges to the functional Fϕ(ω)(·, A) : W 1,p(D, Rn) → [0,+∞)
given by

Fϕ(ω)(u,A) =

{∫
A

W (x,∇u(x);ω) dx if u − ϕ ∈ W 1,p
0 (A, Rn)

+∞ otherwise.

By the properties of Γ-convergence and the previous result, we obtain the following Corol-
lary for the convergence of infimum problems in presence of boundary data.

Corollary 1. Under the hypotheses of Theorem 4, for all ϕ ∈ Lip (Rd, Rn), A ∈ A(D)
with Lipschitz boundary and l ∈ N

lim
k→∞

(
min{Fεjk

(ω)(v,A) : v ∈ Sϕ,l
εjk

(A)}
)

= min{F (ω)(v,A) : v − ϕ ∈ W 1,p
0 (A, Rn)}.

In addition, if uk ∈ Sϕ,l
εjk

(A) is a converging sequence such that

lim
k→∞

Fεjk
(ω)(uk, A) = lim

k→∞

(
min{Fεjk

(ω)(v,A) : v ∈ Sϕ,l
εjk

(A)}
)

,

then its limit u is a minimizer of F (ω)(·, A) on ϕ + W 1,p
0 (A, Rn).

We are finally in position to prove Theorem 2. The proof mainly relies on Theorems 1
and 4.

of Theorem 2. By Theorem 3, for P-almost every ω ∈ Ω, given εj → 0, there exists a
subsequence (not relabelled) such that

Γ- lim
j→+∞

Fεj
(ω)(u,A) =

∫

A

W (x,∇u(x);ω) dx,

where W (x, ·;ω) is a quasiconvex function satisfying (22) P-almost surely.

Step 1. Characterization of W .
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Let ρ > 0, x0 ∈ D and set Qρ(x0) := x0 + (−ρ, ρ)d. The characterization of non-
homogeneous quasiconvex functions by their minima (see [23, Theorem I]) yields for almost
every x0 ∈ D and P-almost surely

W (x0,Λ;ω) = lim
ρ→0

1

|Qρ(x0)|
inf

{∫

Qρ(x0)
W (x,∇ϕ(x);ω) dx, ϕ(x) − Λx ∈ W 1,p

0 (Qρ(x0), R
n)

}
.

Due to Corollary 1, for all l ∈ N,

W (x0,Λ;ω) = lim
ρ→0

lim
j→∞

1

|Qρ(x0)|
inf
{

Fεj
(ω)(u,Qρ(x0)), u ∈ SΛ,l

εj
(ω)(Qρ(x0))

}
. (68)

We now scale the family of minimum problems defining W (x0,Λ;ω). Setting tj = 1
εj

and

v(x) = tju( x
tj

), we have

W (x0,Λ;ω) = lim
ρ→0

lim
j→∞

1

|Ij
ρ(x0)|

inf
{

F1(ω)(u, Ij
ρ(x0)), u ∈ SΛ,l

1 (ω)(Ij
ρ(x0))

}
, (69)

where Ij
ρ(x0) := tjQρ(x0). The family {Ij

ρ(x0)}j is regular in the sense of Definition 8, and

limj→∞ Ij
ρ(x0) = R

d. In order to prove that W (x0,Λ;ω) does not depend on x0 and on
the chosen subsequence of εj , it is enough to show the existence of φ : Ω → R such that,

for every regular family of sets {Ik}k ⊂ I with limk→∞ Ik = R
d, we have

lim
k→∞

1

|Ik|
inf{F1(ω)(u, Ik) : u ∈ SΛ,l

1 (ω)(Ik)} = φ(ω). (70)

Step 2. Proof of (70).
Let us assume for now that for all L ∈ N there exists φL : Ω → R such that

lim
k→∞

1

|Ik|
inf{FL

1 (ω)(u, Ik) : u ∈ SΛ,l
1 (ω)(Ik)} = φL(ω), (71)

where

FL
1 (ω)(u, I) :=

∑

|ξ|≤L

∑

α,α + ξ ∈ Zr′(ω)
xα 6= xα+ξ, (xα, xα+ξ) /∈ NN (ω)

[xα, xα+ξ] ⊂ I

fnn

(
xα+ξ − xα,

u(xα+ξ) − u(xα)

|xα+ξ − xα|

)

+
∑

|ξ|≤L

∑

α,α + ξ ∈ Zr′(ω)
(xα, xα+ξ) ∈ NN (ω)

[xα, xα+ξ ] ⊂ I

flr

(
xα+ξ − xα,

u(xα+ξ) − u(xα)

|xα+ξ − xα|

)
.

Then, as we prove now, (70) holds true. To this aim we set for all L ∈ N

µ(Ik;ω) := inf{F1(ω)(u, Ik) : u ∈ SΛ,l
1 (ω)(Ik)},

µL(Ik;ω) := inf{FL
1 (ω)(u, Ik) : u ∈ SΛ,l

1 (ω)(Ik)}.
Note that the use of ϕΛ : x 7→ Λx as a test function in the definition of µ(Ik;ω), combined
with the bounds on fnn and flr and the integrability of Jlr, shows that there exists C > 0
such that for all k ∈ N

µ(Ik;ω), µL(Ik;ω) ≤ C|Ik|(1 + |Λ|p). (72)

Since for all k ∈ N, SΛ,l
1 (ω)(Ik) can be regarded as a subset of the finite dimensional space

(Rn)dk(ω), where dk(ω) := #L(ω) ∩ Ik, and F1(ω)(·, Ik) is continuous and coercive on it,

by Hypothesis 1, there exists uk ∈ SΛ,l
1 (ω)(Ik) such that

FL
1 (ω)(uk, Ik) = µL(Ik;ω).
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The non-negativity of the interactions yields FL
1 ≤ F1 for all L ∈ N. Thus,

0 ≤ µ(Ik;ω) − µL(Ik;ω)

|Ik|
≤ F1(ω)(uk, Ik) − FL

1 (ω)(uk, Ik)

|Ik|

≤ 1

|Ik|
∑

|ξ|>L

Jlr(|ξ̂|)
∑

α,α + ξ ∈ Zr′(ω)
[xα, xα+ξ ] ⊂ Ik

(∣∣∣∣
uk(xα+ξ) − uk(xα)

|xα+ξ − xα|

∣∣∣∣
p

+ 1

)
. (73)

In order to use Lemma 3 , we now introduce the set Ĩk := {x ∈ R
d,dist(x, ∂Ik) ≤ 8R}.

Extending uk on Ĩk by setting uk(x) = Λx in Ĩk \ Ik, Lemma 3 (with ξε = ξ, R̄ = 2R and
yε(xα) = xα+ξ) implies

∑

α,α + ξ ∈ Zr′(ω)
[xα, xα+ξ] ⊂ Ik

∣∣∣∣
uk(xα+ξ) − uk(xα)

|xα+ξ − xα|

∣∣∣∣
p

≤ C
∑

(x, y) ∈ NN (ω)

[x, y] ⊂ Ĩk

∣∣∣∣
uk(x) − uk(y)

|x − y|

∣∣∣∣
p

≤ C
∑

(x, y) ∈ NN (ω)
[x, y] ⊂ Ik

∣∣∣∣
uk(x) − uk(y)

|x − y|

∣∣∣∣
p

+ C8R perim (Ik)|Λ|p,

where perim (Ik) denotes the (d − 1)-dimensional Lebesgue measure of ∂Ik. Using the
coercivity hypothesis (14), this turns into

∑

α,α + ξ ∈ Zr′(ω)
[xα, xα+ξ] ⊂ Ik

∣∣∣∣
uk(xα+ξ) − uk(xα)

|xα+ξ − xα|

∣∣∣∣
p

≤ CFL
1 (ω)(uk, Ik) + C8R perim (Ik)|Λ|p. (74)

Hence, the combination of (72), (73) & (74) shows that

0 ≤ µ(Ik;ω) − µL(Ik;ω)

|Ik|
≤ C

∑

|ξ|>L

Jlr(|ξ̂|). (75)

Since Jlr is integrable, (75) shows that µL(Ik;ω)
|Ik| converges to µ(Ik ;ω)

|Ik| as L → +∞ uniformly

in k. This, together with (71), implies the existence of φ(ω) ∈ R such that

lim
L→+∞

φL(ω) = φ(ω)

and

lim
k→+∞

µ(Ik;ω)

|Ik|
= lim

L→+∞
lim

k→+∞
µL(Ik;ω)

|Ik|
= lim

L→+∞
φL(ω) = φ(ω).

It only remains to prove (71).

Step 3. Proof of (71).
Let µ̃L : I → L1(Ω) be defined by

µ̃L(I;ω) := µL(I;ω) + Kperim (I),

where perim (I) denotes the (d− 1)-Lebesgue measure of ∂I, and K is a positive constant
to be chosen later. Since we may freely choose l in (68), we assume that l ≥ L

R
where R

is as in Definition 1. This assumption will be crucial.

Since limk→∞
perim (Ik)

|Ik| = 0, it is enough to prove that (71) holds with µ̃L in place of µL.

To this aim, let us check that µ̃L satisfies the assumptions of Theorem 1, that is:
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(i) µ̃L(I, ·) ∈ L1(Ω). The measurability of µ̃L is a consequence of the measurability
of L(ω) and of the continuity of fnn and flr in Hypothesis 1. In addition, since
Kperim (I) is bounded, (72) implies that µ̃L(I, ·) ∈ L∞(Ω).

(ii) For all z ∈ Z
d, µ̃L(I + z;ω) = µ̃L(I; τzω). This equality is proved by performing

the change of variable y = x + z and v(y) = u(y − z) in the infimum problem
defining µ̃L, and by using the stationarity of L(ω).

(iii) If I1, I2, . . . , Ik are disjoint sets in I and if I =
⋃k

i=1 Ii ∈ I, then µ̃L(I) ≤∑k
i=1 µ̃L(Ii). It is enough to prove that for all I1, I2 disjoint sets in J , µ̃L(I1∪I2) ≤

µ̃L(I1) + µ̃L(I2), where J is the set of finite unions of sets of I.
Let u1, u2 be such that

FL(ω)(u1, I1) = min{FL(ω)(u, I1), u ∈ SΛ,l
1 (ω)(I1)},

FL(ω)(u2, I2) = min{FL(ω)(u, I2), u ∈ SΛ,l
1 (ω)(I2)}.

We then define a function w ∈ SΛ,l
1 (ω)(I1 ∪ I2) by

w(x) =

{
u1(x) if x ∈ I1

u2(x) if x ∈ I2.

Since I1 ∩ I2 is not necessarily empty, some interactions between points in I1 and
points in I2 may be taken into account in FL(ω)(w, I1 ∪ I2). The assumption
l ≥ L

R
allows us to control their contributions. Indeed, if x ∈ L(ω) ∩ I1 and

y ∈ L(ω)∩ I2 interact, then |x− y| ≤ L, and therefore w(x) = Λx and w(y) = Λy,

since u1 ∈ SΛ,l
1 (ω)(I1) and u2 ∈ SΛ,l

1 (ω)(I2). Hence, we may control the sum of
these interactions by Cperim(I1 ∩ I2)L(1 + |Λ|p) using Hypothesis 1. This shows

FL(ω)(w, I1 ∪ I2) ≤ FL(ω)(u1, I1) + FL(ω)(u2, I2) + Cperim(I1 ∩ I2)L(1 + |Λ|p). (76)

Note also that

perim (I1 ∪ I2) = perim (I1) + perim (I2) − 2perim (I1 ∩ I2). (77)

We now test the infimum problem defining µ̃L(I1 ∪ I2) with the function w. The
use of (76) and (77) yields

µ̃L(I1 ∪ I2;ω) ≤ FL(ω)(w, I1 ∪ I2) + Kperim (I1 ∪ I2)

≤ FL(ω)(u1, I1) + FL(ω)(u2, I2) + Cperim(I1 ∩ I2)L(1 + |Λ|p)
+Kperim(I1) + Kperim (I2) − 2Kperim (I1 ∩ I2)

= µ̃L(I1;ω) + µ̃L(I2;ω) + perim (I1 ∩ I2)(CL(1 + |Λ|p) − 2K)

≤ µ̃L(I1;ω) + µ̃L(I2;ω)

provided we choose K such that 2K ≥ CL(1 + |Λ|p).
(iv) inf{ 1

|I|
∫
Ω µ̃L(I;ω) dP(ω) : I ∈ I} > −∞. This condition is obviously satisfied

since µ̃L(I;ω) ≥ 0 by the non negativity of the interaction potentials.

The application of Theorem 1 concludes the proof of (71).

If in addition the action group is ergodic, then φ : Ω → R
+ is almost surely constant due

to Theorem 1, which proves the second claim of the theorem.

3.2. Extension to non pairwise interaction energies. Theorem 2 can be generalized
to deal with non pairwise interactions. This is the case when in the discrete energy
there is a term penalizing volume changes (see Section 4 for an application to concrete
models). In order to properly define this term, we identify discrete functions with suitable
piecewise-affine interpolations (see Remark 4). We will also need the energy functional to
be stationary, which is the case provided the Delaunay tesselation of Remark 4 is stationary
too.
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Let us assume that L is a stationary admissible stochastic lattice such that, for P-almost
every ω ∈ Ω, L(ω) is general according to Definition 4. Then, there exists a unique
Delaunay tesselation T associated with L. By uniqueness, it is stationary. This allows us
to uniquely define a space of piecewise-affine functions Aε(ω) as in (20). From now on,
we identify u : εL(ω) ∩ D → R

n with its piecewise-affine interpolation (still denoted by
u) in Aε(ω) ⊂ W 1,p(D, Rn). As emphasized in Remark 4, Theorem 2 holds true with this
identification.

We are now in position to introduce a discrete energy penalizing volume changes in terms
of deformation gradients: Given ω ∈ Ω, A ∈ A(Rd) and u ∈ Aε(ω), we set

Fvol,ε(ω)(u,A) =
∑

T ∈ T (ω)
T ⊂ A

ε

εd|T |Wvol(∇u|εT ), (78)

where Wvol : Mn×d → [0,+∞) satisfies the following hypothesis.

Hypothesis 2. There exist p > 1 and a positive constant C such that for all Λ ∈ Mn×d

Wvol(Λ) ≤ C(|Λ|p + 1). (79)

Remark 5. Note that the energy in (78) accounts for non pairwise interactions between
points which are vertices of the same element T ∈ T (ω).

Frow now on, we make the following slight abuse of notation: Sε(ω) will be used to denote
the set of piecewise-affine funtions defined by (20).

For all ε > 0 and (u,A) ∈ Sε(ω) ×A(D), we set

Gε(ω)(u,A) = Fnn,ε(ω)(u,A) + Flr,ε(ω)(u,A) + Fvol,ε(ω)(u,A) (80)

and we let the energy Eε(ω) : Lp(D, Rd) → [0,+∞) on D be given by

Eε(ω)(u) =

{
Gε(ω)(u,D) if u ∈ Sε(ω),

+∞ otherwise.
(81)

Then, exploiting the same chain of arguments leading to Theorem 2, one can prove the
following analogue of Theorem 2:

Theorem 5. Let L be a stationary admissible stochastic lattice such that, for P-almost
every ω ∈ Ω, L(ω) is general according to Definition 4. Let T be its associated Delaunay
tesselation of R

d, and let the energy functional Eε(ω) be given by (81). Assume that
fnn and flr satisfy Hypothesis 1, and Wvol satisfies Hypothesis 2. Then, for P-almost
every ω, the functionals Eε(ω) Γ(Lp(D, Rn))-converge as ε → 0 to the integral functional
Ehom(ω) : Lp(D, Rn) → [0,+∞] defined by

Ehom(ω)(u) =

{∫
D

Whom(∇u(x);ω) dx if u ∈ W 1,p(D, Rn),

+∞ otherwise.
(82)

where Whom(·;ω) is given by the asymptotic homogenization formula (17) with G1 in place
of F1. If, in addition, L is ergodic, then Whom(·;ω) does not depend on ω P-almost surely,
and it is given by (92) with G1 in place of F1.

Eventually, we observe that the Γ-limit in Theorem 5 can be performed with respect to
the weak convergence in W 1,p(D, Rn) if the stochastic lattice is regular according to the
following definition.

Definition 13. An admissible stochastic lattice L is said to be regular if for P-almost
every ω ∈ Ω, its associated Delaunay tesselation T (ω) of R

d is regular in the sense of the
approximation theory. That is, there exists σ > 0 such that for every T ∈ T (ω), one has
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dc(T )
di(T ) ≤ σ, where dc(T ) and di(T ) respectively denote the diameters of the circumscribed

and inscribed hyperspheres of T .

Remark 6. If L is a regular stochastic lattice, then there exists γ > 0 such that P-almost
surely for every element T ∈ T (ω), and every affine function u on T ,

γ|∇u|εT | ≤
∑

x,y∈L(ω)∩T

∣∣∣∣
u(εy) − u(εx)

ε|y − x|

∣∣∣∣ . (83)

This property, together with Hypothesis 1, implies that for every u ∈ Sε(ω)

Eε(ω)(u) ≥ 1

c
‖∇u‖Lp(D,Mn×d) − c,

for some positive constant c independent of ε and u. In particular, the Γ-convergence result
in Theorem 5 holds true if we perform the Γ-limit with respect to the weak convergence in
W 1,p(D, Rn).

As pointed out in Remark 1, one may consider continuous action groups {τz}z∈Rd instead
of discrete action groups {τz}z∈Zd . Theorem 5 holds in the case of continuous action
groups as well.

3.3. Extension to other lattices. In this subsection we extend the main result in two
directions. First, instead of considering a stochastic lattice and “deterministic” interaction
potentials (recall that the potentials are a deterministic function of the lattice) we consider
the more standard case of a fixed periodic lattice with stochastic interaction potentials.
In the second extension, we address the case of admissible stochastic diffeomorphisms. As
will be seen, these two variants are very similar. Note that, unlike the previous results,
the structure which ensures homogenization here involves both periodicity and stationarity.
The two notions need to be compatible, which requires the translation group to be discrete.
The results cannot be extended to continuous translation groups, unlike Theorems 2 & 5.

For simplicity, we state the results in the ergodic case only.

3.3.1. Periodic lattice with stochastic interactions. W. l. o. g. we consider as a reference
configuration the periodic lattice Z

d, and we let T ∗ denote a Z
d-periodic tesselation of R

d

in d-simplices. For all A ∈ A(Rd), we set as before for all ε > 0

S∗
ε (A) := {u ∈ C0(A, Rn),∀T ∈ T ∗, u|εT∩A is affine}.

We define the energy of a deformation u ∈ S∗
ε (A) by

Fε(ω)(u,A) =
∑

i∈Zd∩A
ε

∑

j ∈ Z
d, j 6= i

[εi, εj] ⊂ A

εdfij

(
u(εj) − u(εi)

ε|j − i| ;ω

)
+

∫

Aε

Wvol

(x

ε
,∇u(x);ω

)
dx,

(84)
where Aε = {x ∈ A : ∃T ∈ T ∗, εT ⊂ A}. We make the following set of assumptions on
the growth and stationarity of the pair-potentials fij and the energy density Wvol:

Hypothesis 3 (growth conditions). The function Wvol(·, ·;ω) : R
d ×Mn×d → [0,+∞) is

a Carathéodory function P-almost surely. The functions fij belong to C0(Rd×R
n, R+) and

there exist p > 1, C1, C2 > 0, such that, P-almost surely, for all ζ ∈ R
n and Λ ∈ Mn×d,

and for almost every x ∈ R
d,

1

C1
|ζ|p − C1 ≤ fij(ζ;ω) for |i − j| = 1, (85)

0 ≤ fij(ζ;ω) ≤ Cij(|ζ|p + 1) for |i − j| 6= 0, (86)

Wvol(x,Λ;ω) ≤ C2(1 + |Λ|p), (87)
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where

sup
i∈Zd

∑

j 6=i

Cij < +∞. (88)

Hypothesis 4 (discrete stationarity). There exists an ergodic action group {τz}z∈Zd such

that for all i, j, z ∈ Z
d (i 6= j), ζ ∈ R

n and Λ ∈ R
n×d, and for almost every x ∈ R

d,

fi+z,j+z(ζ;ω) = fij(ζ; τzω) (89)

Wvol(x + z,Λ;ω) = Wvol(x,Λ; τzω) (90)

P-almost surely.

Let D be an open bounded subset of R
d with a Lipschitz boundary. The energy Eε(ω) :

W 1,p(D, Rd) → [0,+∞] on D is defined by

Eε(ω)(u) =

{
Fε(ω)(u,D) if u ∈ S∗

ε (D),

+∞ otherwise.
(91)

The following homogenization result is a discrete counterpart to [24]:

Theorem 6. Let T ∗ be a Z
d-periodic tesselation of R

d into d-simplices, and let the energies
Fε and Eε be given by (84) & (91), with {fij} and Wvol satisfying Hypotheses 3 & 4. For

all Λ ∈ Mn×d the following limit exists

Whom(Λ) = lim
N→∞

1

Nd

∫

Ω
inf
{
F1(ω)(u, (0, N)d), u ∈ S∗,Λ

1 ((0, N)d)
}

dP(ω), (92)

where S∗,Λ
1 (A) := {u ∈ S∗

1 (A) : u(x) = Λ · x if dist(x, ∂A) ≤ 1} for all A ∈ A(Rd). The

function Whom : Mn×d → [0,+∞) is quasiconvex and satisfies a standard growth condition
of order p: There exist C > c > 0 such that for all Λ ∈ Mn×d,

1

c
|Λ|p − c ≤ Whom(Λ) ≤ C(|Λ|p + 1).

In addition, the functionals Eε(ω) Γ(w−W 1,p(D, Rn))-converge P-almost surely as ε goes
to 0 to the integral functional Ehom : W 1,p(D, Rn) → [0,+∞) defined by

Ehom(u) =

∫

D

Whom(∇u(x)) dx. (93)

Let us comment on Theorem 6. Nonlinear discrete to continuum limits within a stochastic
framework have been addressed first by Iosifescu, Licht and Michaille. In [34, 35] they
have considered a discrete energy defined on a one-dimensional fixed periodic lattice with a
stochastic pairwise interaction. Theorem 6 generalizes their result to the multidimensional
setting in Sobolev spaces.

Stochastic homogenization of elliptic finite difference operators also enters the framework
of Theorem 6. Hence the latter generalizes to systems and to a nonlinear setting the
results by Künnemann [40] and Kozlov [37] on discrete elliptic equations.

3.3.2. Stochastically deformed periodic lattice. W. l. o. g. we consider the periodic lattice
Z

d, and we let T ∗ denote a Z
d-periodic tesselation of R

d in d-simplices. In order to deform
the periodic lattice, we let Φ be a T ∗-admissible stochastic diffeomorphism according to
Definition 7, and we set L(ω) := Φ(Zd;ω) and T (ω) := Φ(T ∗;ω) for P-almost every ω ∈ Ω.
For all A ∈ A(Rd) and all ε > 0, we set

Sε(ω)(A) := {u ∈ C0(A, Rn),∀T ∈ T (ω), u|εT∩A is affine}.
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To define the energy of a deformation u ∈ Sε(ω)(A) we use the periodic lattice Z
d to label

the points and define the pair-potentials. This gives

Fε(ω)(u,A) =
∑

i ∈ Z
d ∩ Φ−1

(
A
ε
;ω
)

∑

j ∈ Z
d, j 6= i

[i, j] ⊂ Φ−1
(

A
ε
;ω
)

εdfij

(
u(εΦ(j;ω)) − u(εΦ(i;ω))

ε|Φ(j;ω) − Φ(i;ω)|

)

+

∫

Aε(ω)
Wvol

(
Φ−1

(x

ε
;ω
)
,∇u(x)

)
dx, (94)

where Aε(ω) = {x ∈ A : ∃T ∈ T (ω), εT ⊂ D}. Note that the volumetric term has the
same form as in [31, Theorem 3]. We make the following assumptions on the growth and
periodicity of the pair-potentials fij and of the energy density Wvol:

Hypothesis 5 (growth conditions). The function Wvol : R
d × Mn×d → [0,+∞) is a

Carathéodory function. The functions fij belong to C0(Rd×R
n, R+) and there exist p > 1,

C1, C2 > 0, such that for all ζ ∈ R
n and Λ ∈ R

n×d, and for almost every x ∈ R
d,

1

C1
|ζ|p − C1 ≤ fij(ζ) for |i − j| = 1, (95)

0 ≤ fij(ζ) ≤ Cij(|ζ|p + 1) for |i − j| 6= 0, (96)

Wvol(x,Λ) ≤ C2(1 + |Λ|p), (97)

where

sup
i∈Zd

∑

j 6=i

Cij < +∞. (98)

Hypothesis 6 (periodicity). For all i, j, z ∈ Z
d (i 6= j), ζ ∈ R

n and Λ ∈ Mn×d, and for
almost every x ∈ R

d,

fi+z,j+z(ζ) = fij(ζ), (99)

Wvol(x + z,Λ) = Wvol(x,Λ). (100)

Let D be an open bounded subset of R
d with a Lipschitz boundary. The energy Eε(ω) :

W 1,p(D, Rd) → [0,+∞] on D is defined by

Eε(ω)(u) =

{
Fε(ω)(u,D) if u ∈ Sε(ω)(D),

+∞ otherwise.
(101)

The following homogenization result is the discrete counterpart to [31, Theorem 3]:

Theorem 7. Let T ∗ be a Z
d-periodic tesselation of R

d in d-simplices, Φ be a T ∗-admissible
stochastic diffeomorphism and T (ω) = Φ(T ∗;ω). Let the energies Fε and Eε be given by
(94) & (101) with {fij} and Wvol satisfying Hypotheses 5 & 6, and {τz}z∈Zd be ergodic.

For all Λ ∈ Mn×d the following limit exists

Whom(Λ) = lim
N→∞

1

Nd

∫

Ω
inf
{

F1(ω)(u, (0, N)d), u ∈ SΛ
1 (ω)((0, N)d)

}
dP(ω), (102)

where SΛ
1 (ω)(A) := {u ∈ S1(ω)(A) : u(x) = Λ ·x if dist(x, ∂A) ≤ M}, for all A ∈ A(Rd)

and with M as in (8). The function Whom : Mn×d → [0,+∞) is quasiconvex and satisfies
a standard growth condition of order p: There exist C > c > 0 such that for all Λ ∈ Mn×d,

1

c
|Λ|p − c ≤ Whom(Λ) ≤ C(|Λ|p + 1).

In addition, the functionals Eε(ω) Γ(w−W 1,p(D, Rn))-converge P-almost surely as ε goes
to 0 to the integral functional Ehom : W 1,p(D, Rn) → [0,+∞) defined by

Ehom(u) =

∫

D

Whom(∇u(x)) dx. (103)
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The variants in Theorems 6 and 7 are very similar. They both mix periodicity and sta-
tionarity. Note however that, as pointed out in Subsection 2.2, Φ(Zd; ·) is not (necessarily)
stationary. The stationarity comes from the dependence of the energy upon gradients (or
finite differences) which imply quantities ∇Φ(·; ·) that are stationary.

The proofs of Theorems 6 and 7 rely on the same type of arguments as the proof of
Theorem 2. They are postponed to Appendix A.

4. Application to nonlinear elasticity

This section is devoted to the study of some properties satisfied by the homogenized
continuous energy density obtained in Section 3 in the case of nonlinear elasticity. Hence
we only consider n = d, mainly for d = 2, 3. As a motivation for the analysis presented
in this article so far, we recall the statistical treatment of rubber elasticity as well as
an informal chain of arguments (see [33] and the references therein) which leads to a
model entering the class of energies dealt with here. We then address general properties
of the homogenized constitutive laws we derive, namely frame-invariance, isotropy, non-
interpenetrability and the determination of natural states. In what follows we assume
w. l. o. g. that the translation group is ergodic.

4.1. Discrete model for rubber. Let us follow [33]. We consider a macroscopic sample
of natural rubber D, whose boundary is linearly deformed through the map x 7→ Λ ·x. The
sample is made up of a network of cross-linked polymer chains. The cross-links are assumed
to be permanent. Each polymer chain is itself made of a given number of monomers: The
energy of a configuration is obtained through the probability density of a random walk
(see [39], [47]). We assume that each monomer is surrounded by a fixed volume (from
which other monomers are excluded), and that the network of chains is packed and almost
incompressible. This assumption adds a volume term to the energy which depends on the
configuration of the network. This volume term accounts for the interaction between the
chains (which does not appear in the energy of one single chain). Note that the relevant
scale associated with this contribution is much smaller than the one corresponding to the
contribution associated with the random walk variable.

In the description of the rubber model we consider, we denote by u the positions of the
cross-links, and by s = {si} the positions of the monomers of the chain i. The Hamiltonian
of the system can be split into two parts:

H(u, s) = Hvol(u, s) +
∑

i

Hi(u, si).

The first part Hvol(u, s) is the volumetric energy of the network, which models the inter-
actions between the chains, whereas the second part Hi(u, si) is the energy of each chain
as if it were isolated (and for which u prescribes the end-to-end vector, and si describes
the positions of the monomers constituting the chain).

At finite temperature the Gibbs distribution yields the following formula for the free energy
of a given deformed network:

F (D,Λ) = −kT ln

[∫

U

∫

Q

Si(u)
exp

(
−Hvol(u, s)

kT
−
∑

i

Hi(u, si)

kT

)
du
∏

i

dsi

]
,

where U is the set of admissible positions of the cross-links (satisfying the constraint on the
boundary), and Si(u) denotes the set of admissible positions of the monomers composing
the chain i whose head and tail are prescribed by u.

This free energy is far from being explicit, however it is possible to further simplify the
problem and still capture some interesting features. We present a heuristic reasoning which
leads to the decoupling of the si variables. We first assume that Hvol(u, s) = Hvol(u) only
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depends on u and not on s, which amounts to replacing the excluded volume constraint
around monomers by an excluded volume constraint between cross-links. Note that this
is a rather strong assumption whose effect is to make chains interact via their cross-links
only: This decouples the variables si from one another. We may then rewrite the free
energy as follows:

F (D,Λ) = −kT ln

[∫

U

exp

(
−Hvol(u)

kT

+
1

kT

∑

i

kT ln
[ ∫

Si(u)
exp

(
− Hi(u, si)

kT

)
dsi

])

du

]

.

Assuming that the volumetric term is dominant and very stiff away from isochoric defor-
mations u, one may restrict the integration over deformations u ∈ U which almost preserve
the local volume. For such deformations, we expect an expansion around the minimizer v
of

u 7→ exp

(
−Hvol(u)

kT
+

1

kT

∑

i

kT ln
[ ∫

Si(u)
exp

(
− Hi(u, si)

kT

)
dsi

])

to be accurate, so that at first order, one has

F (D,Λ) ≈ −kT ln

[
inf
u∈U

{
exp

(
−Hvol(u)

kT

+
1

kT

∑

i

kT ln
[ ∫

Si(u)
exp

(
− Hi(u, si)

kT

)
dsi

])}]

= inf
u∈U

{

Hvol(u) +
∑

i

−kT ln
[ ∫

Si(u)
exp

(
− Hi(u, si)

kT

)
dsi

]}

. (104)

Such an approximation is particularly relevant at moderate temperature if the energy
contribution inside the infimum is coercive in u, which we may assume. Assuming further
that the network is a tesselation of D into d-simplices, we can write the latter free energy
in the form

F (D,Λ) ≈ inf
u∈U

{Fvol(u,D) + Fnn(u,D)} ,

considered in Theorem 5.
The volumetric term Hvol is typically given by the Helmholtz energy

Hvol(u) =

∫

D

Wvol(∇u),

where Wvol : M3 → R is defined by

Wvol(Λ) = V (detΛ) =
C

4
(detΛ2 − 1 − 2 ln det Λ), (105)

where C is a positive constant. The second term in (104), which is the free energy stored
in a deformed isolated chain can be made explicit. This has been done by Kuhn and Grün
in [39] (see also [28] for details on this subject). The free energy of a chain made of N

rigid segments of length l at absolute temperature β = 1
kT

depends on the length l̃ of the
end-to-end vector as follows:

W̃c(l̃) =
1

β
N



 l̃

Nl
θ

(
l̃

Nl

)

+ ln
θ
(

l̃
Nl

)

sinh θ
(

l̃
Nl

)



− c

β
, (106)

where c is a constant (that we assume zero) and θ the inverse of the Langevin function
L(α) = coth α − 1

α
. Given a tesselation of D, we assume that the length of each edge

corresponds to the average length of the associated free polymer chain. In particular
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(see [28] & [33], and the references therein), the length of the chain is of order
√

Nl, where
N is the number of segments of the chain (which has a given and finite range). The energy
of the chain (xi, xj) of head and tail xi and xj deformed by u at absolute temperature

β = 1
kT

is then given by

fnn

(
xi − xj,

u(εxj) − u(εxi)

ε|xj − xi|

)
=

1

β
|xj − xi|2W̃c

( |u(εxj) − u(εxi)|
ε|xj − xi|

1

|xj − xi|

)
, (107)

where {xi} denote the vertices of the tesselation (i. e. the cross-links).

Note that neither (105) nor (107) satisfies a polynomial growth from above. In order
to apply Theorem 5, we proceed as follows. We use a cut-off function to remove the
singularity of Wvol as detΛ → 0 (see Subsection 4.4) and we replace (107) by the following
energy density which is obtained by taking the Taylor expansion of the Langevin function,
as it is usually done in statistical mechanics:

W̃c(l̃) ≈ N

β



3

2

(
l̃

Nl

)2

+
9

20

(
l̃

Nl

)4

+
9

350

(
l̃

Nl

)6

+
81

7000

(
l̃

Nl

)8

+
243

673750

(
l̃

Nl

)10


.

We then rescale the free-energy (recall that the polymer chains are of the order of 100nm
whereas the macroscopic sample is of the order of the cm), and prove, by Theorem 5,
that the “thermodynamic” limit for this approximate model (using the cut-offs) admits
an integral representation. Note that the experimental free energy corresponds to one
realization of a stochastic network, and that the ergodicity assumption made in Theorem 5
can be interpreted as the assumption of representativity of the macroscopic sample.

More details and an extensive study of discrete models for rubber will be given in [33].
The remainder of this section is devoted to the properties of homogenized energy densities.
In particular, provided that the stochastic network is isotropic (see Subsection 4.3), the
homogenized energy density obtained for the model above is frame-invariant, isotropic,
and admits a dilation as a natural state.

4.2. Frame-invariance. If the model is frame-invariant at the discrete level, namely if
the two-body interaction potentials only involve distances, and if the volumetric energy
density is frame-invariant, then the homogenized energy density is also frame-invariant.
More precisely, one trivially has

Theorem 8. In addition to the assumptions of Theorem 5, let us assume that

fnn(z1, z2) = f̃nn(z1, |z2|) ∀ z1, z2 ∈ R
d,

flr(z1, z2) = f̃lr(z1, |z2|) ∀ z1, z2 ∈ R
d

Wvol(RΛ) = Wvol(Λ) ∀Λ ∈ Md, R ∈ SOd.

(108)

Then the energy density Whom is frame-invariant.

4.3. Isotropy. In this subsection we discuss the isotropy of Whom. As a starting point,
we consider two models based on a periodic lattice and discuss their isotropy properties.
As we will show, the structure of the lattice plays a central role. In particular, if the
lattice is periodic, the homogenized energy density Whom is very likely to remember the
prefered directions of the lattice (except in very specific cases). We therefore introduce
a notion of isotropy for stochastic lattices, which yields the isotropy of the homogenized
energy densities obtained in Theorem 5. In the last paragraph the incompatibility between
isotropy and stochastic diffeomorphisms is addressed.
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4.3.1. Two periodic examples. In this paragraph we give two examples to highlight that
the lattice and the specific form of the discrete energy drastically affect the symmetry
properties, and in particular the isotropy, of the asymptotic continuum model.

These examples are based on the model introduced by Friesecke and Theil in [29]. We give
two variants of it: A scalar case with a quadratic interaction potential and a vector case
with a nonconvex interaction potential. A picture of the reference configuration and of the
interactions of the model we consider is sketched on figure 2. The discrete system consists
of particles parametrized by the points of εZ

2 where only nearest and next-to-nearest
neighbors interact.

The scalar case typically models heat conduction. A heat energy density W 1 : R
d → R

is isotropic if for all Λ ∈ R
d and every rotation R ∈ SOd one has W 1(ΛR) = W 1(Λ). In

particular, if W 1(Λ) = 1
2Λ · AΛ for some A ∈ Md

sym, then W 1 is isotropic if and only if
A = KId, for some K > 0. The vector case models elastostatics, and a mechanical energy
density W 2 : Md → R is isotropic if for all Λ ∈ Md and every rotation R ∈ SOd one has
W 2(ΛR) = W 2(Λ) as well (see [20, Section 4.3]).

In order to describe the examples, we need the following notation. Let Q = (0, 1)2, and
K1,K2 > 0. We let x1, x2, x3, x4 ∈ R

2 be given by

x1 := (0, 0) x2 := (1, 0)
x3 := (1, 1) x4 := (0, 1)

and we define a triangulation of Q = (0, 1)2 by {T1, T2}, where T1 and T2 are the convex
hulls of (x1, x2, x4) and (x2, x3, x4) respectively. We then introduce T the triangulation of
R

2 obtained by the Q-periodic replication of {T1, T2}, and define the set

Sε(Q, Rn) := {u ∈ C0(Q, Rn),∀T ∈ εT ∩ Q,u|T is affine},
where n = 1 in the case of a heat conduction model and n = 2 in the case of elastostatics.
We finally define the sets of nearest neighbors and next-to-nearest neighbors in Q as
follows:

NN := {(x1, x2), (x2, x3), (x3, x4), (x4, x1)}, NNN := {(x1, x3), (x2, x4)}.

K1

K1

K1

K1

K2

K2

Figure 2. Geometry of the model.

Example 1 (The scalar case). Let E1
ε : L2(Q, R) → [0,+∞] be given by

E1
ε (u) =

ε2

2

∑

k∈Z2,ε(k+Q)⊂Q




∑

(x,y)∈NN

K1

2

(
u(ε(k + x)) − u(ε(k + y))

ε

)2

+
∑

(x,y)∈NNN
K2

(
u(ε(k + x)) − u(ε(k + y))√

2ε

)2
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Figure 3. Elastic energy W (ΛαβR(θ)) for θ ∈ (0, 2π), with (α = 1.1, β =
1.2), and K1 = K2 = 1 and K1 = 1,K2 = 3 respectively.

for all u ∈ Sε(Q, R) and +∞ otherwise. Applying [2, Remark 5.2], we deduce that there
exists a quadratic energy density W 1 : R

2 → [0,+∞) such that E1
ε Γ(L2(Q))-converges to

E1(u) =






∫

Q

W 1(∇u) :=

∫

Q

1

2
∇u(x) · Ahom∇u(x) dx if u ∈ H1(Q, R)

+∞ otherwise.

In addition, proceeding as in [2, Section 6], one can show that Ahom = (K1+K2)Id. Hence,
the model yields an isotropic homogenized conductivity matrix Ahom, although Z

2 has two
prefered directions.

Let us now turn to the corresponding vector case.

Example 2 (The (nonconvex) vector case). Let E2
ε : L2(Q; R2) → [0,+∞] be given by

E2
ε (u) =

∑

k∈Z2,ε(k+Q)⊂Q



ε2

2

∑

(x,y)∈NN

K1

2

(∣∣∣∣
u(ε(k + x)) − u(ε(k + y))

ε

∣∣∣∣− 1

)2

+
ε2

2

∑

(x,y)∈NNN
K2

(∣∣∣∣
u(ε(k + x)) − u(ε(k + y))√

2ε

∣∣∣∣− 1

)2

+

∫

ε(k+Q)
Wor(∇u(x)) dx



 ,

for u ∈ Sε(Q, R2) and +∞ otherwise, where the volumetric term Wor is given by Wor(Λ) :=
max{− det Λ, 0}. Since 0 ≤ Wor(Λ) ≤ C|Λ|2, the model satisfies the assumptions of the
periodic version of Theorem 5 (or the generalization of [2, Theorem 4.1] to take into
account volumetric terms) for p = 2. Hence there exists an energy density W 2 : M2 → R

+

such that E2
ε Γ(L2(Q, R2))-converges to

E1(u) =






∫

Q

W 2(∇u) if u ∈ H1(Q, R2)

+∞ otherwise.

Although we cannot give an explicit formula for W 2(Λ) in general, the Cauchy-Born rule
holds for Λ close enough to SO2. Indeed, the term Wor has been added so that the model
satisfies the assumptions in [29] (see also [22, (H1)-(H4)]). In particular, for all Λ ∈ M2

close enough to SO2, W 2(Λ) is obtained by evaluating E2
ε at the linear deformation u :

x 7→ Λ · x and taking the pointwise limit as ε → 0 (or evaluating the energy of one single
periodic cell). We therefore focus on such deformations, e. g.

Λαβ =

(
α 0
0 β

)
,

with α and β close enough to 1. Denoting by R(θ) ∈ SO2 the rotation of angle θ, the
function θ 7→ W 2(ΛαβR(θ)) is then explicit and is plotted on Figure 3. As can be easily
proved, this function is π/2-periodic for generic values of K1,K2 > 0 and π/4-periodic if
in addition K1 = K2. In particular, unlike in Example 1, W 2 is never isotropic.
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Remark 7. Unlike Example 1, Example 2 involves a nonconvex (and frame-invariant)
energy. Hence Example 2 clearly shows that isotropy may not be guaranteed in a periodic
setting to derive nonlinear elasticity models.

In the following paragraph we introduce a suitable notion of isotropy for stochastic lattices,
which ensures the isotropy of the homogenized energy density given by Theorem 5.

4.3.2. Isotropy for stochastic lattices. In the statistical description of polymer networks in
[47], it is assumed that the network explores uniformly all the directions of the space R

d.
In the context of Theorems 5 and 7, due to the volumetric term in the discrete energy, not
only the stochastic set of points should be “isotropic”, but also the stochastic tesselations.
This intuitive property is made rigorous in the following definition.

Definition 14. A stochastic tesselation T is said to be isotropic if and only if for all
R ∈ SOd, there exists a measure preserving mapping τR : Ω → Ω such that P-almost
surely

τ̃RT (ω) = T (τRω), (109)

where τ̃R : R
d → R

d, x 7→ Rx.

Remark 8. Let L be an admissible stochastic lattice, then its Voronoi tesselation V is
isotropic if and only if the admissible stochastic lattice is itself isotropic, that is for all
R ∈ SOd and P-almost every ω ∈ Ω,

τ̃RL(ω) = L(τRω).

In addition, if the stochastic set of points is general, then its Delaunay tesselation is
isotropic if and only the Voronoi tesselation of the set of points is isotropic.

As shown by the following theorem, the isotropy of the Voronoi and Delaunay tesselations
implies the isotropy of the homogenized energy density.

Theorem 9. In addition to the assumptions of Theorem 5, let us assume that the Voronoi
and Delaunay tesselations of the stochastic set of points are isotropic in the sense of
Definition 14 and that

fnn(z1, z2) = fnn(|z1|, z2) ∀ z1, z2 ∈ R
d,

flr(z1, z2) = flr(|z1|, z2) ∀ z1, z2 ∈ R
d

Wvol(ΛR) = Wvol(Λ) ∀Λ ∈ Md, R ∈ SOd.
(110)

Then the energy density Whom is isotropic.

Proof. We recall that a hyperelastic material is isotropic if for all Λ ∈ Md and every
rotation R ∈ SOd, the energy density W satisfies W (ΛR) = W (Λ) (see [20, Section 4.3]).
By Remark 8, the stochastic lattice L is isotropic, and for all R ∈ SOd and P-almost every
ω ∈ Ω,

τ̃RL(ω) = L(τRω). (111)

To prove Theorem 9, we first rewrite the energy density by making more explicit the
dependence upon the lattice. Let Λ ∈ Md and R ∈ SOd. For QN = (0, N)d and u ∈
SΛR

1 (L(ω))(QN ), applying the rotation τ̃R in space and using (110) yield

F1(L(ω))(u,QN )
(110)
= F1(τ̃RL(ω))(u ◦ τ̃RT , τ̃RQN )

(109)
= F1(L(τRω))(u ◦ τ̃RT , τ̃RQN ),

by definition of τR.

Note that u ◦ τ̃RT ∈ SΛRRT

1 (L(τRω))(τ̃RQN ) = SΛ
1 (L(τRω))(τ̃RQN ). Indeed:

u ◦ τ̃RT ∈ SΛ
1 (L(τRω))(τ̃RQN ) ⇐⇒ u ∈ SΛR

1 (L(ω))(QN ).
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Hence

inf{F1(L(ω))(u,QN ), u ∈ SΛR
1 (L(ω))(QN )}

= inf{F1(L(τRω))(v, τ̃RQN ), v ∈ SΛ
1 (L(τRω))(τ̃RQN )}. (112)

Let us also recall that since τR is measure preserving

dP(τRω) = dP(ω) ∀R ∈ SOd. (113)

The starting point is now (92). We have:

Whom,η(ΛR) = lim
N→∞

1

Nd

∫

Ω
inf{F1(L(ω))(u,QN ), u ∈ SΛR

1 (L(ω))(QN )}dP(ω)

(112)
= lim

N→∞
1

Nd

∫

Ω
inf{F1(L(τRω))(v, τ̃RQN ), v ∈ SΛ

1 (L(τRω))(τ̃RQN )}dP(ω)

= lim
N→∞

1

Nd

∫

Ω
inf{F1(L(ω′))(v, τ̃RQN ), v ∈ SΛ

1 (L(ω′))(τ̃RQN )}dP(τRT ω′)

(113)
= lim

N→∞
1

Nd

∫

Ω
inf{F1(L(ω))(v, τ̃RQN ), v ∈ SΛ

1 (L(ω))(τ̃RQN )}dP(ω)

= Whom,η(ΛR).

In the last line, we have used the fact that the limit can be computed on the family of
cubes QN as well as on the family τ̃RQN . This property is a consequence of the subadditive
ergodic theorem (see in particular the version [24, Proposition 1]).

This result is a major difference with Example 2 (which is typical of the periodic case
dealt with in [2]), where the homogenized energy density remembers the anisotropy of the
underlying periodic lattice.

As seen in Paragraph 3.3.2, stochastic lattices need not be stationary to yield a homoge-
nization result. The other class of lattices we have considered, i. e. generated by stochastic
diffeomorphisms, also provides a suitable framework for homogenization, as shown by The-
orem 7. Let V∗ denote the Voronoi tesselation associated with Z

d, T ∗ be a Z
d-periodic

tesselation of R
d into d-simplices, and let Φ be a T ∗-admissible stochastic diffeormorphism.

The discrete energy depends on the deformed Voronoi tesselation Φ(V∗, ·) (which defines
neighbors, and therefore pairwise interactions) and on Φ(T ∗, ·) (which does not only de-
fine volumes, but also the change of distances in the first term of (94)). Hence, the model
yields an isotropic homogenized energy provided both Φ(V∗, ·) and Φ(T ∗, ·) are isotropic.
Interestingly, this cannot happen.

Theorem 10. Let T ∗ be a Z
d-periodic tesselation of R

d in d-simplices, V∗ be the Voronoi
tesselation associated with Z

d, and Φ : R
d × Ω → R

d be a T ∗-admissible stochastic dif-
feomorphism. Then, Φ(V∗; ·) and Φ(T ∗; ·) cannot be both isotropic in the sense of Defini-
tion 14.

Proof. We proceed by contradiction and assume that both Φ(V∗, ·) and Φ(T ∗, ω) are
isotropic, i. e. for all R ∈ SOd, there exists a measure-preserving mapping τR : Ω → Ω
such that almost surely

τ̃RΦ(V∗;ω) = Φ(V∗; τRω), τ̃RΦ(T ∗;ω) = Φ(T ∗; τRω).

Note that the isotropy of Φ(T ∗; ·) implies the isotropy of the stochastic lattice Φ(Zd; ·).
The proof is organized as follows. In the first step, from the isotropy of the deformed
Voronoi tesselation and of the stochastic lattice, we deduce a structure property for Φ.
We then show in a second step that this structure property contradicts Lemma 2.

Step 1. Structure of Φ.
Let κ0(R;ω) ∈ Z

d be the unique point such that τ̃RΦ(0;ω) = Φ(κ0(R;ω); τRω). Since the
diffeormorphisms Φ(·;ω) and Φ(·; τRω) preserve the topology of the Voronoi tesselation
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V∗, the neighbors {Φ(xi; τRω)}i∈{1,...,2d} of Φ(κ0(R;ω); τRω) are the images by Φ(·, τRω)

of the neighbors of κ0(R;ω) in Z
d. The same property holds for Φ(·, ω). Hence, for

all i ∈ {1, . . . , d}, there exists κi(R;ω) ∈ {e1,−e1, . . . , ed,−ed} such that τ̃RΦ(ei;ω) =
Φ(κ0(R;ω) + κi(R;ω); τRω). Note that {κ1(R;ω), . . . , κd(R;ω)} has maximal rank by
assumption on Φ. We then claim that for all z = (z1, . . . , zd) ∈ Z

d,

τ̃RΦ(z;ω) = Φ(κ(R;ω)z; τRω), (114)

where κ(R;ω) : R
d → R

d, z 7→ κ0(R;ω)+
∑d

i=1 ziκi(R;ω). Property (114) actually follows

from the fact that if two points x, y ∈ Z
d are neighbors with respect to V∗ then Φ(x, ω)

and Φ(y, ω) are neighbors with respect to Φ(V∗, ω), and from the preservation of the
orientation.

Step 2. Contradiction.
Since Φ is piecewise affine, for all k ∈ {1, . . . , d} and x ∈ Z

d, we have

∇ek
Φ(x;ω) = Φ(x + ek;ω) − Φ(x;ω).

Hence, substracting (114) with z = x from (114) with z = x + ek yields

R∇ek
Φ(x;ω) = ∇κk(R;ω)Φ(κ(R;ω)x; τRω).

We deduce from this equality that there exists a signed permutation matrix PR(ω) such
that

R∇Φ(x;ω) = ∇Φ(κ(R;ω)x; τRω)PR(ω) (115)

and det PR(ω) = 1 (since the diffeomorphism preserves the orientation).

Next, we use Lemma 2 and ergodicity by taking the average of (115) over cubes QN =
(0, N)d. By the ergodic theorem

lim
N→∞

1

Nd

∫

QN

∇Φ(x;ω) dx = lim
N→∞

1

Nd

∫

κ(R;ω)QN

∇Φ(x; τRω) dx
(10)
= L,

P-almost surely, so that (115) turns into

RL = LPR(ω),

which implies L = 0 by the arbitrariness of R (recall that PR(ω) is a permutation) and
contradicts Lemma 2.

4.4. Non-interpenetrability. We consider d = 3. Non-interpenetrability of matter im-
poses that the deformation is an injective function. The determinant of the deformation
gradient det∇u should therefore be positive. A way to achieve such a property is to let the
energy go to infinity as det Λ goes to zero. A typical choice is provided by the Helmholtz
energy (105).

The energy density Wvol satisfies Wvol(Λ) ≤ C(1 + |Λ|6) for det Λ ≥ 1. However, Wvol

violates (79) in Hypothesis 2 since limdetΛ→0 Wvol(Λ) = +∞. The extension of Theorem 5
to this case would typically require the density of continuous piecewise affine functions in
Sobolev spaces, which is not known to hold with the addition of the injectivity constraint.
In what follows, we address a much simpler problem: We penalize volume changes up to
a given rate at the discrete level (in order to satisfy (79)), and proceed with the discrete
to continuum limit. In a second step, we recover non-interpenetrability by removing the
cut-off after the discrete to continuum process.

For all ε, η > 0 and P-almost every ω ∈ Ω, let Eε,η(ω) : Lp(D; R3) → [0,+∞) be given by

Eε,η(ω)(u) =

{
Fnn,ε(ω)(u,D) + Flr,ε(ω)(u,D) + Fvol,ε,η(ω)(u,D) if u ∈ Sε(ω)

+∞ otherwise,
(116)
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where Fnn,ε and Flr,ε are in (12), and Fvol,ε,η is given by (78) with Wvol replaced by

Wvol,η(Λ) :=

{
V (det Λ) if detΛ > η
V (η) + (det Λ − η)V ′(η) if detΛ ≤ η

(117)

Remark 9. Note that Wvol,η satisfies (79) for p = 6, so that Eε,η satisfies the assumptions
of Theorem 5 provided fnn and flr satisfy Hypothesis 1 for p ≥ 6.

Theorem 11. Let Eε,η(ω) be given by (116) with fnn and flr satisfying Hypothesis 1 with
p ≥ 6. Let Ehom,η = Γ(Lp(D))- limε→0 Fε,η(ω) and Whom,η be the energy functional and
the energy density of the discrete to continuum limit provided by Theorem 5 for η > 0,
that is

Ehom,η : Lp(D, R3) → [0,+∞],

u 7→






∫

D

Whom,η(∇u(x)) dx if u ∈ W 1,p(D, R3)

+∞ else.

Then Ehom,η Γ(Lp(D))-converges as η → 0 to the energy functional

Ehom : Lp(D, R3) → [0,+∞],

u 7→






∫

D

Whom(∇u(x)) dx if u ∈ V(D, R3)

+∞ else,

where

V(D, R3) = {v ∈ W 1,p(D, R3),det∇v > 0 almost everywhere},
and

Whom(Λ) := sup
η>0

Whom,η(Λ) = lim
η→0

Whom,η(Λ) (118)

for all Λ ∈ M3, det Λ > 0. Moreover there exists a constant C > 0 independent on Λ such
that

Whom(Λ) ≤ C(1 + |Λ|p) + Wvol(Λ). (119)

Remark 10. Whom is quasiconvex as the supremum of a family of quasiconvex functions,
but it does not satisfy a polynomial growth condition from above (see (119)). Although it
is not known whether quasiconvexity without polynomial growth assumptions implies lower
semi-continuity of integral functionals, the lower semi-continuity of Ehom follows directly
from the properties of Γ-convergence in the present case.

Proof. For all u ∈ W 1,p(D, R3), η 7→ Ehom,η(u) is decreasing, and for all η > 0, u 7→
Ehom,η(u) is l.s.c. for the weak topology of W 1,p(D, R3). Hence, by the properties of Γ-
convergence (see [12, Paragraph 1.8.1]), the Γ-limit of Ehom,η(ω) is given by its pointwise
limit as η → 0. Since for all Λ ∈ M3, the function η 7→ Whom,η(Λ) is non-negative and
decreasing, the monotone convergence theorem implies that for all u ∈ W 1,p(D, R3)

lim
η→0

Ehom,η(u) =

∫

D

lim
η→0

Whom,η(∇u(x)) dx.

It is left to prove that Ehom(u) = +∞ if u 6∈ V(D, R3). Starting point is

Whom,η(Λ) = lim
N→∞

1

Nd

∫

Ω
inf
{

E1,η(ω)(u, (0, N)d), u ∈ SΛ(ω)((0, N)d)
}

dP(ω)

≥ lim
N→∞

1

Nd

∫

Ω
inf
{

Fvol,1,η(ω)(u, (0, N)d), u ∈ SΛ(ω)((0, N)d)
}

dP(ω),
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by the non-negativity of the interations. By polyconvexity of Wvol,η,

Fvol,1,η(ω)(u, (0, N)d) =

∫

∪
T∈T (ω)∩(0,N)d

T

Wvol,η(∇u(x))dx

≥
∫

∪
T∈T (ω)∩(0,N)d

T

Wvol,η(Λ)dx = (Nd + o(Nd))Wvol,η(Λ),

since u(x) = Λ · x for x on the boundary of ∪T∈T (ω)∩(0,N)dT . Thus, if detΛ ≤ 0 then

lim
η→0

Whom,η(Λ) ≥ lim
η→0

Wvol,η(Λ) = +∞.

If det Λ > 0, we immediately get

Whom,η(Λ) ≤ C(1 + |Λ|p) + Wvol(Λ),

which is uniform in η and proves (119) as η → 0.

4.5. Natural states. The identity is not necessarily a natural state for Whom,η: In gen-
eral, the inequality

Whom,η(Id) ≥ inf{Whom,η(Λ),Λ ∈ Md}
is strict. An interesting question is to determine the natural states of the macroscopic
material, or more specifically the absolute minimizer(s) of Whom,η. If the ground state is
unique, then, in the case of isotropy, the minimum is attained for a dilation: Λ = αId,
α > 0. A direct proof of such a statement at the discrete level in the stochastic case is
hopeless. In what follows we exhibit a simple two-dimensional periodic example for which
the ground state is a dilation.

Example 3. Let T ∗ be the equilateral triangulation of R
2 and let the energy of the system

be given by nearest-neighbor interactions and by a volume energy part as in (117). We
assume that the nearest-neighbor potential R

2 ∋ ζ 7→ f(|ζ|) is such that l 7→ f(l) is strictly
convex and minimal for l = 0. Then, there exists α > 0, such that αId is the unique
minimizer of Whom,η on M2, where Whom,η is the homogenized energy density (periodic
case).

To explain such a result, let us first focus on one single equilateral triangle. The energy of
one triangle is the sum of the volumetric energy in this triangle and of half of the nearest-
neighbor interactions associated with its edges (recall that each edge of the triangulation is
shared by exactly two triangles). We now wish to minimize this energy. It is a continuous
function from M2 to R, it is bounded from below and goes to infinity at infinity. Thus its
infimum is attained. Let now γ denote the determinant of a minimizer. On the one hand,
due to the convexity of the pair potential, for any fixed perimeter of the deformed triangle,
the equilateral triangle minimizes the pair-potential energy by Jensen’s inequality. On the
other hand, the pair-potential energy is an increasing function. Therefore, the triangle
which minimizes the energy in the set of triangles with fixed area is the triangle which
minimizes the perimeter, that is the equilateral triangle. Hence the deformation of the
reference triangle with the minimal energy is a dilation αId. Concatenating the triangles,
we can still consider the deformation αId, which is an absolute minimizer (up to boundary
effects) of the energy of the larger system. Consequently, the system is not frustrated and
the minimizer is unique.

Although such a direct argument is not easily generalized to more interesting cases, a
weaker form of this result holds for Whom due the specific properties it satisfies.

Theorem 12. Under the assumptions of Theorems 9 and 11, the energy density Whom

given by (118) is isotropic and there exists α > 0 such that, for all Λ ∈ Md
+ := {ζ ∈

Md,det ζ > 0},
Whom(αId) ≤ Whom(Λ).
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Proof. If Whom is continuous on Md
+, the claim is proved using [43, Theorem A] by Mizel

and a convolution argument, which we detail here for completeness.

Step 1. Continuity of Whom.
To prove the continuity of Whom, it is enough to show that it is rank-one convex and
locally bounded. The following bound holds

Whom(Λ) ≤ C(1 + |Λ|p) + V (det Λ).

In addition, due to the continuity and quasiconvexity of Whom,η for all η > 0, Whom,η is

rank-one convex, and for all Λ ∈ Md, a, b ∈ R
d and t ∈ (0, 1), one has

Whom,η(tΛ + (1 − t)(Λ + a ⊗ b)) ≤ tWhom,η(Λ) + (1 − t)Whom,η(Λ + a ⊗ b).

Taking the limit η → 0 in the previous inequality yields

Whom(tΛ + (1 − t)(Λ + a ⊗ b)) ≤ tWhom(Λ) + (1 − t)Whom(Λ + a ⊗ b),

which shows the rank-one convexity of Whom, and thus its continuity on Md
+.

Step 2. Convolution argument.
Let γ > 0, and let ργ denote a family of regularizing kernels on Md with suppργ ⊂ Bγ(0),
which are frame-invariant and isotropic. Let us also define a regularized energy density as
follows:

W γ
hom(Λ) :=

∫

Md

Whom(ζ)ργ(Λ − ζ)dζ ∈ R ∪ {+∞}.

Note that for all Λ ∈ Md,
∫

Md

V (det ζ)ργ(Λ − ζ)dζ ≤ W γ
hom(Λ) ≤

∫

Md

(V (det ζ) + C(1 + |ζ|p))ργ(Λ − ζ)dζ. (120)

The left inequality in (120) can be proved by taking the limit as η goes to zero in

Whom,η(Λ) ≥ Wvol,η(Λ),

since these pointwise limits are also Γ-limits, as seen in the proof of Theorem 11.

For all γ > 0, let Md
γ = {Λ ∈ Md,W γ

hom(Λ) < ∞}, which is an open set. By the properties

of convolution, W γ
hom : Md

γ → R
+ is continuously differentiable, rank-one convex, frame-

invariant and isotropic. By continuity of the determinant, if detΛ ≤ 0, for all γ > 0 there
exists an open set Γγ

Λ ⊂ Bγ(Λ) (the ball of radius γ centered in Λ) with Ld×d(Γγ
Λ) > 0 such

that ζ ∈ Γγ
Λ =⇒ det(ζ) ≤ 0. Hence, if detΛ ≤ 0, then for all γ > 0, W γ

hom(Λ) = +∞, and

consequently Md
γ ⊂ Md

+. Since the function W γ
hom : Md

+ → R ∪ {+∞} is frame-invariant

and isotropic, [20, Section 4.4] implies that for all Λ ∈ Md
+:

W γ
hom(Λ) = W γ

hom(diag(a1, . . . , ad)),

where a1, . . . , ad ∈ R
+ are the square-roots of the eigenvalues of ΛT Λ. From now on, and

w. l. o. g., we consider diagonal matrices Λ = diag(a1, . . . , ad), with a1, . . . , ad ∈ R
+.

For all γ < 1/3, one has W γ
hom(Id) ≤ sup{Whom(Λ),Λ = Id + ζ, |ζ|∞ ≤ 1/3} = R < ∞.

Let us assume that the following three properties hold:

(A) There exists M > 0 such that for all γ < 1/3, maxi∈{1,...,d}{ai} ≥ M =⇒
W γ

hom(Λ) ≥ R,

(B) There exists ε > 0 and γ1 > 0 such that for all γ < γ1,
∏d

i=1 ai ≤ ε =⇒
W γ

hom(Λ) ≥ R,
(C) There exists γ2 > 0 such that for all δ ≥ ε and γ ≤ γ2, denoting by

Cδ =

{
(a1, . . . , ad) ∈

[ ε

M2
,M
]d

,
d∏

i=1

ai = δ

}
,

the set Ξδ := {Λ = diag(a1, . . . , ad), (a1, . . . , ad) ∈ Cδ} is contained in Md
γ .
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For all γ < γ3 = inf{1/3, γ1, γ2}, let us denote by Λγ = diag(aγ,1, . . . , aγ,d) a minimizer of

W γ
hom on Md

γ . Such a minimizer exists by definition of Md
γ since W γ

hom is continuous and
satisfies (A). Set δγ = det(Λγ). Due to (B), one has δγ ≥ ε. Property (A) also implies
that (aγ,1, . . . , aγ,3) ∈ Cδγ . Hence,

inf
{

W γ
hom(Λ),Λ ∈ Md

+

}
= inf

{
W γ

hom(Λ),Λ ∈ Ξδγ

}
.

Due to Property (C), the function W γ
hom : Ξδγ → R

+ is a continuous function defined on
a closed set. Therefore it attains its minimum. In addition,

Λ = diag(a1, . . . , ad) ∈ ∂Ξδγ =⇒ max
i∈{1,...,d}

{ai} = M and W γ
hom(Λ) ≥ R.

Hence, Λγ /∈ ∂Ξδγ . Since W γ
hom is also continuously differentiable on Ξδγ , Λγ satisfies the

Euler-Lagrange equation derived in [43, Theorem A]. We are now in position to reproduce
the argument by Mizel and we deduce that there exists αγ ≥ d

√
ε, such that

W γ
hom(αγId) ≤ W γ

hom(ζ)

for all ζ ∈ Md.

Let us now conclude this step. Up to extraction, αγ → α ≥ d
√

ε. Due to the local uniform

convergence of W γ
hom to Whom and to the continuity of Whom, for all Λ ∈ Md

+, we have

Whom(αId) ≤ Whom(Λ).

It only remains to prove (A), (B) and (C).

Step 3. Proof of (A).
This property is a consequence of the p-growth condition from below satisfied by Whom

and of the fact that for all Λ ∈ Md
+ and ζ ∈ Bγ(0), |Λ + ζ|∞ ≥ |Λ|∞ − γ.

Step 4. Proof of (B).
Let Λ = diag(a1, . . . , ad). If maxi∈{1,...,d}{ai} ≥ M , then Property (A) implies that

W γ
hom(Λ) ≥ R and there is nothing to prove. Hence we assume that 0 < a1, . . . , ad ≤ M .

A simple calculation shows there exists C < ∞ such that for all ζ ∈ B1(0) and 1 > t > 0,

det(Λ + tζ) ≤
d∏

i=1

ai + Ct
d−1∑

i=0

M i.

Let now 1/2 > ε > 0 be such that V (2ε) ≥ R. Then, with γ1 = ε

C
Pd−1

i=0 M i
, V (det(Λ+ζ)) ≥

R for all ζ ∈ Bγ1(0) since V is decreasing in (0, 1).

Step 5. Proof of (C).
Let γ2 = ε

dMd−1 . For all δ ≥ ε, (a1, . . . , ad) ∈ Cδ =⇒ mini∈{1,...,d}{ai} ≥ δ
Md−1 . Let

Λ = diag(a1, . . . , ad). Then, for all ζ ∈ B1(0), det(Λ+ γ2ζ) ≥ det(Λ) det(Id+ γ2Λ
−1ζ) > 0

since |γ2Λ
−1ζ|∞ ≤ 1/3. This implies that W γ

hom(Λ) < ∞ for all γ < γ2 and therefore that

Ξδ ⊂ Md
γ .

Remark 11. If, in addition, Whom is C1 and strongly elliptic, then [43, Theorem A]
directly implies the existence and uniqueness of the natural state.

Remark 12. The same arguments also show that, for all η > 0, Whom,η admits a dilation
as a natural state.

Theorem 12 is important in practice since it allows one to define macroscopic reference
configurations that are of minimal energy. In other words, with the notation of Theo-
rem 12, to obtain that Id : D → R

d, x 7→ x is a ground state of the macroscopic sample
D, one possible energy density for the sample in the reference configuration D is given by
W : Md

+ ∋ Λ 7→ Whom(αΛ).
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4.6. Comments. As showed in this section, the variational model for rubber recalled in
Subsection 4.1 behaves well in terms of consistency with the classical theory of rubber
elasticity. In addition, it only relies on physically motivated parameters. To further check
the interest of such a model, it is important to compare it to classical models and real
experiments. Such a comparison, based on a numerical investigation of Whom, will be
presented in [33].

Following the approach proposed in [30] for periodic homogenization in nonlinear elasticity,
it is also possible to investigate numerically the micro-macro model, and to numerically
minimize the obtained continuous energies. Actually, the method in [30] holds, up to
replacing the continuous cell problem by a discrete cell problem. The computation of the
stress tensor and of the stiffness matrix can be done accordingly, the formula being rigorous
in the (mechanically irrelevant) convex case. Such comparisons would be interesting to
further motivate the modeling assumptions made in Subsection 4.1.

From the point of view of applications, rubber-like materials exhibit more complex features
than the ones obtained in the present work. These features mainly come from the polymer
network level. The behavior of the polymer chains are actually more complex. Some
chains can entangle, can break, some filler is usually introduced by vulcanization, some
phenomena like reptation may occur. Therefore, to reach more specific features of realistic
materials, one needs to complexify the mesoscopic model, as it has been done by Bergström
and Boyce in [5] starting from the eight-chain model, or by Böl and Reese in [10]. From
a mathematical point of view, these issues are challenging and we think that the results
presented in this paper can be a starting point towards the rigorous description of such
complex phenomena.

Appendix A. Proofs of Theorems 6 and 7

Throughout this appendix, we use the notation Sε for spaces of piecewise affine functions
(see Subsection 3.3 for details).

A.1. Proof of Theorem 6. As for the proof of Theorem 2, there are two steps: The
compactness result and the existence of the asymptotic formula. The compactness result
corresponding to Theorem 3 for periodic lattices is given in a slighty different version in
[2] (where piecewise affine functions are replaced by piecewise constant functions). Since
periodic tesselations are necessarily regular, the combination of [2, Theorem 3.1] with
Remark 4 proves the following.

Theorem 13. Let T ∗ be a Z
d periodic tesselation of R

d in d-simplices, and let {fij}
and Wvol satisfy Hypothesis 3. For P-almost every ω ∈ Ω and for every sequence (εj) of
positive real numbers converging to 0, there exists a subsequence (εjk

) such that, for all
A ∈ A(D), the sequence of functionals Fεjk

(ω)(·, A) Γ(w −W 1,p(D, Rn))-converges to the

functional F (ω) : W 1,p(D, Rn) → [0,+∞) defined by

F (ω)(u,A) =

∫

A

W (x,∇u;ω) dx,

where W (·, ·;ω) : D × Mn×d → [0,+∞) is a Carathéodory function quasiconvex in the
second variable. In addition there exist 0 < c < C such that P-almost surely

1

c
|Λ|p − c ≤ W (x,Λ;ω) ≤ C(|Λ|p + 1),

for all Λ ∈ Mn×d and almost all x ∈ D.

Proof. Theorem 13 is a corollary of [2, Theorem 3.1] provided Wvol ≡ 0. Indeed, let
uε : εZ

d ∩ D → R
d, and let ūε and ũε ∈ S∗

ε (D) respectively denote the piecewise constant
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extension (see [2, Section 3]) and the piecewise affine extension of uε in Lp(D). Then,
according to [4, Proposition A.1], one has for all u ∈ Lp(D)

ūε → u ⇐⇒ ũε → u.

Hence, the Γ − lim inf and Γ − lim sup inequalities for ũε are consequences of the corre-
sponding inequalities for ūε, and Theorem 13 follows. In the case Wvol 6≡ 0, we proceed as
in Subsection 3.2.

It only remains to prove the existence of the asymptotic formula.

Lemma 4. For all Λ ∈ Mn×d, there exists φ(Λ) ∈ R such that

lim
N→∞

1

Nd
inf
{
F1(ω)(u, (0, N)d), u ∈ S∗,Λ

1 ((0, N)d)
}

= φ(Λ) (121)

P-almost surely.

Proof. The argument for (121) is the same as for (71) and relies on the subadditive ergodic
theorem. Following Step 3 of the proof of Theorem 2, we define the set function µ̃L(·, ω) :
I → R by

µ̃L(I, ω) = inf
{
FL

1 (ω)(u, I), u ∈ S∗,Λ,L
1 (I)

}
+ Kperim (I),

where FL
1 is a cut-off of F1 neglecting the interactions between points i, j such that |i−j| ≥

L, S∗,Λ,L
1 (I) = {u ∈ S∗,Λ

1 (I), u(x) = Λx for d(x, ∂I) ≤ L}, and K is a constant to be chosen
later.
By periodicity of the lattice and discrete stationarity of the interactions, we have for all
z ∈ Z

d, I ∈ I and P-almost every ω ∈ Ω

µ̃L(I + z, ω) = µ̃L(I, τzω).

In addition, µ̃L is subadditive for K large enough due to Hypothesis 3. Applying Theorem 1
and letting L → ∞ as in Step 2 of the proof of Theorem 2 prove (121).

A.2. Proof of Theorem 7. Theorem 7 is a corollary of Theorem 6 once we understand
the effect of the stochastic diffeomorphism. Note that Φ(T ∗, ·) is a regular stochastic
tesselation (whose regularity constants are uniform and only depend on ν and M in Def-
inition 6). Following [31], we rewrite the energy of the stochastic lattice Φ(Zd;ω) as an
energy on the periodic lattice Z

d: For all A ∈ A(Rd) and uε ∈ Sε(ω)(A),

Fε(ω)(uε, A) =
∑

i ∈ Zd ∩ Φ−1
(

A
ε
;ω
)

∑

j ∈ Z
d, j 6= i

[i, j] ⊂ Φ−1
(

A
ε
;ω
)

εdf̃ij

(
ūε(εj;ω) − ūε(εi;ω)

ε|j − i| ;ω

)

+

∫

εΦ−1

(
Aε(ω)

ε
;ω

) W̃vol

(x

ε
,∇ūε(x;ω);ω

)
dx, (122)

where

f̃ij (ζ;ω) := fij

( |j − i|
|Φ(j;ω) − Φ(i;ω)| ζ

)
, (123)

W̃vol(x,Λ;ω) := Wvol

(
x,
(
∇Φ(x;ω)

)−1
Λ

)
det∇Φ(x;ω), (124)

and ūε(·;ω) is related to uε through

ūε(x;ω) = uε

(
εΦ
(x

ε
;ω
))

for all x ∈ εΦ−1
(A

ε
;ω
)
. (125)

We then need to characterize the space of admissible ūε. In particular, if uε ∈ Sε(ω)(A)

then ūε(·;ω) ∈ S∗
ε

(
εΦ−1

(
A
ε
;ω
))

P-almost surely since Φ is T ∗-admissible (composition
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of two piecewise affine functions). Conversely, if ūε ∈ S∗
ε (A) then the function uε(·;ω)

related to ū through

uε(x;ω) = ūε

(
εΦ−1

(x

ε
;ω
))

for all x ∈ εΦ
(A

ε
;ω
)

P-almost surely belongs to Sε(ω)
(
εΦ
(

A
ε
;ω
))

.

Next, since ∇Φ is stationary and Φ(j;ω) − Φ(i;ω) =
∫ 1
0 ∇Φ(i + t j−i

|j−i| ;ω) dt, the poten-

tials f̃ij and W̃vol are stationary. Since ∇Φ(·;ω) is measurable and satisfies (7) & (8),

W̃vol(·, ·;ω) is a Carathéodory function P-almost surely. Combined with (95), (96) & (97),

the bounds (7) & (8) also imply that W̃vol and f̃ij satisfy the growth conditions (85), (86)
& (87). Hence, the energy functional defined by

F̃ε(ω)(v,B) =
∑

i ∈ Z
d ∩ B

∑

j ∈ Z
d, j 6= i

[i, j] ⊂ B

εdf̃ij

(
v(j) − v(i)

ε|j − i| ;ω

)

+

∫

B

W̃vol

(x

ε
,∇v(x);ω

)
dx, (126)

for all B ∈ A(Rd) and v ∈ S∗
ε (B), satisfies the assumptions of Theorem 6. We denote by

W̃hom : Mn×d → R the associated homogenized energy density.

It remains to show that the Γ-convergence result for F̃ε implies a Γ-convergence result for
Fε itself. To this aim we use the following property of stochastic diffeomorphisms, proved
in [31, Subsection 4.3].

Lemma 5. Let Φ be a stochastic diffeomorphism, L be defined as in Lemma 2, A ∈ A(Rd),
and uε : Lp(A, Rn) be such that uε → u ∈ Lp(A, Rd). Then, for all B ∈ A(Rd) such that
B ⊂⊂ L−1(A), there exists εB > 0 such that for all ε ≤ εB the function ūε(·;ω) related to
uε through (125) is well-defined on B and satisfies

lim
ε→0

‖ūε(·;ω) − u ◦ L‖Lp(B) = 0

P-almost surely.

Using Lemma 5, it is elementary to show that the Γ− lim inf and Γ− lim sup inequalities
for Fε are consequences of the corresponding inequalities for F̃ε. Due to the regularity
of the lattice, the Γ(Lp)-convergence on W 1,p(D, Rn) is equivalent to the Γ(w − W 1,p)-
convergence, and we prove the former. More precisely, let D be an open bounded subset
of R

d with a Lipschitz boundary, and let u ∈ W 1,p(D, Rn).

Step 1. Γ − lim inf inequality.
Let B ∈ A(Rd) such that B ⊂⊂ L−1(D) and uε ∈ Sε(ω)(D) be such that limε→0 uε = u
in Lp(D, Rn). By the non-negativity of the interactions, we have

Fε(ω)(uε,D) = F̃ε(ω)

(
ūε(·;ω), εΦ−1

(D(ω)

ε
;ω
))

≥ F̃ε(ω)(ūε(·;ω), B),

for ε small enough, P-almost surely. Note that ūε ∈ S∗
ε (B), and that

ūε(·;ω) → u ◦ L in Lp(B, Rn)
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P-almost surely, by Lemma 5. Hence, the Γ − lim inf inequality for F̃ε yields

lim inf
ε→0

Fε(ω)(uε,D) ≥ lim inf
ε→0

F̃ε(ω)(ūε(·;ω), B)

≥ F̃hom(u ◦ L,B)

=

∫

B

W̃hom(∇(u ◦ L)(x)) dx.

By the growth condition on W̃hom and a change of variables we have
∫

B

W̃hom(∇(u ◦ L)(x)) dx

≥
∫

L−1(D)
W̃hom(∇(u ◦ L)(x)) dx − C(|L−1(D) \ B| + ‖u ◦ L‖p

Lp(L−1(D)\B)
)

=

∫

D

(det L−1)W̃hom(∇u(x)) dx + O(|L−1(D) \ B|),

which proves the Γ − lim inf inequality

lim inf
ε→0

Fε(ω)(uε,D) ≥
∫

D

(det L−1)W̃hom(∇u(x)) dx,

since uε and B are arbitrary.

We proceed the same way for the Γ − lim sup.

Step 2. Recovery sequence.
Let B∗ be an open bounded subset of R

d with a Lipschitz boundary and such that D ⊂⊂
L−1(B∗). We extend u ◦ L on B∗ by a W 1,p(B∗) function, that we still denote by u ◦ L.

Let then ūε(·;ω) ∈ S∗
ε (B∗) be a recovery sequence for F̃ε(ω)(·, B∗), that is ūε(·;ω) → u◦L

in Lp(B∗, Rn) and

lim
ε→0

F̃ε(ω)(ūε(·;ω), B∗) = F̃hom(u ◦ L,B∗)

P-almost surely. Then for every Borelian set B such that L(D) ⊂⊂ B ⊂ B∗, the function
uε(·;ω) defined by

uε(x;ω) = ūε

(
εΦ−1

(x

ε
;ω
))

for all x ∈ εΦ
(B

ε
;ω
)

(127)

is well defined on D for ε small enough P-almost. In addition, uε(·, ω) ∈ Sε(ω)(D) and
Lemma 5 implies the convergence

uε(·;ω) → u in Lp(D),

P-almost surely. Noting that ūε(·;ω)|B is also a recovery sequence for F̃ε(ω)(·, B), we
conclude as for the Γ − lim inf:

lim sup
ε→0

Fε(ω)(uε(·;ω),D) ≤ lim sup
ε→0

F̃ε(ω)(ūε(·;ω), B)

=

∫

B

W̃hom(∇(u ◦ L)(x)) dx

≤
∫

D

(det L−1)W̃hom(∇u(x)) dx + O(|L−1(B) \ D|).

The arbitrariness of B proves the Γ − lim sup inequality.

The combination of Step 1 and Step 2 yields the Γ-convergence of Eε(ω) to Ehom, defined

as the integral on D of the energy density Whom := (det L−1)W̃hom.
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