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Dynamic Geometric Graph Processes: Adjacency

Operator Approach

René Schott and G. Stacey Staples

Abstract. The d-dimensional unit cube [0, 1]d is discretized to create a collec-
tion V of vertices used to define geometric graphs. Each subset of V is uniquely
associated with a geometric graph. Defining a dynamic random walk on the
subsets of V induces a walk on the collection of geometric graphs in the dis-
cretized cube. These walks naturally model addition-deletion networks and
can be visualized as walks on hypercubes with loops. Adjacency operators
are constructed using subalgebras of Clifford algebras and are used to recover
information about the cycle structure and connected components of the n

graph of a sequence.

1. Introduction

Consider n points distributed uniformly and independently in the unit cube [0, 1]d.
Given fixed real number r > 0, connect two points by an edge if their Euclidean
distance is at most r. Graphs of this type are called random geometric graphs,
commonly denoted G(d)(χn, ; r) [9].

Random geometric graphs are of particular interest as models of wireless
networks [3], [6], [7], [1]. The vertices (or nodes) of the graph typically represent
wireless devices that can communicate with each other when their physical distance
is less than some prescribed range. Of particular interest is the graph’s connectivity.
Ad hoc networks are modeled by addition-deletion processes.

Considering a geometric graph on n vertices, Xue and Kumar [20] have re-
cently shown that the number of neighbors of each vertex needs to grow like
Θ(log n) if the graph is to be connected.

The philosophy presented in this paper is to first discretize the unit cube
by partitioning it into sub-cubes whose center points serve as the vertices of a
geometric graph. For fixed radius r, graphs are then uniquely determined by their
vertex sets. A geometric graph process is then associated with a random walk on
a hypercube of appropriate dimension induced by an algebraic process [17]. Other
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algebraic methods (cf. [12], [14], [16], [17]) are then applied to determine the cycle
structure and connectivity properties of the graph on the discretized cube.

2. Notational Preliminaries

A graph G = (V,E) is a collection of vertices V and a set E of unordered pairs of
vertices called edges. Two vertices vi, vj ∈ V are adjacent if there exists an edge
{vi, vj} ∈ E. Given a graph G, it will sometimes be convenient to use the notation
VG and EG to denote, respectively, the vertices and the edges of G.

A k-walk (v0, . . . , vk) in a graph G is a sequence of vertices in G with initial

vertex v0 and terminal vertex vk such that there exists an edge {vj , vj+1} ∈ E for
each 0 ≤ j ≤ k − 1. Note that a k-walk contains k edges. A k-path is a k-walk in
which no vertex appears more than once. A closed k-walk is a k-walk whose initial
vertex is also its terminal vertex. A k-cycle (k ≥ 3) is a closed k-path with v0 = vk.
A Hamiltonian cycle is an n-cycle in a graph on n vertices; i.e., it contains V. An
edge from a vertex to itself is called a loop.

The circumference of a graph is the length of the longest cycle contained
in the graph. The girth of a graph is defined as the length of the shortest cycle
contained in the graph.

A graph G is said to be connected if for every pair u 6= v ∈ VG, there exists a
k−walk from u to v for some positive integer k. A component of G is a connected
subgraph of maximal size contained in G.

A tree is a connected graph that contains no k-cycles for k ≥ 3. A spanning

tree in a graph G is a subgraph of G that forms a tree and contains all vertices of
G.

2.1. Random geometric graphs

A random graph G(n, p) is a graph with n vertices in which each possible edge is
independently included with probability p.

Let r be an arbitrary positive real number, and let V = v1, . . . , vn be a set
of points in a metric space with norm ‖ · ‖. A geometric graph G(V, r) is defined
as the graph with vertex set V and edge set E defined by

{vi, vj} ∈ E ⇔ 0 < ‖vi − vj‖ < r. (2.1)

Definition 2.1. A random geometric graph G(n, r) is a geometric graph in which
the n vertices are independently and uniformly distributed in a metric space. It is
a random graph in which the edge existence probability p between two vertices is
defined by

p =

{

1 if 0 < ‖vi − vj‖ ≤ r,

0 otherwise.
(2.2)

Consider first the unit d-cube [0, 1]d. Dividing the sides into N equal subin-
tervals yields Nd sub-cubes. Center points of the sub d-cubes will serve as vertices
of a geometric graph.
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The set of vertices V is defined by

V = {

(

2j1 − 1

2N
, . . . ,

2jd − 1

2N

)

: 1 ≤ j1, . . . , jd ≤ N}. (2.3)

The partitioned d-cube just described will be said to have mesh 1/Nd.
Given any subset U ⊆ V , the topology of the geometric graph on vertex set

U is uniquely determined by

v1 ∼ v2 ⇔ 0 < ‖v1 − v2‖ ≤ r. (2.4)

The geometric graph with vertex set U will be denoted by GU .

2.2. Three useful algebras from Clifford algebras

Given a collection of commuting null-square elements {ζj} in one-to-one correspon-

dence with the vertex set V , let CℓV
nil denote the associative algebra generated by

{ζj} and the unit scalar 1 = ζ∅. In particular, ζi ζj = ζj ζi when i 6= j and ζi
2 = 0

for each i.
For convenience, generators of CℓV

nil will be labeled with elements of V . The
basis of CℓV

nil is then in one-to-one correspondence with the power set of V . For

any subset U ⊆ V , define the blade ζU =
∏

v∈U

ζv. An arbitrary element z ∈ CℓV
nil

then has canonical expansion of the form

z =
∑

U⊆V

αU ζU , (2.5)

where αU ∈ R.
By convention a blade will refer to any basis monomial in an algebra.
The algebra CℓV

nil is constructed within Cℓ2|V |,2|V | as follows: define fi =
(ei − en+i) ∈ Cℓ2|V |,2|V | for each 1 ≤ i ≤ 2|V |. Then letting ζi = f2i−1 f2i for
1 ≤ i ≤ |V | completes the construction.

Remark 2.2. The algebra CℓV
nil is referred to as a zeon algebra by Feinsilver [2].

It is the algebra referred to as NV in Schott and Staples [12].

Assuming a fixed enumeration of elements of V , a probability mapping ϕ is
induced on the generators of CℓV

nil by

ϕ(ζvj
) = µ(vj). (2.6)

Denote by {ei} the collection of orthonormal basis vectors of R
|V |2|V |

. The
Dirac notation 〈ei| will represent a row vector, while the conjugate transpose, |ei〉
represents a column vector. In this way,

〈ei|ej〉 =

{

1 if i = j,

0 otherwise.
(2.7)

Moreover, |ei〉 〈ei| is the rank-one orthogonal projector onto the linear subspace
span(ei).



4 René Schott and G. Stacey Staples

Fix an enumeration f : 2V → {1, . . . , 2|V |} of the power set 2V . Notation of
the form |eU 〉 and 〈eU | should be understood to use the fixed enumeration of 2V

for subsets U ⊆ V .

Define an enumeration of 2V × V by

(U, {vj}) 7→ (f(U) − 1)|V | + j. (2.8)

The enumeration of 2V × V is then used as a double-index for the unit basis
vectors of R

|V |2|V |

. Notation of the form |eU,vi
〉 and 〈eU,ei

| should be viewed in
this context.

For each subset of vertices U ⊆ V , denote the nilpotent adjacency operator

of the corresponding subgraph GU by Φ
(U)
r . In particular,

Φ(U)
r =

∑

vi,vj∈U

0<‖v1−v2‖<Nr

ζ{v2} |eU,v1〉 〈eU,v2 | . (2.9)

Given a collection of commuting idempotent elements {γj} in one-to-one

correspondence with the vertex set V , let CℓV
idem denote the associative algebra

generated by {γj} and the unit scalar 1 = γ∅. In particular, γi γj = γj γi when
i 6= j, and γi

2 = γi for each i.

The algebra CℓV
idem is constructed within the Clifford algebra Cℓ|V |,|V | by

letting γi =
1

2

(

1 + eie|V |+i

)

∈ Cℓ|V |,|V | for each 1 ≤ i ≤ |V |.

For convenience, generators of CℓV
idem will be labeled with elements of V .

The basis of CℓV
idem is then in one-to-one correspondence with the power set of

V . For any subset U ⊆ V , define the notation γU =
∏

v∈U

γv. An arbitrary element

z ∈ CℓV
idem then has canonical expansion of the form

z =
∑

U⊆V

αU γU , (2.10)

where αU ∈ R.

Define the degree mapping δ : CℓV
idem → N0 by

δ

(

∑

U∈2V

αU γU

)

= max
αU 6=0

{|U |}. (2.11)

In other word, δ(z) is the size of the maximal multi-index in the canonical expan-

sion of z ∈ CℓV
idem.

For each subset U of the collection of vertices V , denote the corresponding
idempotent adjacency operator by

Ξ(U)
r =

∑

v1,v2∈U

‖v1−v2‖≤r

γv2 |eU,v1〉 〈eU,v2 | . (2.12)
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Figure 1. Graphs Q4 and Q̃4 associated with walk (Υn).

Remark 2.3. By using the inequality ‖v1 − v2‖ ≤ r in place of 0 < ‖v1 − v2‖ ≤ r,
“loops” are placed at each vertex of the graph. This allows every pair of vertices
in a given component to be joined by a closed walk of length 2|V | − 1.

Given a collection of commuting unipotent elements {ςj} in one-to-one cor-
respondence with the vertex set V , let CℓV

sym denote the associative algebra gen-
erated by {ςj} and the unit scalar 1 = ς∅. In particular, ςi ςj = ςj ςi when i 6= j,
and ςi

2 = 1 for each i.

The algebra CℓV
sym is constructed within the Clifford algebra Cℓ|V |,|V | by

letting ςi = ei e|V |+i ∈ Cℓ|V |,|V | for each 1 ≤ i ≤ |V |.

For convenience, generators of CℓV
sym will be labeled with elements of V .

The basis of CℓV
sym is then in one-to-one correspondence with the power set of

V . For any subset U ⊆ V , define the notation ςU =
∏

v∈U

ς{v}. An arbitrary element

z ∈ CℓV
sym then has canonical expansion of the form

z =
∑

U⊆V

αU ςU , (2.13)

where αU ∈ R.

Note that each blade ςU in CℓV
sym is associated with a unique geometric

graph GU .

Each vertex of the hypercube Q|V | is uniquely identified with a geometric
graph. Hence, any graph process corresponds to a random walk on the hypercube
Q|V | or a hypercube with loops at each vertex Q̃|V |, depending on whether or not
the walk is allowed to revisit the same graph at consecutive steps.
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3. Graph Processes

A geometric graph process is a sequence of random geometric graphs (Gn)n≥0 such
that |Vn−1△Vn| ≤ 1 for each n ≥ 1. Here, △ is the set symmetric difference
operator. An example is the sequence in Figure 3.

The strategy is now to define “second quantization” adjacency operators that
encode information about the graphs in a graph process.

Use the fixed enumeration of 2V to define the second quantization nilpotent

adjacency operator by

Φr =
∑

U∈2V

(

Φ(U)
r ⊗ |eU 〉 〈eU |

)

. (3.1)

By construction, Φr is an operator on the Nd2N
d

-dimensional product space

CℓV
nil|V |2|V |

. In particular, Φr is defined by

〈eU,vi
|Φr

∣

∣eU,vj

〉

=

{

ζvj
if vi ∼ vj in GU

0 otherwise.
(3.2)

Recalling the canonical expansion x =
∑

U⊆V

xU ζU ∈ CℓV
nil, let N0 = {0, 1, 2, . . .}

and define the function ψ : CℓV
nil → N0 by

ψ(x) =
∑

U⊆V

〈x, ζU 〉 =
∑

U⊆V

xu. (3.3)

In other words, ψ(x) is the sum of the scalar coefficients in the canonical expansion
of x.

For convenience, define the notation ~eV = e1 + e2 + · · · + e|V |! , and for any
U ⊆ V , define the U -trace of Φr by

TrU (Φr) =

|V |
∑

j=1

〈eU,j |Φr |eU,j〉 . (3.4)

The second quantization idempotent adjacency operator is defined by

Ξr =
∑

U∈2V

(

Ξ(U)
r ⊗ |eU 〉 〈eU |

)

. (3.5)

By construction, Ξr is an operator on the Nd2N
d

-dimensional product space

CℓV
idem|V |2|V |

. In particular, Ξr is defined by

〈eU,vi
|Ξr

∣

∣eU,vj

〉

=

{

γvj
if vi ∼ vj in GU

0 otherwise.
(3.6)

It should be clear that because a geometric graph is uniquely determined by
its vertex set, every graph process (Gn) is uniquely determined by a sequence (Un)
of subsets of V satisfying |Un| = n for each n ≥ 1. Moreover, a graph process on
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the partitioned unit cube of mesh 1/Nd is a random walk on a subgraph of the
Nd-dimensional hypercube Q|V | restricted to strictly increasing vertex weights.

Given a finite set V , vertices of the |V |-dimensional hypercube Q|V | are rep-
resented by binary strings of length |V |. A one-to-one correspondence between the
blades of CℓV

sym and vertices of Q|V | is obtained through the binary string rep-
resentation of subsets of V . Representing a binary string by (b|V | . . . b2 b1), where
each bi takes values in {0, 1}, such a correspondence takes the form

(b|V | . . . b2 b1) 7→
∏

i:bi=1

ς{vi}. (3.7)

For example, the blade representation of vertex (0 1 0 1) in the hypercube Q4 is
ς{v1,v3} ∈ CℓV

sym.

To construct a random walk on the |V |-dimensional hypercube, one can think
of a binary string of length |V | and consider the effect of “flipping” a single digit,
either from 0 to 1 or vice-versa, at each discrete time step. This can be accom-
plished within CℓV

sym simply by multiplying the blade representation of a vertex
by the blade representation of the digit being flipped.

Given a random variable ξ, the expectation of ξ will be denoted by either 〈ξ〉

or E (ξ). Given a sequence of random variables {ξN}, the notation ξN
D
→ ψ denotes

convergence in distribution to the random variable ψ. The notation ξN
P
→ u denotes

convergence in probability to u.

Fix nonnegative integers p and q, and let n = p+ q. Following the approach
of Guillotin-Plantard and Schott [4], let Σ = (E,A, µ, T ) be a dynamical system
where (E,A, µ) is a probability space and T is a transformation on E.

Let x ∈ E, and define the collection {pj}1≤j≤Nd such that 0 ≤ pj <
1

Nd
for

each j = 1, 2, . . . , Nd and

Nd

∑

j=1

pj ≤ 1. Further, define the collection {fj(x)}1≤j≤Nd

such that for each i ≥ 1

0 ≤ fj(T
ix) ≤ pj , (3.8)

and define

f0(T
ix) = 1 −

Nd

∑

j=1

fj(T
ix). (3.9)

For n ≥ 1, let {Y1, . . . , Yn} be i.i.d. random variables taking values in {0, . . . , Nd}
with probability

P (Yi = ℓ) = fℓ(T
ix). (3.10)

We are interested in the dynamic random walk on CℓV
sym defined by

Υn =

n
∏

k=1

ς{Yk}. (3.11)
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Note that when
Nd

∑

j=1

pj = 1, the resulting walk (Υn) is represented by a walk

on the Nd-dimensional hypercube QNd , while
Nd

∑

j=1

pj < 1 results in a walk on a

hypercube with loops, denoted Q̃Nd . Figure 1 illustrates these two cases.

Using the one-to-one correspondence between multivectors ςU and geometric
graphs GU , the walk (Υn) induces a dynamic random walk (Gn) on geometric
graphs. Independence of the collection {fj(T

ix)} then gives

P (Gn = GU ) =

〈

n
∏

i=1



f0(T
ix) +

Nd

∑

j=1

fj(T
ix)ς{j}



 , ςU

〉

(3.12)

For convenience, define the notation

τn =
n
∏

i=1



f0(T
ix) +

Nd

∑

j=1

fj(T
ix)ς{j}



 (3.13)

so that

〈τn, ςU 〉 = P (Gn = GU ) . (3.14)

Theorem 3.1. Let k ≥ 3 be fixed. Let Φr denote the second quantization nilpotent

adjacency operator. Let Xk(n) denote the number of k-cycles in the nth geometric

graph of the sequence in the partitioned d-cube with mesh 1/Nd. Then,

E(Xk(n)) =
1

2k

∑

U∈2V

〈τn, ςU 〉 ψ
(

TrU (Φr
k)
)

. (3.15)

Proof. For fixed U ⊆ V , a straightforward proof by induction shows that ψ
(

TrU (Φr
k)
)

is a sum of products of k generators of CℓV
nil corresponding to closed k-walks con-

tained in GU . Because ζ{v}
2 = 0 for all v ∈ V , the only nonzero terms correspond

to the k-cycles of GU . Since each cycle has k possible choices of basepoint and two
orientations, it is evident that

ψ
(

TrU (Φr
k)
)

= 2kXk(U), (3.16)

where Xk(U) denotes the number of k-cycles contained in GU .
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Now,

1

2k

∑

U∈2V

〈τn, ςU 〉 ψ
(

TrU (Φr
k)
)

=
1

2k

∑

U∈2V

P (Gn = GU ) ψ
(

TrU (Φr
k)
)

=
∑

U∈2V

P (Gn = GU ) Xk(U) = E (Xk(n)) . (3.17)

�

Example 3.2. To compute the expected number of 5-cycles in the 7th graph of
a dynamic geometric process in the partitioned unit square with mesh 1/9, we
begin by defining the probability functions {fj(x)}. The ergodic mapping T acts
on S1 according to Tx = eix. Additional Mathematica procedures for computing
products in Cℓn

nil and Cℓn
sym can be found in the appendix.

In[312]:= !! Define functions fj!x" taking values in #0, 1

n2
$ for j"1,..., n2, !"

!! and let f0!x" "1 # $jfj!x". The probability that the ith graph of the process !"
!! Gn on the unit square partitioned into n2 subsquares is the graph indexed by integer !"
!! B is given by %Τi,eInt2Mult%B,n&' !"

x " 1;

n " 3;

fj(%s(& :"
1

n2
)Abs%#1 # s& ' 2 ! 2 )

Norm%(1 ' 2, 1 ' 2) # pnts%%IntegerPart%!j # 1" ' n& * 1&&%%Mod%j, n& * 1&&& '; !j + 1"

fj(%s(& :" 1 # Sum*
1

n2
)Abs%#1 # s& ' 2 ! k + n2, ,k, 1, n2-. '; !j , 0"

Ti(%r(& :" If#i , 0, 1, If#i , 1, Return#Expand#-.)r$$, Return#Expand#-.)Ti#1%r&$$$$;
Τm( :" If#m , 1, Return#N#ClSymExpand#f0%T1%x&& * Sum#fj%T1%x&&)e(j), ,j, 1, n2-$$$$,

Return#N#ClSymExpand#ClSymExpand#f0%Tm%x&& * Sum#fj%Tm%x&&)e(j), ,j, 1, n2-$$ / Τm#1$$$$

For simplicity, subsets of vertices are associated with binary representations
of integers.
In[4]:= !! Convert binary string to coordinates of subsquare centers

in "0,1#2 with mesh 1$n2. B is an integer in the range 0 to 2n
2

"1 !%

Bin2Coord"B#, n## :$

d $ PadLeft&IntegerDigits"B, 2#, n2';

pnts $ Table()
!2%j " 1%

2%n
,
!2%k " 1%

2%n
*, +j, 1, n,, +k, 1, n,-;

Y $ Table&d""j##%pnts""IntegerPart"!j " 1% . n# & 1##""Mod"j, n# & 1##, /j, 1, n20';
Return"DeleteCases"Y, +0, 0,##;

The following Mathematica procedure generates the nilpotent adjacency ma-
trix associated with a subset of vertices.
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In[8]:= !! Build nilpotent adjacency matrix of GU in "0,1#2 $mesh 1%n2& !'

BuildMatrix"B", n", r"# :#

d # PadLeft(IntegerDigits"B, 2#, n2);

pnts # Table*+
!2$j % 1'

2$n
,
!2$k % 1'

2$n
,, -j, 1, n., -k, 1, n./;

Y # Table(d""j##$pnts""IntegerPart"!j % 1' 0 n# & 1##""Mod"j, n# & 1##, 1j, 1, n22);
U # DeleteCases"Y, -0, 0.#;
edgs # -.;
For"k # 1, k ' Length"U#, k&&,

edgs # Append"edgs, -U""k##.#;
For"j # k & 1, j ' Length"U#, j&&,

edgs # If"Norm"U""k## % U""j### ' r, Append"edgs, -U""k##, U""j##.#, edgs###;
!! Build the adjacency matrix !'
A # Table"If"MemberQ"edgs, -U""i##, U""j##.# 33 MemberQ"edgs, -U""j##, U""i##.#, 1, 0#,
-i, Length"U#., -j, Length"U#.#;

Return"A.DiagonalMatrix"Table"e-i., -i, 1, Length"A#.###;

We now generate nilpotent adjacency matrices for all subsets.
In[11]:= !! Build all possible adjacency matrices in "0,1#2 with mesh 1$9 and r" 2 %3 !&

#0 " ''0((;
For)m " 1, m $ 511, m%%,

#m " BuildMatrix)m, 3, 2 % 3*;
*

The next procedure converts an integer into its appropriate multiindex.
In[226]:= Int2Mult!B!, n!" :" DeleteCases#Table#If#BitAnd#B, 2j$ # 2j, j $ 1, 0$, %j, 0, n2 % 1&$, 0$

Finally, we compute the expected number of 5-cycles in G7.
In[318]:= !! Calculate expected number of 5"

cycles in 7th random geometric graph on partition of mesh
1

9
in "0,1#2. !$

1

10
#Sum%Coefficient%Τ7, eInt2Mult"gnum,3#&#

ScalarSum%ClNilExpand%Tr%QClNilMatrixPower%%gnum, 5&&&&, 'gnum, 0, 511(&

Out[318]= 0.00202193

Corollary 3.3. The probability that the nth random geometric graph of a sequence

contains exactly ℓ cycles of length k is given by

P(Xk(n) = ℓ) =
∑

U∈2V

〈

eψ(TrU (Φr
k)), e2kℓ

〉

〈τn, ςU 〉 . (3.18)

Proof. Note that the geometric graphGU contains ℓ k-cycles if and only if ψ
(

TrU (Φr
k)
)

=

2kℓ. Hence, GU contains ℓ k-cycles if and only if
〈

eψ(TrU (Φr
k)), e2kℓ

〉

= 1. (3.19)
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Summing the probabilities P (Gn = GU ) over all graphs GU gives the stated result.
�

Example 3.4. The probabilities of ℓ 5-cycles in the seventh graph of the sequence
considered in Example 3.2 are displayed for 0 ≤ ℓ ≤ 10.

In[77]:= H* Probability that m th graph is indexed by gnum *L
Μ@gnum_, m_D : = Coefficient AΤm, e Int2Mult @gnum,3 DE

H* Initialize variables for probabilities *L
For Aj = 0, j £ 511, j ++,

s j = 0E;

H* Compute probability of j 5 -

cycles in 7th graph of sequence for any j by considering all possible graphs *L
s0 = Μ@0, 7 D;
For Bgnum = 1, gnum £ 511, gnum ++,

tr =
1

10
 ScalarSum AClNilExpand ATr AClNilMatrixPower ALgnum, 5 EEEE;

s tr = s tr + Μ@gnum, 7 D; F

In[66]:= H* Print probabilities of ell 5 -cycles for some values of ell *L
For @ell = 0, ell £ 6, ell ++,

Print @"Probability of ", ell, " 5 -cycles: ", s ell DD

Probability of 0 5-cycles: 0.720566

Probability of 1 5-cycles: 0.000344756

Probability of 0 5-cycles: 0.720566

Probability of 1 5-cycles: 0.000344756

Probability of 2 5-cycles: 0.000671417

Probability of 3 5-cycles: 0

Probability of 4 5-cycles: 0.0000165376

Probability of 5 5-cycles: 0.0000333949

Probability of 6 5-cycles: 0

Recall that the circumference of a graph G is the length of the longest cycle
contained in G. Circumference will be denoted by Circ(G).

Lemma 3.5. Fix integer ℓ such that 3 ≤ ℓ ≤ |V |. Then, the geometric graph GU
has circumference ℓ if and only if

〈

eψ(TrU (Φr
ℓ)), ~eV

〉

|V |
∏

k=ℓ+1

〈

eψ(TrU (Φr
k)), e0

〉

= 1. (3.20)

Proof. Note that
〈

eψ(TrU (Φr
ℓ)), ~eV

〉

= 1 if and only if GU contains an ℓ cycle,

while

|V |
∏

k=ℓ+1

〈

eψ(TrU (Φr
k)), e0

〉

= 1 if and only if GU does not contain a k cycle for

any ℓ < k ≤ |V |. �
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The preceding lemma can be applied to compute the expected circumference
of the nth graph of a process.

Proposition 3.6. The expected circumference of the nth geometric graph of the

graph process is given by

E(Circ(Gn)) =

|V |
∑

ℓ=3

ℓ





∑

U∈2V

〈

eψ(TrU (Φr
ℓ)), ~eV

〉

|V |
∏

k=ℓ+1

〈

eψ(TrU (Φr
k)), e0

〉

〈τn, ςU 〉



 .

(3.21)

Proof. In light of Lemma 3.5,

|V |
∑

ℓ=3

ℓ





∑

U∈2V

〈

eψ(TrU (Φr
ℓ)), ~eV

〉

|V |
∏

k=ℓ+1

〈

eψ(TrU (Φr
k)), e0

〉

〈τn, ςU 〉





=

|V |
∑

ℓ=3

ℓ
∑

{U :Circ(GU )=ℓ}

P (Gn = GU )

=

|V |
∑

ℓ=3

ℓP (Circ(Gn) = ℓ) . (3.22)

�

A concept “dual” to graph circumference is graph girth. Recall that the girth

of a graph G is the length of the shortest cycle contained in G. Girth will be
denoted by Girth(G).

Lemma 3.7. Fix integer ℓ such that 3 ≤ ℓ ≤ |V |. Then, the geometric graph GU
has girth ℓ if and only if

〈

eψ(TrU (Φr
ℓ)), ~eV

〉

ℓ−1
∏

k=3

〈

eψ(TrU (Φr
k)), e0

〉

= 1. (3.23)

Proof. The proof is analogous to that of Lemma 3.5. �

This necessary and sufficient condition can now be used to compute the
expected girth of the nth graph of a graph process.

Proposition 3.8. The expected girth of the nth random geometric graph Gn is given

by

E(Girth(Gn)) =

|V |
∑

ℓ=3

ℓ

(

∑

U∈2V

〈

eψ(TrU (Φr
ℓ)), ~eV

〉

ℓ−1
∏

k=2

〈

eψ(TrU (Φr
k)), e0

〉

〈τn, ςU 〉

)

.

(3.24)
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Proof. In light of Lemma 3.7,

|V |
∑

ℓ=3

ℓ

(

∑

U∈2V

〈

eψ(TrU (Φr
ℓ)), ~eV

〉

ℓ−1
∏

k=2

〈

eψ(TrU (Φr
k)), e0

〉

〈τn, ςU 〉

)

=

|V |
∑

ℓ=3

ℓ
∑

{U :Girth(GU )=ℓ}

P (Gn = GU )

=

|V |
∑

ℓ=3

ℓP (Girth(Gn) = ℓ) . (3.25)

�

Of particular interest in models of wireless networks is the size of a graph’s
largest connected component. The size is expressed as the number of vertices
contained in the component.

Proposition 3.9. The size of the largest component Cmax in GU is given by

|Cmax| = δ
(

TrU

(

Ξr
2|U |−1

))

. (3.26)

Proof. An inductive argument shows that the terms of TrU
(

Ξr
2n−1

)

are sums
of idempotents representing closed walks of length 2n − 1 on the graph. Because
the graph contains |U | vertices, the maximal connected component of G will be
covered by a closed walk of length 2|U | − 1 or less. All components can be covered
by closed walks of length equal to 2|U |−1 by the inclusion of a loop based at each
vertex in the definition of the idempotent-adjacency operator. �

Clearly, a connected graph consists of a single component containing all of the
graph’s vertices. The following corollary is an immediate consequence of Proposi-
tion 3.9.

Corollary 3.10. The graph GU on vertices U ∈ 2V is connected if and only if

δ
(

〈eU,j |Ξr
2|V |−1 |eU,j〉

)

= |U |, (3.27)

for any vj ∈ U .

The expected maximal component size in a graph of a process can also be
computed.

Proposition 3.11. The expected size of a maximal component in the nth geometric

graph of the process is given by

E(|Cmax|) =
∑

U∈2V

〈τn, ςU 〉 δ
(

TrU

(

Ξr
2|V |−1

))

. (3.28)



14 René Schott and G. Stacey Staples

Proof. In light of Proposition 3.9,
∑

U∈2V

〈τn, ςU 〉 δ
(

TrU

(

Ξr
2|V |−1

))

=
∑

{U :GU is connected}

|U | · P (Gn = GU ) . (3.29)

�

Another question of interest in the wireless network model context is whether
or not a connected graph contains small cycles. Ideally, a network should be con-
nected without too much redundancy (or too many unnecessary connections). The
next result gives the probability that a graph of the process is connected and con-
tains no cycles of length less than or equal to k0.

Proposition 3.12. Let Gn be the nth graph of a geometric graph process, and let

k0 ≥ 3 be an integer. Then,

P(Gn connected and contains no k-cycles for all k ≤ k0)

=
∑

U∈2V

〈τn, ςU 〉
〈

eδ(TrU (Ξr
2|V |−1)), e|U |

〉〈

ePk0
k=3

ψ(TrU (Φr
k)), e0

〉

. (3.30)

Proof. Note that for fixed U ⊆ V , GU contains no k-cycles for all 3 ≤ k ≤ k0 if
and only if

〈

ePk0
k=3

ψ(TrU (Φr
k)), e0

〉

= 1. (3.31)

Moreover, GU is connected if and only if
〈

eδ(TrU (Ξr
2|V |−1)), e|U |

〉

= 1. (3.32)

Hence,

∑

U :∈2V

〈τn, ςU 〉
〈

eδ(TrU (Ξr
2|V |−1)), e|U |

〉〈

ePk0
k=3

ψ(TrU (Φr
k)), e0

〉

=
∑

{U: GU connected and

contains no k-cycles ∀k≤k0}

P (Gn = GU ) . (3.33)

�

The following corollary deals with spanning trees, i.e. cycle-free connected
graphs.

Corollary 3.13. The probability that the nth geometric graph of the process is a

spanning tree is given by
∑

U∈2V

〈τn, ςU 〉
〈

eδ(TrU(Ξr
2|V |−1)), e|U |

〉〈

eP|U|
k=3

ψ(TrU (Φr
k)), e0

〉

. (3.34)
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One final goal is to enumerate the connected components in a geometric graph
GU . To this end, let x ∈ CℓV

idem and define the mapping η : CℓV
idem → CℓV

idem

by

η(x) = η

(

∑

U∈V

αU γU

)

=
∑

|U |=δ(x)

αU γU . (3.35)

Define the function ρ : CℓV
idem → N0 by

ρ(x) = min
W∋x

{dim(W )}. (3.36)

In other words, ρ(x) is the dimension of the smallest linear subspace of CℓV
idem

containing x. Now in a manner similar to the enumeration of cycles, it is possible
to enumerate components.

Proposition 3.14. Let Ξr denote the second quantization nilpotent adjacency oper-

ator. Let X denote the number of connected components in the nth graph in the

partitioned d-cube with mesh 1/Nd. Then,

E(X) =
∑

U∈2V

〈τn, ςU 〉 ρ





∑

vj∈U

η
(

〈

eU,j
∣

∣Ξr
2|V |−1 |eU,j〉

)



 . (3.37)

Proof. Note that as in the proof of Proposition 3.9, the quantity
〈

eU,j
∣

∣Ξr
2|V |−1 |eU,j〉

is a sum of products of idempotents representing connected components contain-

ing vertex vj in the graph GU . Hence, η
(

〈

eU,j
∣

∣Ξr
2|V |−1 |eU,j〉

)

is a sum of terms

representing maximal components containing vertex vj in graph GU .
After summing over all vertices, the number of maximal components in the

graph GU is given by the quantity ρ
(

∑

vj∈U
η
(

〈

eU,j
∣

∣Ξr
2|V |−1 |eU,j〉

))

by con-

struction of ρ.
As seen before, 〈τn, ςU 〉 = P (Gn = GU ). Summing over all graphs GU com-

pletes the proof.
�

In addition to computing the expected number of components, we can calcu-
late the probability that a graph in the process contains exactly ℓ components for
any nonnegative integer ℓ.

Proposition 3.15. Let Xn denote the number of components in the nth geometric

graph of the process. The probability that Xn = ℓ is given by

P(Xn = ℓ) =
∑

U∈2V

〈

e
ρ

“

P

vj∈U η(〈eU,j |Ξr
2|V |−1|eU,j〉)

”, eℓ

〉

〈τn, ςU 〉 . (3.38)

Proof. By construction,

〈

e
ρ

“

P

vj∈U η(〈eU,j |Ξr
2|V |−1|eU,j〉)

”, eℓ

〉

= 1 if and only if

GU contains ℓ components. Summing the probabilities of graphs GU containing ℓ
components gives (3.38). �
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Figure 2. Four graphs of a dynamic geometric graph process.

The graphs on the partitioned cube can be partitioned into two sets: those
that are connected, and those that are not.

Define ϑ ∈ CℓV
sym by

ϑ =
∑

U∈2V

〈

eδ(TrU(Ξr
2|V |−1)), e|U |

〉

ςU . (3.39)

Note that ϑ is a sum of blades indexed by vertex sets of connected graphs in the
partitioned cube [0, 1]d. Hence,

〈ϑ, ςU 〉 =

{

1 if GU is connected,

0 otherwise.
(3.40)

Similarly, define

ϑ̃ =
∑

U∈2V

(

1 −
〈

eδ(TrU(Ξr
2|V |−1)), e|U |

〉)

ςU , (3.41)

and note that ϑ̃ is a sum of blades indexed by vertex sets of disconnected graphs
in the partitioned cube [0, 1]d.

Often one wants to know the probability that a graph in the process is con-
nected. The next result gives an expression for this probability.

Proposition 3.16. The probability that the nth graph of the process is connected is

given by

P (Gn is connected) = 〈τn, ϑ〉 . (3.42)

Proof.

P (Gn is connected) =
∑

U∈2V

〈τn, ςU 〉 〈ςU , ϑ〉 = 〈τn, ϑ〉 . (3.43)

�

Define the projection πϑ̃ by

πϑ̃(x) =
∑

{U :〈ςU ,ϑ〉=0}

xU ςU . (3.44)



Dynamic Geometric Graph Processes: Adjacency Operator Approach 17

Similarly, define πϑ by

πϑ(x) =
∑

{U :〈ςU ,ϑ〉=1}

xU ςU . (3.45)

For n ≥ 0, define the mappings νn : CℓV
sym → CℓV

sym by

ν0(x) = x (3.46)

ν1(x) = πϑ (x τ1) , (3.47)

νn(x) = πϑ (νn−1(x) τn) (n ≥ 2). (3.48)

Similarly, define the mappings ν̃n : CℓV
sym → CℓV

sym by

ν̃0(x) = x (3.49)

ν̃1(x) = πϑ̃ (x τ1) , (3.50)

ν̃n(x) = πϑ̃ (ν̃n−1(x) τn) (n ≥ 2). (3.51)

Proposition 3.17. Let G0 = GU be a connected geometric graph, and let n be a

positive integer. The probability that Gk is connected for all 0 ≤ k ≤ n is

P (G0, . . . ,Gn connected) = 〈νn(ςU ), ϑ〉 . (3.52)

Similarly, when G0 = GU is a disconnected geometric graph, the probability that

Gk is disconnected for all 0 ≤ k ≤ n is

P (G0, . . . ,Gn disconnected) =
〈

ν̃n(ςU ), ϑ̃
〉

. (3.53)

Proof. Let G0 = GU be a connected geometric graph. Proof of the first part of the
proposition is by induction on n ≥ 1. When n = 1, definition of ν1 gives

ν1(ςU ) = πϑ(ςU τ1) = πϑ





∑

v∈V ∪{0}

P
(

G1 = GU△{j}

)

ςU△{v}





=
∑

{U :GU connected}

P (G1 = GU ) ςU . (3.54)

Hence, 〈ν1(ςU ), ϑ〉 = P (G0,G1 connected). Now assume true for some positive in-
teger n and proceed by induction. For convenience, denote by Un the vertex set of
Gn; i.e., Gn = GUn

.

νn+1(ςU ) = πϑ(νn(ςU ) τn+1)

= πϑ





∑

v∈V ∪{0}

P
(

G0, . . . ,Gn connected and Gn+1 = GUn△{v}

)

ςUn△{v}





=
∑

{U :GU connected}

P (G0, . . . ,Gn connected and Gn+1 = GU ) ςU . (3.55)
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Hence,

〈νn+1(ςU ), ϑ〉 =
∑

{U :GU connected}

P (G0, . . . ,Gn connected and Gn+1 = GU )

= P (G0, . . . ,Gn+1 connected) . (3.56)

The proof of the second part of the proposition follows from the same logic.
�

Given an initial graph that is not connected, the next two results deal with
the emergence of a connected graph in the process.

Corollary 3.18. Let G0 = GU be a disconnected geometric graph. For n ≥ 1, the

probability that Gn is the first connected graph of the process is given by

P (Gn first connected graph) = 〈ν̃n−1(ςU )τn, ϑ〉 . (3.57)

Corollary 3.19. Let G0 = GU be a disconnected geometric graph. The expected time

n when the geometric graph Gn is the first connected graph of the process is given

by

E (n : Gn first connected graph) =
∑

n≥1

n 〈ν̃n−1(ςU )τn, ϑ〉 . (3.58)

Similarly, given an initial graph that is connected, the following results deal
with the occurrence of the first disconnected graph in the process.

Corollary 3.20. Let G0 = GU be a connected geometric graph. For n ≥ 1, the

probability that Gn is the first disconnected graph of the process is given by

P (Gn first disconnected graph) =
〈

νn−1(ςU )τn, ϑ̃
〉

. (3.59)

Corollary 3.21. Let G0 = GU be a connected geometric graph. The expected time n
when the geometric graph Gn is the first disconnected graph of the process is given

by

E (n : Gn first disconnected graph) =
∑

n≥1

n
〈

νn−1(ςU )τn, ϑ̃
〉

. (3.60)

3.1. Vertex degrees in Gn

Given a graph G = (V,E), the degree of a vertex v ∈ V is defined by

deg(v) = |{edges incident with v in G}|. (3.61)

The degree of a graph G is defined by

deg(G) = inf
v∈G

deg(v). (3.62)

In the context of wireless networks, the vertex degree represents the number of
nodes within a node’s transmission range. The degree of a graph then represents the
minimum number of nodes within transmission range of any node in the network.

The lemmas and propositions below follow immediately from definitions and
results acquired thus far.
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Lemma 3.22. Let the geometric graph GU be given. By construction of the second

quantization nilpotent adjacency operator Φr, the degree of vertex vj ∈ U s given

by

deg(vj) = ψ
(〈

eU,j |Φr
2|eU,j

〉)

. (3.63)

It follows naturally that the degree of GU is given by

deg(GU ) = inf
j∈U

ψ
(〈

eU,j |Φr
2|eU,j

〉)

. (3.64)

The preceding lemma can now be used to compute the probability that a
graph in the process has degree k for some nonnegative integer k.

Proposition 3.23. Let (Gn) be a geometric graph process associated with Φr. Then,

for nonnegative integer k, the probability that deg(Gn) = k is given by

P (deg(Gn) = k) =
∑

U⊆V

〈τn, ςU 〉
〈

einfj∈U ψ(〈eU,j |Φr
2|eU,j〉), ek

〉

. (3.65)

In the next pair of propositions, the expected degree of a graph in a process
and expected degree of a vertex in the nth graph of a process are calculated.

Proposition 3.24. Let (Gn) be a geometric graph process associated with Φr. Then,

the expected value of deg(Gn) is given by

E (deg(Gn)) =
∑

U⊆V

〈τn, ςU 〉 inf
j∈U

ψ
(〈

eU,j |Φr
2|eU,j

〉)

. (3.66)

Proposition 3.25. Let (Gn) be a geometric graph process associated with Φr. Then

randomly choosing a vertex v from the vertices of Gn with all vertices equiprobable,

E (deg(v)) =
∑

U⊆V

〈τn, ςU 〉ψ
(

Tr
(

Φr
2
))

. (3.67)

A number of results involving conditional probabilities and conditional ex-
pectations are now possible.

Proposition 3.26. Let (Gn) be a geometric graph process associated with Φr, let k
be a nonnegative integer, and let ϑ be defined as in (3.39). Then the conditional

probability that Gn has minimum vertex degree k given that Gn is connected is given

by

P (deg(Gn) = k | Gn is connected) =

∑

U⊆V 〈ϑ, ςU 〉 〈τn, ςU 〉
〈

edeg(GU ), ek
〉

∑

U⊆V 〈ϑ, ςU 〉 〈τn, ςU 〉
. (3.68)

Corollary 3.27. Let (Gn) be a geometric graph process associated with Φr, and let

ϑ be defined as in (3.39). Then the conditional expected value of deg(Gn) given

that Gn is connected is given by

E (deg(Gn) | Gn is connected) =

∑

U⊆V deg(GU ) 〈ϑ, ςU 〉 〈τn, ςU 〉
∑

U⊆V 〈ϑ, ςU 〉 〈τn, ςU 〉
. (3.69)
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Proposition 3.28. Let (Gn) be a geometric graph process associated with Φr, let k
be a nonnegative integer, and let ϑ be defined as in (3.39). Then the conditional

probability that Gn is connected given that it has minimum vertex degree k is given

by,

P (Gn is connected |deg(Gn) = k) =

∑

U⊆V 〈ϑ, ςU 〉 〈τn, ςU 〉
〈

edeg(GU ), ek
〉

∑

U⊆V

〈

edeg(GU ), ek
〉

〈τn, ςU 〉
. (3.70)

Proposition 3.29. Let (Gn) be a geometric graph process associated with Ξr. Let k
be a nonnegative integer, and let Xn denote the number of connected components

in the nth graph of the process. Then,

E(Xn |deg(Gn) = k)

=

∑

U∈2V 〈τn, ςU 〉 ρ
(

∑

vj∈U
η
(

〈

eU,j
∣

∣Ξr
2|V |−1 |eU,j〉

))

〈

edeg(Gu), ek
〉

∑

U∈2V 〈τn, ςU 〉
〈

edeg(Gu), ek
〉 . (3.71)

3.2. Energy and Laplacian Energy of Geometric Graphs

Given the adjacency matrix A associated with a graph G on n vertices, the energy

of G is defined as the sum of the singular values of A:

E(G) =

n
∑

i=1

|λi|, (3.72)

where each λi is an eigenvalue of A. It is evident that

Tr(A2) =

|V |
∑

i=1

λi
2 = 2|E|. (3.73)

Let λ1, . . . , λ|V | denote the spectrum of A. Since A is symmetric, A has a
spectral decomposition AU = UΛ where U is an orthogonal matrix and Λ is a
diagonal matrix with the eigenvalues of A along the main diagonal. It follows that
Λ = U−1AU so that the energy of G is given by

E(G) = Tr(
(

(U−1AU)2
)1/2

). (3.74)

For each subset of vertices U ⊆ V , denote the ordinary adjacency operator
of the corresponding subgraph GU by A(U). In particular,

A(U) =
∑

vi,vj∈U

0<‖v1−v2‖<Nr

|eU,v1〉 〈eU,v2 | . (3.75)

This adjacency operator is related to the corresponding nilpotent adjacency
operator by

A(U)Z(U) = Φ(U)
r , (3.76)

where Z(U) is the diagonal matrix of generators of CℓV
nil corresponding to the

subset U ⊆ V . As before, each A(U) is symmetric and therefore has spectral
decomposition of the form A(U)U (U) = U (U)Λ(U).
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Given the second quantization nilpotent adjacency operator Φr associated
with a graph process (Gn), define the ordinary second quantization adjacency op-
erator Ar associated with Φr by

Ar =
∑

U∈2V

(

A(U) ⊗ |eU 〉 〈eU |
)

. (3.77)

Similarly, the unitary second quantization operator Ur is defined by

Ur =
∑

U∈2V

(

U (U) ⊗ |eU 〉 〈eU |
)

. (3.78)

The following result is an immediate consequence of definitions.

Lemma 3.30. For subset U ⊂ V , the energy of the geometric graph GU is given by

E(GU ) = TrU

(

((U−1
r ArUr)

2)1/2
)

. (3.79)

As a corollary of previous results, we obtain the next result.

Proposition 3.31. Given geometric graph process (Gn) with associated ordinary

second quantization adjacency operator Ar, the expected energy of the nth graph of

the process is given by

E (E(Gn)) =
∑

U⊆V

〈τn, ςU 〉TrU

(

((U−1
r ArUr)

2)1/2
)

. (3.80)

Recall that by Lemma 3.22, the degree of vertex vj ∈ U ⊆ V is given by

deg(vj) = ψ
(〈

eU,j |Φr
2|eU,j

〉)

. (3.81)

Let A(U) denote the ordinary adjacency matrix of the graph GU , and define the
diagonal matrix of vertex degrees D(U) by

(D(U))jj = ψ
(〈

eU,j |Φr
2|eU,j

〉)

. (3.82)

For each subset of vertices U ⊆ V , denote the combinatorial Laplacian of the
corresponding subgraph GU by L(U). In particular,

L(U) = D(U) −A(U). (3.83)

Given a graph G on n vertices and m edges, the Laplacian spectrum of G
is the spectrum of its Laplacian matrix. The Laplacian spectrum consists of the
numbers µ1 ≥ µ2 ≥ · · ·µn ≥ 0. The Laplacian energy of G is defined by

EL(G) =

n
∑

i=1

∣

∣

∣

∣

µi −
2m

n

∣

∣

∣

∣

. (3.84)

The Laplacian also has spectral decomposition of the form L(U)OU = OUΛU
for orthogonal OU and diagonal matrix ΛU .
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Lemma 3.32. For subset U ⊂ V , the Laplacian energy of the geometric graph GU
is given by

LE(GU ) = Tr





(

(

O−1
U L(U)OU −

Tr(L(U))

|U |
I

)2
)1/2



 . (3.85)

Proof. By the handshaking theorem, the sum of vertex degrees is twice the number
of edges. �

Proposition 3.33. Given geometric graph process (Gn) with associated second quan-

tization combinatorial Laplacian Lr, the expected Laplacian energy of the nth graph

of the process is given by

E (EL(Gn)) =
∑

U⊆V

〈τn, ςU 〉Tr





(

(

O−1
U L(U)OU −

Tr(L(U))

|U |
I

)2
)1/2



 . (3.86)

4. Convergence Conditions and Limit Theorems

In order to establish limit theorems for the results of the preceding section, it is
necessary to establish convergence of the sequence (τn) in CℓV

sym.
The norm on CℓV

sym defined by
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

U⊆V

αU ςU

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
∑

U⊆V

αU
2 (4.1)

corresponds to the Euclidean norm when CℓV
sym is viewed as a real 2|V |-dimensional

vector space. A sequence (ξn) in CℓV
sym will be said to converge to ξ ∈ CℓV

sym if
for every ǫ > 0, ∃kǫ ∈ N such that ‖ξn − ξ‖ < ǫ whenever n ≥ kǫ.

By definition of τn,

τn =

n
∏

i=1





Nd

∑

j=0

fj(T
ix)ς{j}



 =
∑

U∈2V

P (Υn = ςU ) ςU . (4.2)

Theorem 4.1. Define the set

J := {k ∈ V : fk(x) > 0 ∀x ∈ E}. (4.3)

If f0(x) > 0 ∀x ∈ E, then

lim
n→∞

τn =
1

2|J|
+

∑

{U∈2V :U∩J 6=∅}

1

2|J|
ςU . (4.4)

Proof. Let U ⊆ V and let k ∈ V . Note that if k /∈ U and fk(x) = 0 for all x ∈ E,
then 〈τn, ςU 〉 = 0 for all n.
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Fix i ∈ V , and let (Υn) be the dynamic walk corresponding to the collection
{fv(x) : v ∈ V }. Define the real-valued sequence (xn) by

xn := P (i ∈ L |Υn = ςL) , n ≥ 0. (4.5)

Then

x0 = 0, (4.6)

x1 = fi(Tx), (4.7)

xn+1 = xn(1 − fi(T
n+1x)) + (1 − xn)fi(T

n+1x), ∀n ≥ 1. (4.8)

It will be shown by induction that xn < 1/2 for all n ≥ 1. By definition,
fi(x) <

1
2 for all x ∈ E. Write fi(T

nx) = 1/2 − κ(n) where κ(n) > 0, ∀n. In the
basis step, x1 = fi(Tx) < 1/2.

It is now assumed that xn < 1/2 for some n ≥ 1. Then,

xn+1 = xn(1 − fi(T
nx)) + (1 − xn)fi(T

nx)

= xn

(

1 −
1

2
+ κ(n)

)

+ (1 − xn)

(

1

2
− κ(n)

)

=
xn
2

+ xnκ(n) +
1

2
−
xn
2

− κ(n) + xnκ(n)

=
1

2
− κ(n) + 2xnκ(n)

<
1

2
− κ(n) + κ(n) =

1

2
. (4.9)

Hence, xn <
1
2 for all n ≥ 1. It will now be shown that xn+1 > xn for all

n ≥ 1. Using the recurrence (5.12), xn <
1
2 implies

xn+1 = xn + fi(T
nx) − 2fi(T

nx)xn > xn + fi(T
nx) − fi(T

nx) = xn. (4.10)

Now the sequence (xn) converges to ξ ∈ (0, 1
2 ) by the Monotone Convergence

Theorem. In particular, for any n ∈ N, ξ must satisfy

ξ = ξ(1 − fi(T
nx)) + (1 − ξ)fi(T

nx) = ξ + fi(T
nx) − 2ξfi(T

nx). (4.11)

Hence, ξ satisfies 0 = fi(T
nx)−2ξfi(T

nx) = fi(T
nx)(1−2ξ), which implies ξ = 1

2 .
It is evident that ξ represents the limit of the probability that vertex i is

present in the random geometric graph Gn as n→ ∞. Fixing U ⊆ V and letting J
be the set described in the statement of the theorem, it is evident that the limiting
distribution is uniform on the vertices of J ; i.e.,

lim
n→∞

P (Υn = ςU ) =





∏

j∈J∩U

1

2









∏

j∈J∩U ′

(

1 −
1

2

)



 =
1

2|J|
. (4.12)

�

The following theorem is a corollary of the previous section’s results.
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Theorem 4.2. Assume the collection {fj(x)}j∈V satisfies the hypotheses of Theo-

rem 4.1, and let (Gn) be the corresponding dynamic geometric graph process. Let J
be the set defined in the statement of Theorem 4.1. Let Φr denote the second quan-

tization nilpotent adjacency operator, and let Ξr denote the second quantization

nilpotent adjacency operator associated with (Gn), respectively.

Let k ≥ 3 be fixed, and let zk(n) denote the number of k-cycles in the nth

geometric graph of the sequence in the partitioned d-cube with mesh 1/Nd. Let

|Cmax(n)| denote the size of a maximal component in the nth geometric graph of

the process. Let K(n) denote the number of connected components in the nth graph

in the partitioned d-cube with mesh 1/Nd.

Then,

lim
n→∞

E(zk(n)) =
1

k2|J|+1

∑

U∈2V

ψ
(

TrU (Φr
k)
)

, (4.13)

lim
n→∞

E(Cr(Gn)) =

1

2|J|

|V |
∑

ℓ=3

ℓ





∑

U∈2V

〈

eψ(TrU (Φr
ℓ)), ~eV

〉

|V |
∏

k=ℓ+1

〈

eψ(TrU (Φr
k)), e0

〉



 , (4.14)

lim
n→∞

E(Girth(Gn)) =

1

2|J|

|V |
∑

ℓ=3

ℓ

(

∑

U∈2V

〈

eψ(TrU (Φr
ℓ)), ~eV

〉

ℓ−1
∏

k=2

〈

eψ(TrU (Φr
k)), e0

〉

)

, (4.15)

lim
n→∞

E(|Cmax(n)|) =
1

2|J|

∑

U∈2V

δ
(

TrU

(

Ξr
2|V |−1

))

, (4.16)

and

lim
n→∞

E(K(n)) =
1

2|J|

∑

U∈2V

ρ





∑

vj∈U

η
(

〈

eU,j
∣

∣Ξr
2|V |−1 |eU,j〉

)



 . (4.17)

5. Time-homogeneous walks on random geometric graphs

In this section results are obtained for graph processes in which the vertex addi-
tion/deletion probabilities do not vary with time.

Proposition 5.1. Let Y be a random variable taking values in [|V |] ∪ {0} with

probabilities pi = Pr{Y = i} for each 0 ≤ i ≤ |V |, and let {Yk}k>0 be the sequence

of independent random variables obtained from repeated observations of Y . Let 1 =
ς∅ ∈ CℓV

sym represent the initial probability density on the vertices of Q|V |; i.e., the
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initial vertex corresponds to the empty graph. Let τ =

|V |
∑

i=0

pi ςi. For convenience,

ς{0} is identified with ς∅. Then for k > 0, the probability density function fk on

the power set 2V at time k is defined by

fk(U) =
〈

τk, ςU
〉

. (5.1)

Proof. For k ≥ 0, let ξk ∈ CℓV
sym be defined by

ξk =
∑

U∈2V

fk(U) ςU , (5.2)

and note that ξ0 = ς∅ = 1. We show that ξk = τk for all k ≥ 1.
We see that the probability density at time k = 1 is given by

ξ1 =
∑

U∈2V

f1(U) ςU =
∑

U∈2V

〈τ, ςU 〉 ςU = τ. (5.3)

Assuming true for k, using independence of {Yk}, and proceeding by induction,
we find

ξk+1 =
∑

U∈2V

fk+1(U) ςU =
∑

U∈2V

|V |
∑

j=1

fk+1(U△{j}) ςU△{j}

=
∑

U∈2V

fk(U) ςU

|V |
∑

j=1

pjς{j} = ξk





|V |
∑

j=1

pjς{j}



 =





|V |
∑

j=1

pjς{j}





k



|V |
∑

j=1

pjς{j}





= τk τ = τk+1. (5.4)

�

When p0 = 0, the resulting sequence (Υn) is a walk on the hypercube Q|V |.
When p0 > 0, (Υn) is a walk on a hypercube with loops.

In the homogeneous case, the sequence (τn) defined by (3.13) is replaced by
(τn). All of the previous results hold as stated with this modification.

Example 5.2. Let {p0, p1, . . . , p4} = {.15, .1, .2, .3, .25}. The probability density on
the collection of geometric graphs GU at time t = 32 is determined by setting
τ :=

∑4
i=0 pi ς{i} and computing τ32 with Mathematica in Figure 3.

In[320]:= Τ " 0.15 # 0.1 e!1" # 0.2$e!2" # 0.3$e!3" # 0.25$e!4"

Out[320]= 0.15 ! 0.1 e!1" ! 0.2 e!2" ! 0.3 e!3" ! 0.25 e!4"

In[321]:= ClSymExpand#ClSymPower#Τ, 32$$

Out[321]= 0.0625502 ! 0.0624498 e!1" ! 0.0625488 e!2" ! 0.0625488 e!3" ! 0.0625488 e!4" ! 0.0624512 e!1,2" !

0.0624512 e!1,3" ! 0.0624512 e!1,4" ! 0.0625502 e!2,3" ! 0.0625502 e!2,4" ! 0.0625502 e!3,4" !

0.0624498 e!1,2,3" ! 0.0624498 e!1,2,4" ! 0.0624498 e!1,3,4" ! 0.0625488 e!2,3,4" ! 0.0624512 e!1,2,3,4"

Figure 3. Probability that G32 = GU for each U ⊆ {v1, . . . , v4}.
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Now the probability that G32 = G{v1,v2,v3} is the coefficient of σ{1,2,3}, seen
to be .0624498.

Lemma 5.3. Let (Gn) be the homogeneous geometric graph process defined in Propo-

sition 5.1 with p0 > 0, and let i ∈ V . Then, given Gn = GUn
,

P (i ∈ Un) =
1 − (1 − 2pi)

n

2
(5.5)

Proof. Fix i ∈ V , and let (Υn) be the time-homogeneous walk corresponding to
the collection {pi : v ∈ V }. The subset Un ⊆ V is defined by Υn = ςUn

. Now define
the sequence (xn) by xn = P (i ∈ Un) for n ≥ 0. Then

x0 = 0, (5.6)

xn = xn−1(1 − pi) + (1 − xn−1)pi, ∀n ≥ 1. (5.7)

By back-substitution, the recurrence relation has solution given by

xn = (1 − 2pi)xn−1 + pi

= (1 − 2pi)
2xn−2 + (1 − 2pi)pi + pi

...

= (1 − 2pi)
nx0 + pi

n−1
∑

j=0

(1 − 2pi)
j

= pi

n−1
∑

j=0

(1 − 2pi)
j =

1 − (1 − 2pi)
n

2
. (5.8)

�

Theorem 5.4. Let J = {k ∈ V : pk > 0}. If p0 > 0, then

lim
n→∞

τn =
1

2|J|
+

∑

{U∈2V :U∩J 6=∅}

1

2|J|
ςU . (5.9)

Proof. Let U ⊆ V and let k ∈ V . Note that if pk = 0 and k /∈ U , then 〈τn, ςU 〉 = 0
for all n.

Fix i ∈ V , and let (Υn) be the time-homogeneous walk corresponding to the
collection {pi : v ∈ V } ∪ {p0}. The subset L ⊆ V is defined by Υn = ςL.

Now define the sequence (xn) by xn = P (i ∈ L) for n ≥ 0. Then

x0 = 0, (5.10)

x1 = pi, (5.11)

xn+1 = xn(1 − pi) + (1 − xn)pi, ∀n ≥ 1. (5.12)

Note that p0 > 0 implies pi < 1. By Lemma 5.3,

lim
n→∞

xn = lim
n→∞

1 − (1 − 2pi)
n

2
=

1

2
. (5.13)
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It is evident that 1
2 represents the limit of the probability that vertex i is

present in the random geometric graph Gn as n→ ∞. Fixing U ⊆ V and letting J
be the set described in the statement of the theorem, it is evident that the limiting
distribution is uniform on the vertices of J ; i.e.,

lim
n→∞

P (Υn = ςU ) =





∏

j∈J∩U

1

2









∏

j∈J∩U ′

(

1 −
1

2

)



 =
1

2|J|
. (5.14)

�

6. Mathematica Procedures

This section contains general purpose Mathematica code for performing computa-
tions in the algebras Cℓn

nil and Cℓn
sym. This code underlies the examples computed

in the paper.

Unprotect @CirclePlus D;
ClearAll @CirclePlus D;
SetAttributes @CirclePlus, 8Flat, OneIdentity, Listable <D;
CirclePlus @x_?NumericQ , y _?NumericQ D : = x y ;
CirclePlus @arg1 _, y _?NumericQ D : = y arg1;
CirclePlus @x_?NumericQ, arg2 _D : = x arg2;
CirclePlus @x_?NumericQ arg1 _, y _?NumericQ D : = x y arg1;
CirclePlus @x_?NumericQ, y _?NumericQ arg2 _D : = x y arg2;
CirclePlus @x_?NumericQ arg1 _, y _?NumericQ arg2 _D : = x y CirclePlus @arg1, arg2 D;
CirclePlus @x_?NumericQ arg1 _, arg2 _D : = x CirclePlus @arg1, arg2 D;
CirclePlus @arg1 _, y _?NumericQ arg2 _D : = y CirclePlus @arg1, arg2 D;

CirclePlus Aea_, e b_E : =

H-1LLength @Complement @aÝb,pSet DD
* eHaÜbLÝIComplement AUnion @a,b D,Intersection @a,b DEM �. 8e8< ® 1<;

CirclePlus = Symbol @"CirclePlus" D;
Protect @CirclePlus D;

Unprotect @ClSymExpand D;
ClearAll @ClSymExpand D;
SetAttributes @ClSymExpand, Listable D;
ClSymExpand @x_D : = x �; FreeQ @x, _ Å _D;
ClSymExpand @x_ + y_D : = Simplify @ClSymExpand @xD + ClSymExpand @yDD;
ClSymExpand @x_?NumericQ arg1 _D : = x ClSymExpand @arg1 D;
ClSymExpand @arg1 _D : = Module @8arg2 <,

arg2 = Distribute @ExpandAll @arg1 D, Plus, CirclePlus D;
If @! FreeQ@arg2, _ Å _D && arg2 =!= arg1,

arg2 = ClSymExpand @arg2 D;
D;
Return @arg2 D;
D;

Protect @ClSymExpand D;
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H* Compute powers of Cl sym elements *L
ClSymPower@x_, n _Integer D : = Module B8y<, y = ClSymExpand @xD; Switch BEvenQ@nD,

True, If Bn � 0, Return @1D, Return BClSymPowerBClSymExpand @y Å yD,
n

2
FFF,

False, If Bn � 1, Return @yD, Return BClSymExpand By Å ClSymPowerBClSymExpand @y Å yD,
n - 1

2
FFFFF; F;

H* Define product for commutative algebra

Cl n
nil . Generators satisfy the following conditions: *L

H*e9j = � e8k< = e8k< � e9j = k¹j *L
H* e9j = � e9j ==0 *L

Unprotect @CircleMinus D;
Unprotect @CircleMinus D;
ClearAll @CircleMinus D;
SetAttributes @CircleMinus, 8Flat, OneIdentity, Listable <D;
CircleMinus @x_?NumericQ , y _?NumericQ D : = x y ;
H* One 'no arguments' case *L
CircleMinus @arg1 _, y _?NumericQ D : = y arg1;
H* Four 'one argument' cases *L
CircleMinus @x_?NumericQ, arg2 _D : = x arg2;
CircleMinus @x_?NumericQ arg1 _, y _?NumericQ D : = x y arg1;
CircleMinus @x_?NumericQ, y _?NumericQ arg2 _D : = x y arg2;
CircleMinus @x_?NumericQ arg1 _, y _?NumericQ arg2 _D : = x y CircleMinus @arg1, arg2 D;
H* Three 'two arguments' cases *L
CircleMinus @x_?NumericQ arg1 _, arg2 _D : = x CircleMinus @arg1, arg2 D;
CircleMinus @arg1 _, y _?NumericQ arg2 _D : = y CircleMinus @arg1, arg2 D;
CircleMinus Aea_, e b_E : = If @Length @a Ý bD > 0, 0, e aÜbD;
CircleMinus = Symbol @"CircleMinus" D;
Protect @CircleMinus D;

Unprotect @ClNilExpand D;
ClearAll @ClNilExpand D;
SetAttributes @ClNilExpand, Listable D;
ClNilExpand @x_D : = x �; FreeQ @x, _�_D;
ClNilExpand @x_ + y_D : = Simplify @ClNilExpand @xD + ClNilExpand @yDD;
ClNilExpand @x_?NumericQ arg1 _D : = x ClNilExpand @arg1 D;
ClNilExpand @arg1 _D : = Module @8arg2 <,

arg2 = Distribute @ExpandAll @arg1 D, Plus, CircleMinus D;
If @! FreeQ@arg2, _�_D && arg2 =!= arg1,

arg2 = ClNilExpand @arg2 D;
D;
Return @arg2 D;
D;

Protect @ClNilExpand D;

H* Compute powers of Cl nil elements *L
ClNilPower @x_, n _Integer D : = Module B8y<, y = ClNilExpand @xD; Switch BEvenQ@nD,

True, If Bn � 0, Return @1D, Return BClNilPower BClNilExpand @y � yD,
n

2
FFF,

False,

If Bn � 1, Return @yD, Return BClNilExpand By �ClNilPower BClNilExpand @y � yD,
n - 1

2
FFFFF; F;

H* Procedure to multiply matrices with Cl nil entries *L
ClNilMatrixProduct @A_, B _D : = If @Dimensions @AD@@2DD ¹ Dimensions @BD@@1DD, Abort @D;,

Table @Total @ClNilExpand @CircleMinus @A@@i DD, Transpose @BD@@j DDDDD,
8i, 1, Length @AD<, 8j, 1, Dimensions @BD@@2DD<DD;
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H* A procedure for computing powers of Cl nil matrices. In this method,
A^m is computed by recursive squaring HHA^2L^2... LA *L
ClNilMatrixPower @A_, m_D : = Module B8y<, y = ClNilExpand @AD; Switch BEvenQ@mD,

True, If Bm� 0, Return @IdentityMatrix @Length @yDDD,

Return BClNilExpand BClNilMatrixPower BClNilExpand @ClNilMatrixProduct @y, y DD,
m

2
FFFF,

False, If Bm� 1, Return @yD, Return BClNilExpand BClNilMatrixProduct B

ClNilMatrixPower BClNilExpand @ClNilMatrixProduct @y, y DD,
m- 1

2
F, y FFFFFF;

Acknowledgment. The second author thanks Marco Budinich for helpful com-
ments and suggestions on Mathematica procedures.
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