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Abstract. Algebraic Dynamic Programming (ADP) is a framework to
encode a broad range of optimization problems, including common bioin-
formatics problems like RNA folding or pairwise sequence alignment. The
ADP compiler translates such ADP programs into C. As all the ADP
problems have similar data dependencies in the dynamic programming
tables, a generic parallelization is possible. We updated the compiler
to include a parallel backend, launching a large number of independent
threads. Depending on the application, we report speedups ranging from
6.1× to 25.8× on a Nvidia GTX 280 through the CUDA libraries.

1 Introduction

Dynamic programming in bioinformatics. In biological sequence analysis, there
arise numerous combinatorial optimization problems that are solved by dynamic
programming. Pattern matching in DNA or protein sequences, comparison for
local or global similarity, and structure prediction from RNA sequences are fre-
quent tasks, as well as the modeling of families of proteins and RNA structures
with the widely used Hidden Markov Models (HMMs) and stochastic context free
grammars (SCFG), respectively [5]. The scoring schemes associated with these
optimization problems can be quite sophisticated. The thermodynamic model
for RNA structure prediction, for example, has more than thousand parameters.
This requires elaborate case analysis. Objective functions often ask for more than
a single answer, such as the best non-overlapping pattern hits to a genome above
a certain score threshold. Finally, biological sequences tend to be long (from 77
characters for a tRNA, 10000 for a gene, 3 ∗ 106 for a bacterial genome, to the
3 ∗ 109 nucleotides of a mammalian genome such as human or mouse). The time
and space requirements for a dynamic programming algorithm are often limiting
factors for the problems the biologists need to solve. The development of reliable
and efficient dynamic programming algorithms in bioinformatics is a recurring
challenge, in sharp contrast to the simplicity suggested by the textbook examples
of dynamic programming which we use to teach computer science students.

Algebraic dynamic programming. In all these optimization problems, the log-
ical problem decomposition follows the decomposition of the input sequence



into subwords. It has been observed early that the resulting dynamic program-
ming recurrences strongly resemble those of a Cocke-Younger-Kasami [3] type
parsing algorithm [20]. Pursuing this analogy, we have developed an algebraic
style of dynamic programming (ADP) over sequential data. The search space of
the optimization problem at hand is described by a yield grammar, which is a
regular tree grammar generating a tree language, and implicitly a context-free
language as the set of leaf sequences of these trees. Scoring and optimization
are described by an evaluation algebra, which interprets the tree operators as
functions that compute local score contributions, and hence solve larger prob-
lems when given optimal solutions of smaller ones, consistent with the general
paradigm of dynamic programming. This leads to a complete specification of
dynamic programming algorithms on a rather high level of abstraction.
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Fig. 1. ADP workflow. The goal of this study is to conceive and implement an auto-
matic GPU parallelization (bottom).

General-purpose computation on GPU. For a few years, issues with heat dis-
sipation have prevented the processors from having higher frequencies. One of
the answers to maintain the Moore’s Law is the use of parallel processing with
massively manycore architectures. Graphic processing units (GPUs) are a first
step towards those architectures, and recent trends blur the line between such
GPUs and multi-core processors.

GPUs were used in bioinformatics since 2005 for phylogenetic studies [4],
then for multiple sequence alignment based on an optimized Smith-Waterman
implementation [10]. The CUDA libraries, first released in 2007 [2], have deeply
simplified the development on GPUs. Recent papers provide speedups on ap-
plications involving suffix trees [19] or again Smith-Waterman comparisons [9,
11, 13], error correction in DNA short-reads sequencing [21], computation with
position weight matrices [8], RNA folding [18], and neighbor-joining trees for
multiple sequence alignments [12].

The current Nvidia architectures [2] offer two levels of parallelism. For the
coarse-grained level, several multiprocessors execute blocks of independent com-
putations. Each multiprocessor is then a kind of large SIMD device, able to
process several different fine-grained threads at a given time. All those threads
are executing exactly the same instructions: if a divergence in a condition occurs,
the branches of the condition are serialized.



Contents. In this paper we describe an approach to extend the ADP compiler
such that it generates parallel programs (Figure 1). This approach has been
implemented in the ADP compiler with the CUDA libraries [2]. Our new con-
tribution is thus a generic method to create parallel CUDA programs for bioin-
formatics applications – classical and yet-to-be written ones. The next section
presents background on Algebraic Dynamic Programming. Section 3 presents
the GPU parallelization of ADP. Section 4 gives some results and discussion:
depending on the application, we get speedups ranging from 6.1× to 25.8× on
a Nvidia GTX 280.

2 Algebraic Dynamic Programming

We briefly introduce the Algebraic dynamic programming (ADP) methodology
on a simple Nussinov type RNA secondary structure prediction problem, the
maximization of the number of base pairs [15]. Section 4 reports results for sev-
eral other applications. See [6] for a complete presentation of the ADP method.
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Fig. 2. Two candidates in the search space for the best secondary structure for the
sequence gucaugcaguguca.

When designing a dynamic programming algorithm in algebraic style, we
need to specify four constituents: the input alphabet, the search space, the scor-
ing of the candidates, and the objective function.

Alphabet. The input RNA sequence is a string over the alphabet A = {a, c, g, u}.

Search space. Given an input sequence w ∈ A∗, the search space is the set of all
possible secondary structures the sequence w can form. In the ADP terminology,



the elements of the search space for a given input sequence are called candidates.
Figure 2 gives example of candidates for RNA folding. This tree representation
of candidates exists for any application of dynamic programming [23]. To de-
scribe the candidates, the ADP methodology uses the notion of tree grammar.
Figure 3 shows the grammar nussinov78, origin of our two example trees. For
each sequence w ∈ A∗, the grammar defines a search space PG(w) that is the set
of all parses of the sequence w for G.

nussinov78 Z = s

s → nil

empty

| right

s base

| pair

base s base
with basepairing

| split

s s

Fig. 3. Tree grammar nussinov78 consists of one production with four alternatives.
Symbol Z denotes the axiom of the grammar.

Scoring and objective. Given an element of the search space as a tree t ∈ PG(w),
we need to score this element. In our example we are only interested in counting
base pairs, so scoring is very simple: the score of a tree is the number of pair -
nodes in t. For the two candidates of Figure 2 we obtain scores of 3 (t1) and
4 (t2). Moreover, we need to choose one or several solutions from the pool of
candidates. For this purpose we add an objective function h which chooses one
or more elements from a list of candidate scores.

bpmax = (nil, right, pair, split, h) where

nil(s) = 0

right(s,b) = s

pair(a,s,b) = s + 1

split(s,s’) = s + s’

h([]) = []

h([s1, . . . , sr]) = [max1≤i≤r si]

Scoring schemes with objective functions are called evaluation algebras in
ADP. The above example is the evaluation algebra bpmax for maximizing the
number of base pairs. The flexibility of the algebraic approach lies in the fact
that we don’t have to stop with definition of one algebra: simply define another
algebra and get other results for the same search space. We use the notation E(t)
to indicate the value obtained from t under evaluation with algebra E . All that
is left to do is to evaluate the candidates in a given algebra, and make our choice
via the objective function h. For example, candidates t1 and t2 of Figure 2 are
evaluated by algebra bpmax, with h(bpmax(t1), bpmax(t2)) = [max(3, 4)] = [4].

This example was fairly simple: complete RNA folding algorithms are typi-
cally based on energy minimization, and include energies of stacking regions (or
helices), bulge loops, internal loops, hairpin loops and multiple loops. Figure 4



shows an excerpt of the real RNAfold.lhs grammar that includes the full Turner
model [14]. The grammar can be read as a standard context-free grammar. The
operator ~~~ connects succeeding symbols and the operator ||| divides alter-
native productions for a non-terminal. The symbol <<< denotes application of
an algebra function and ... denotes application of the evaluation function h.
Finally, the operator with denotes the use of a filter function, that means that
(base ~~~ closed ~~~ base) ‘with‘ basepairing is only successful if the
two bases can form a base pair.

rnafold alg f = axiom struct where
(sadd,cadd,is,sr,hl,bl,br, il, il11, il12, il21, il22,
dl, dr, dlr, edl, edr, edlr, drem, cons, ul, pul, addss, ssadd, nil, combine, h) = alg

struct = tabulated (sadd <<< base ~~~ struct |||
cadd <<< initstem ~~~ struct |||
nil <<< empty ... h)

initstem = tabulated (is <<< loc ~~~ closed ~~~ loc ... h)
closed = tabulated (stack ||| ((hairpin ||| leftB ||| rightB ||| iloop ||| multiloop)

‘with‘ stackpairing) ... h)

stack = (sr <<< base ~~~ closed ~~~ base) ‘with‘ basepairing ... h
hairpin = hl <<< base ~~~ base ~~~ (region ‘with‘ (minsize 3)) ~~~ base ~~~ base ... h
leftB = bl <<< base ~~~ base ~~~ region ~~~ initstem ~~~ base ~~~ base ... h
rightB = br <<< base ~~~ base ~~~ initstem ~~~ region ~~~ base ~~~ base ... h
iloop = il <<< base ~~~ base ~~~ (region ‘with‘ (maxsize 30)) ~~~ closed ~~~

(region ‘with‘ (maxsize 30)) ~~~ base ~~~ base ... h

Fig. 4. Excerpt from the ADP grammar RNAfold.lhs. The complete grammar includes
further productions for multiloop structures.

3 Automatic Parallelization of ADP

Principle. A compiler that translates ADP programs into C was previously
developed [7]. This task includes some advanced optimization techniques, see
[22] for a detailed overview. With the option -cuda, the compiler is now switched
into the CUDA code generation mode. The compiler uses the same backend both
for CPU and GPU code generation and only differs in the following parts:

1. The dynamic programming tables need to be stored both on the host and on
the global memory of the GPU. The compiler generates code to synchronize
these tables.

2. For each dynamic programming table, the compiler generates a calculation
function. This is the same function both for CPU and GPU mode, so the
only change is that it is declared to be executed as a GPU kernel. Figure 5
shows the CUDA code for the dynamic programming main loop in the RNA
secondary structure prediction program. The kernel function, calc all, con-
tains the calls for the calculation of the six dynamic programming tables.



3. In CPU mode, all table elements are calculated sequentially with increasing
subword length. This order of computation has to be changed to enable
parallelization. For the RNA secondary structure prediction program, the
calculation of a table element (i, j) depends only on the elements in the
triangle in the lower left (see Figure 6, on the left). So all elements in one
diagonal can be calculated in parallel. The whole dynamic programming
table is then calculated in a loop over all diagonals (see Figure 5). This
approach can be generalized to all dynamic programming algorithms over
sequence data: in all ADP grammars, all results are combined from results
of shorter subsequences. Therefore, the calculation of a table element (i, j)
depends only on results that lie between the indices (i, j).

All these changes are done automatically by the compiler and do not require
any changes to the ADP grammar. The number of blocks and threads used for
the calculation can be configured as a parameter at runtime.

__global__ static void calc_all(int diag, int n) {

int i = blockIdx.x*blockDim.x+threadIdx.x;

int j = i + diag;

if ((i <= n) && (j <= n)) {

calc_closed(i, j);

calc_initstem(i, j);

calc_struct(i, j);

calc_block(i, j);

calc_comps(i, j);

}

}

static void mainloop() {

for (int diag=0; diag<=n; diag++) {

(...)

calc_all <<< grid, threads >>> (diag, n);

}

}

Fig. 5. Kernel and main CUDA code for the dynamic programming main loop cor-
responding to the grammar shown on Figure 4. Note that each kernel thread also
computes inner loops for the folding calculations. Actual codes are available on the
ADP website (http://bibiserv.techfak.uni-bielefeld.de/adp/cuda.html).

Window mode. It does not make any sense to fold a complete genome as a single
RNA molecule. This remark is the same for other applications: for example, a
thermodynamic matcher [17] looks for some small sub-sequences (50 to some



Fig. 6. Left: data dependencies for RNA secondary structure prediction. The computa-
tion of the table element (i, j) needs the O((j−i)2) elements in the underlying triangle.
Right: window mode. With a large genome (of size n), we just need to fold sequences
on small windows (of size w).

hundreds bases) matching a given structural pattern in a large sequence. In
those applications, we need to compute only some diagonals above the main
diagonal (Figure 6, on the right). The option -cudaw sets the ADP compiler
in window mode. Whereas the CPU version sequentially computes all windows,
the GPU version loads a large sequence into the GPU and launches a large
number of independent threads, thus increasing the parallelism. This is also
done automatically by the compiler and does not require any changes to the
source program.

4 Results

Table 1 shows the results on three different applications with RNA sequences:
RNAfold (see previous section), pknotsRG (detection of pseudo-knots [16]),
and a tRNA thermodynamic matcher. The program pknotsRG predicts RNA
secondary structures including a restricted class of pseudoknots. The thermo-
dynamic matcher was created by the graphical tool Locomotif [17]. Practical
9.9×, 14.5× and 6.1× speedups are obtained on those real applications with a
GTX 280. In these speedups, the main bottlenecks are in memory transfers, as
only the global memory of the GPU is used.

In the original RNAfold.lhs grammar, a part of production calc closed

is in fact computed for only 6 out of the 16 possible basepairs (filter ‘with‘

stackpairing on Figure 4). This brings a large divergence between the threads
and breaks the GPU SIMD model. To confirm this fact, we tested a special ver-
sion of this grammar, RNAfold-bp.lhs, that computes for every basepair the
full recurrence equations (penalizing non-pairs): the speedup with the GTX 280
is almost doubled. This indicates that a similar speedup would result for the cal-
culation of stochastic grammars, since here arbitrary base pairs are considered.



Grammar, PC1 PC2
window size, Core2 + GeForce 8800 Xeon + GTX 280

time complexity CPU GPU speedup CPU GPU speedup

RNAfold-bp.lhs -w 80 O(w2n) 176.09 19.22 9.1× 133.77 5.18 25.8×
RNAfold.lhs -w 80 O(w2n) 43.43 8.08 5.4× 35.57 3.59 9.9×

tRNA-matcher.lhs -w 100 O(w2n) 52.46 6.76 7.8× 43.60 3.01 14.5×

pknotRG.lhs -w 80 O(w3n) 26.82 10.64 2.5× 23.54 3.25 7.2×
pknotRG.lhs -w 160 O(w3n) 188.68 87.65 2.2× 166.27 27.22 6.1×

Table 1. Time (real times, in seconds) for executing different ADP grammars. CPU
versions are compiled with adpc, and executed on a 2.4 GHz Core2 processor (PC1,
1 core used). and on a 3.0 GHz Xeon X5472 processor (PC2, 1 core used). GPU CUDA
versions are compiled adpc -cudaw, and executed on a GeForce 8800 (PC1) and on a
GTX 280 (PC2). Because of its increased number of cores and of its better handling of
uncoalesced memory loads, the GTX 280 gives better speedups than the GeForce 8880.
Note that the performance of the CPU does not impact the times reported for the GPU
versions. For example, for RNAfold, the 19.22s for the PC1 GPU include only 0.20s of
non-kernel computations, mainly for traceback in the DP matrix. Tests on RNAfold

and tRNA-matcher were done on the 160 kbp genome of Candidatus Carsonella ruddii
(Genbank reference NC 008512). Tests on pknotsRG were done on the first 20 kbp of
the same genome.

It should be noted that our speedups are lower than the best possible ones.
For example, Rizk and Lavenier [18] developed an optimized GPU RNAfold
implementation: in particular, they pack together the 6/16 computations corre-
sponding to the production calc closed. They obtain a 17× speedup on a GTX
280 against one core of a 2.66 GHz Xeon (applied on a whole sequence, without
window mode), whereas our best speedup without window mode is only 2.8×
(results not shown). However, as our approach is generic, it can be applied on
several algorithms with few efforts to the user.

On pknotsRG, runs with w = 160 get a little smaller speedup than with
w = 80. As w is fixed, this does not limit the scalability of our approach: the
input data size, n, can always grow with the same speedup.

Current limitations. Whereas grammars involving several sequences can be en-
coded in the ADP formalism, the ADP compiler now only works for one input
sequence. Removing this limitation would allow to study other dynamic pro-
gramming problems, as for example Smith-Waterman sequence alignment or
RNA co-folding [6]. Finally, for some grammars (including the tRNA matcher),
the ADP automatic table design generates some recursive functions, and those
functions cannot be compiled with the CUDA libraries (there is no stack on
the current cards). This automatic table design is removed through omitting
the -cto option, but, in this case, the grammar should specify precisely which
symbols of the grammar are to be “tabulated”.



5 Perspectives

We implemented a parallel GPU CUDA backend for the ADP compiler, which
works out-of-the-box for several grammars dealing with RNA sequences. The
new ADP compiler and some example codes are available on the ADP web-
site (http://bibiserv.techfak.uni-bielefeld.de/adp/cuda.html). Our ap-
proach is generic and requires few efforts to the user, even if the speedups are not
the best ones that could be obtained by manually optimized implementations.
We plan to remove the limits explained above. Other perspectives include the
following points.

Shared memory. The ADP compiler could be improved to better use the memory
hierarchy of the card. In the Nvidia architecture, a 16 KB shared memory is
available for the threads in the same block. This local memory is very fast and
should be used to maximize the efficiency, for example in storing portions of
some dynamic programming tables. This memory is not used in our current
implementation. Of course, the best usage of the shared memory depends on
the application: for now, we did not find a generic way to determine from the
grammar this best usage. Some hints given in the grammar file could indicate to
the compiler which dynamic programming tables should be handled in this way.

Static evaluation of grammars. We plan to test other grammars, in bioinfor-
matics as in other domains. Which grammars are efficient to parallelize, and
why?

Other targets. We plan to test the ADP methodology on other manycore archi-
tectures, in particular through the new OpenCL standard [1]. Again, the fact
that the ADP methodology is generic allows to write portable solutions.
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