
HAL Id: inria-00438424
https://hal.inria.fr/inria-00438424

Submitted on 11 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining and Improving Composite Web Services
Recovery Mechanisms

Sami Bhiri, Walid Gaaloul, Claude Godart

To cite this version:
Sami Bhiri, Walid Gaaloul, Claude Godart. Mining and Improving Composite Web Services Recovery
Mechanisms. International Journal of Web Services Research, Idea Group Pub, 2008, 3 (2). �inria-
00438424�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50125766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00438424
https://hal.archives-ouvertes.fr

International Journal of Web Services Research , Vol.3, No.2, 2008

 1

Mining and Improving Composite Web Services Recovery
Mechanisms

Sami Bhiri*, Walid Gaaloul*, and Claude Godart**

*Digital Enterprise Research Institute
IDA Business Park, Galway, Ireland
{sami.bhiri, walid.gaaloul}@deri.org

**LORIA-INRIA

BP 239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
godart@loria.fr

ABSTRACT:

Ensuring composite services reliability is a challenging problem. Indeed, due to the inherent
autonomy and heterogeneity of Web services it is difficult to predict and reason about the
behavior of the overall composite service.
Generally, previous approaches develop, using their modeling formalisms, a set of techniques to
analyze the composition model and check “correctness” properties. Although powerful, these
approaches may fail, in some cases, to ensure CS reliable executions even if they formally
validate its composition model. This is because properties specified in the studied composition
model remains assumptions that may not coincide with the reality (i.e. effective CS executions).
Sharing the same issue, we present a reengineering approach that starts from CS executions log to
improve its recovery mechanisms. Basically, we propose a set of mining techniques to discover
CS transactional behavior from an event based log. Then, based on this mining step, we use a set
of rules in order to improve its reliability.

KEY WORDS:
Web Services Compositions, Mining, Reliability, Transactional Web Service.

Introduction

Nowadays, enterprises are able to outsource their internal business processes as services and
make them accessible via the Web. Then, they can dynamically combine individual services to
provide new value-added composite services (CS for short). Due to the inherent autonomy and
heterogeneity of Web services, a fundamental problem concerns the guarantee of correct
executions of a CS. An execution is correct if it reaches its objectives or fails (properly) according
to the designers requirements.

Motivating example Let consider an application for online travel arrangement carried out by a
composite service as illustrated in figure 1.The customer specifies its requirements in terms of
destination and hotel through the CRS service. The application launches in parallel flight and
hotel reservation (FR and HR respectively) (after a study of the local transport accommodations

International Journal of Web Services Research , Vol.3, No.2, 2008

 2

Figure 1. A composite Web service for Online Travel Arrangement (OTA for short)

(LTA)). The ADC service disposes administrative documents. Then, the customer is requested to
pay by credit card (PCC), by check (PCh), or by TIP (PTIP). The Send Documents (SD) service
ensures the delivery of documents to the customer. To deal with exceptions, designers specify
additional mechanisms for failures handling and recovery. First, they specify that the hotel
reservation can be compensated (by cancellation for instance) when the FR service fails to reserve
a flight, and reciprocally. Second, to ensure the payment, they specify the PCh service as a
payment alternative for the PCC service. Similarly, they specify the PTIP service as a payment
alternative for the PCh service with the assumption that the PTIP service always succeeds.
Finally, designers specify that CRS, LTA, ADC and SD services are sure to complete. The main
problem at this stage is how to ensure that the specified CS model guaranties reliable executions.

Generally, previous approaches develop, based on their modeling formalisms, a set of techniques
to analyze the composition model and check “correctness” properties. Although powerful, these
approaches may fail, in some cases, to ensure CS reliable executions even if they formally
validate the CS model. This is because properties specified in the studied composition models
remains assumptions that may not coincide with the reality.

Back to our example, let us suppose for instance, that in reality (by observation of sufficient
execution cases) the FR and PCh services never fail and the PTIP service is not sure to complete.
That means, among other, (i) there is no need for the HR service to support compensation policies
(which can be costly), and (ii) the payment can fail while the hotel and flight reservations are
maintained. Formal approaches cannot deal with such anomalies.

Mining the effective transactional behavior allows to detect gaps mentioned above and to improve
the application reliability. For instance in our example, mining the transactional behavior allows
to improve the CS model by specifying the PCh service as a payment alternative for the PTIP
service (since we notice that PCh is sure to complete).

Overview of our approach As explained in section 2, we distinguish between the control flow
and the transactional flow of a composite service. The control flow specifies its execution logic
(without undesired failures). While the transactional flow defines its recovery mechanisms.

In this paper we present an approach to improve CS recovery mechanisms based on the analysis
of its execution history. We proceed in two steps. First, we discover the effective recovery
mechanisms (transactional flow) of the composite service. Then, we use a set of rules in order to
improve its composition model. Figure 2 gives an overview of the main steps of our approach:
- Collecting execution history: The purpose of this phase is keeping track of the composite

service execution by capturing the relevant generated events.

International Journal of Web Services Research , Vol.3, No.2, 2008

 3

- Analyzing the execution history: The purpose of this phase is mining the effective
transactional flow of a composite service. For that we need first to mine its effective control
flow and extract its set of termination states.

- Improving the composition model: Based on the execution history analysis we use a set of
rules to improve the composite service recovery mechanisms.

Recovery mechanisms
reengineering

Correcting and
improving the
composition

model

Instances
execution

Collecting
execution history

First instance Second instance

...
Ith instance

Execution history
analysis

Extracting the set of
termination states

Set of termination
states

Effective control
flow

Transactional flow mining

Effective
transactional flow

Control flow mining

Execution
log

Composite Web
service initially

defined

...

Improved
composite Web

service

Figure 2. Overview of our approach

The remainder of this paper is organized as follows. In section 2 we introduce our transactional
Web service model. Section 3 illustrates how we model a composite Web service according to the
presented model. Section 4 discusses Web services logging and shows how we can capture
composite service execution history. Section 5 and Section 6 present respectively our control flow
and transactional flow mining techniques. In section 7 we show how we proceed to improve CS
recovery mechanisms. Section 8 discusses some related work. Section 9 concludes our paper.

International Journal of Web Services Research , Vol.3, No.2, 2008

 4

Transactional Web Service Model

In this section, we introduce our Web services composition model. We introduce the concept of a
transactional Web service (TWS for short). Then we show how we combine a set TWS to define
a new value-added service.

Transactional Web Service: TWS

In this paper, by Web service we mean a self-contained modular program that can be discovered
and invoked across the Internet. A transactional Web service is a Web service of which the
behavior manifests transactional properties.

The main transactional properties of a Web service we are considering are retriable,
compensatable and pivot (Mehrotra, Rastogi et al. 1992). A service s is said to be retriable if it is
sure to complete after several finite activations. s is said to be compensatable if it offers
compensation policies to semantically undo its effects. Then, s is said to be pivot if once it
successfully completes, its effects remains for ever and cannot be semantically undone. Naturally,
a service can combine properties, and the set of all possible combinations is {; retriable;
compensatable; pivot; (retriable, compensatable); (retriable, pivot)}.

Every service can be associated to a life cycle state chart that models the possible states through
which the executions of this service can go, and the possible transitions between these states. The
set of states and transitions depend on the service transactional properties. Each service has a
minimal set of states (initial, aborted, active, cancelled, failed, completed) and a minimal set of
transitions (abort(), activate(), cancel(), fail(), complete()). When a service is instantiated, the
state of the instance is initial. Then this instance can be either aborted or activated. Once it is
active, the instance can normally continue its execution or it can be cancelled during its
execution. In the first case, it can achieve its objective and successfully completes or it can fail. A
compensatable service has in addition, a state compensated and a transition compensate(). A
retriable service has in addition a transition retry().

Within a transactional service, we distinguish between external and internal transitions. External
transitions are fired by external entities. Typically they allow a service to interact with the outside
and to specify composite services orchestration (see next section). The external transitions that we
are considering are activate(), abort(), cancel(), and compensate(). Internal transitions are fired by
the service itself (the service agent). Internal transitions we are considering are complete(), fail(),
and retry().We note TWS the set of transactional Web services.

Transactional Composite Web Service: TCS

A transactional composite (Web) service (TCS for short) is a composite Web service of which the
component services are TWS. Such a service takes advantage of its component services
transactional properties to specify failure handling and recovery mechanisms. We note TCS the
set of transactional composite Web services.

Composition of transactional Web service

A TCS defines a set of preconditions on each component service’s external transition in order to
define the orchestration schema. These preconditions specify for each component service when it
will be aborted, activated, canceled, or compensated. For example, the OTA service specifies that

International Journal of Web Services Research , Vol.3, No.2, 2008

 5

ADC will be activated after the completion of HR and FR. That means the precondition of the
transition activate() of ADC is the completion of HR and the completion of FR. Thus, a TCS can
be defined as the set of its component services and the set of the preconditions defined on their
external transitions. More formally we define a TCS as following.

Definition 1: A transactional composite Web service tcs is a couple tcs = (ES  TWS, Prec)
where ES is the set of its component Web services and Prec is a function that defines for each
component service’s external transition a set of preconditions for its activation.

Thus, we distinguish for each component service, s, a set of exclusive preconditions for each of
its external transition, activate(), abort(), cancel(), and compensate(). For instance, the OTA
service specifies that PCh will be activated either after the completion of ADC (exclusively) or
after the failure of PCC. That means Prec(PCh.activate()) = {(ADC.completed  PCh chosen for
delivery), PCC.failed}.

Preconditions express at a higher abstract level relations (successions, alternatives, etc) between
component services in form of dependencies. These dependencies express how services are
coupled and how the behavior of certain component service(s) influences the behavior of other
service(s). For example the precondition on the external transition activate() of the PCh service
express (i) a succession relations (or dependency) between the ADC service and the PCh service
and (ii) an alternative relation (or dependency) between the PCC service and the PCh service.

Definition 2 Let be cs a TCS, s1 and s2 two component services of cs, s1.t1() a transition of s1, and
s2.t2() an external transition of s2, a dependency from s1.t1() to s2.t2(), denoted dep(s1.t1(), s2.t2()),
exists if the activation of s1.t1() may fire the activation of s2.t2().

In our approach, we consider activation, alternative, abortion, compensation and cancellation
dependencies which we detail in the following.

Activation dependency and activation condition: An activation dependency expresses a
succession relation between two services. An activation dependency from s1 to s2 exists iff the
completion of s1 may fire the activation of s2. Such dependency is defined according to the
activation condition of s2 ActCond(s2). ActCond(s) specifies when s will be activated (as a
successor for other(s) service(s)).

For example, the OTA service shown in figure 1 defines an activation dependency from HR to
ADC, and from FR to ADC such that ADC will be activated after the completion of HR and FR.
That means ActCond(ADC)={HR.completed  FR.completed}.

Alternative dependency and alternative condition: Alternative dependencies allow defining
execution alternatives as forward recovery mechanisms. An alternative dependency from s1 to s2
exists iff the failure of s1 may fire the activation of s2. Such dependency is defined according to
the alternative condition of s2 AltCond(s2). AltCond(s) specifies when s will be activated (as an
alternative) for other(s) service(s).

For instance the OTA service shown in figure 1 defines an alternative dependency from PCC to
PCh such that PCh will be activated when PCC fails. That means AltCond(PCh) = {PCC.failed}.

Abortion dependency and abortion condition: An abortion dependency allows propagating
failures (causing the TCS abortion) from one service to its successor(s) by aborting them. An

International Journal of Web Services Research , Vol.3, No.2, 2008

 6

abortion dependency from s1 to s2 exists iff the failure, cancellation or the abortion of s1 may fire
the abortion of s2. Such dependency is defined according to the abortion condition of s2
AbtCond(s2). AbtCond(s) specifies when s will be aborted after the failure, the cancellation, or the
abortion of other(s) service(s).

Compensation dependency and compensation condition: A compensation dependency allows
defining a backward recovery mechanism by compensation. A compensation dependency from s1
to s2 exists iff the failure or the compensation of s1 may fire the compensation of s2. Such
dependency is defined according to the compensation condition of s2 CpsCond(s2). CpsCond(s)
specifies when s will be compensated after the failure or the compensation of other(s) service(s).

The OTA service described in figure 1 defines a compensation dependency from HR to FR such
that FR will be compensated when HR fails. That means CpsCond(FR) = {HR. f ailed}.

Cancellation dependency and cancellation condition: A cancellation dependency allows
signaling a service execution failure to other service(s) being carried out in parallel by canceling
their execution if necessary. A cancellation dependency from s1 to s2 exists iff the failure of s1
may fire the cancellation of s2. Such dependency is defined according to the cancellation
condition of s2 CnlCond(s). CnlCond(s) specifies when s will be canceled after the failure other(s)
service(s).

Control and transactional flow of a TCS

We call the activation and abortion dependencies control dependencies. We call the compensation,
cancellation and alternative dependencies transactional dependencies. Control and transactional
dependencies express at a higher abstract level respectively the control flow and the
transactional flow of a TCS.

Control flow The control flow of a TCS specifies the partial ordering of component
services activations. Intuitively the control flow of a TCS is defined by the set of its activation
dependencies. Formally, we define a control flow as a TCS where its dependencies are only
activation dependencies.

Definition 3 A control flow is a TCS, cf = (ES,Prec) such that s  ES AltCond(s) = ;
CpsCond(s) = ; and CnlCond(s) = .

We note CFlow the set of all control flows. We define the function getCFlow that returns the
control flow of a given TCS.

Definition 4 We define the function getCFlow that returns the control flow of a TCS.
getCFlow: TCS  CFlow

 sc = (ES,Prec)  cf = (ES’,Prec’)
such that ES’ = ES and s  ES Prec’(s.activate()) = ActCond(s); Prec’(s.cancel()) = ;
Prec’(s.compensate()) = .

Transactional flow The transactional flow of a TCS specifies the recovery mechanisms.
Intuitively, a transactional flow of a TCS is defined by its component services transactional
properties and its set of transactional dependencies. Formally we define a transactional flow as a
TCS where its dependencies are only transactional dependencies.

International Journal of Web Services Research , Vol.3, No.2, 2008

 7

Definition 5 A transactional flow is a TCS, tf = (ES,Prec) such that s  ES
ActCond(s)=.

We note TFlow the set of all transactional flows. We define the function getTFlow that returns the
transactional flow of a given TCS.

Definition 6 We define the function getTFlow that returns the transactional flow of a TCS.
getTFlow: TCS  TFlow

 sc = (ES,Prec)  tf = (ES’,Prec’)
such that ES’= ES and s  ES Prec’(s.activate()) = AltCond(s).

A TCS, cs, can be defined as the union of its control flow, getCFlow(cs), and its transactional
flow getTFlow(cs). In general, the union of two TCS cs1 and cs2 is a TCS where (i) the set of its
component services is the union of cs1’s and cs2’s component services (ii) the precondition of an
external transition of a component service s is the one defined by cs1 if s belongs only to cs1, the
one defined by cs2 if s belongs only to cs2, or the union of the preconditions defined by cs1 and cs2
if s belongs to both of them.

Definition 7 Let two TCS cs1 and cs2: cs1 = (ES1,Prec1) and cs2 = (ES2,Prec2). The union of cs1
and cs2 is the TCS defined as follows: cs = cs1  cs2 = (ES,Prec) where
- ES = ES1  ES2
- s  ES

Prec(s)=

Prec1(s) if s  ES1  s  ES2
Prec2(s) if s  ES1  s  ES2
Prec1(s)  Prec2(s) if s  ES1 s  ES2

Relation between the control flow and the transactional flow of a TCS

A TCS transactional flow is tightly related to its control Flow. Indeed, the recovery mechanisms
(defined by the transactional flow) depend on the execution process logic (defined by the control
flow). For example, regarding the OTA composite service, it is possible to define the PCh service
as an alternative to the PCC service because (according to the XOR control flow operator) they
are defined on exclusive branches.

More generally, a control flow implicitly tailors all possible recovery mechanisms. We call a
potential transactional flow of a given TCS the transactional flow including all possible
transactional dependencies (i.e. recovery mechanisms) that can be defined w.r.t to its control
flow. More formally each component service, s, has according to the TCS control flow:
- ptCpsCond(s): its potential compensation condition that specifies when it may eventually be

compensated.
- ptAltCond(s): its potential alternative condition that specifies when it may eventually be

activated as an alternative.
- ptCnlCond(s): its potential cancellation condition that specifies when it may eventually be

canceled.

Back to our example, according to the OTA service control flow FR may be eventually
compensated (i) either after the failure of ADC, (ii) or after the compensation of ADC (ii) or after
the failure of HR. That means the potential compensation conditions of FR are the failure of ADC,
the compensation of ADC, or the failure of HR: ptCpsCond(FR) = {ADC.failed,
ADC.compensated, HR. f ailed}.

International Journal of Web Services Research , Vol.3, No.2, 2008

 8

Many TCS can be specified according to the same control flow cf . Each one of them extends cf
with a transactional flow included in its (cf) potential transactional flow, potential(cf). More
formally:

TCS cs defined according to a control flow cf
cs = getCFlow(cs)  getTFlow(cs) such that

getCFlow(cs) = cf and getTFlow(cs)  potential(cf).

Figure 8 illustrates two TCS defined according to the same control flow. Each of these TCS
extend the control flow shown in figure 3 by a transactional flow included in its potential
transactional flow defined in figure 4.

TCS set of termination states

Many executions can be instantiated according to the same TCS model. The state at a specific
time of a TCS instance composed of n services can be represented by the tuple (s1,s2, . . .sn),
where si is the state of the service instance xi at this time. The set of termination states of a TCS is
the set off all possible termination states of all its instances.

We distinguish two kinds of termination state. The first one corresponds to the termination states
reached after normal executions (without unexpected failures according to the control flow). We
call a termination state of this first type a termination state without failure. The
set of termination states without failures of a TCS is defined by its control
flow.

The second kind of termination state corresponds to the ones reached in case of failure(s) of
certain component service(s) (according to the transactional flow). We call a termination state of
this second type a termination state with failure. The set of termination
states with failure of a TCS is defined by its transactional flow. We define the function
computeTSwithFailure that returns the set of termination states with failure of a given
TCS (more precisely given its transactional flow).

Pattern based modeling

In the previous section, we presented our transactional Web service model allowing capturing
both the control and the transactional flow of a TCS. In this section, we show how we model a
TCS. We adopt an approach based on workflow patterns (van der Aalst, ter Hostede et al. 2003).
We extend them in order to specify, in addition to the control flow they are considering by
default, TCS’ transactional flow.

Pattern based modeling is interesting for many reasons. Patterns are relatively simple (compared
to workflow language) thanks to the abstraction they ensure. Patterns are practical since they are
deduced from the practice. In addition they enhance reusability and comprehension between
designers. Pattern based modeling allows also modular and local processing. In the following,
section 3.1 introduces the composition patterns. Section 3.2 shows how we make use of them in
order to specify TCS.

Composition patterns

International Journal of Web Services Research , Vol.3, No.2, 2008

 9

In the following, we present the workflow patterns from the perspective of our model. Then we
show how a given workflow pattern implicitly tailors a set of possible transactional flow.

Workflow patterns

As defined in (Gamma, Helm et al. 1995), a pattern “is the abstraction from a concrete form
which keeps recurring in specific non arbitrary contexts”. Regarding that, a workflow pattern (van
der Aalst, ter Hostede et al. 2003) can be seen as an abstract description of a recurrent class of
interactions. For example, the AND-join pattern (see figure 3) describes an abstract services
interactions as follows: a service is activated after the completion of several other services.

Regarding our TCS model, the basic workflow patterns consider only the control flow side. Thus,
they can be considered as control flow patterns. Formally, we define a control flow pattern as a
function that returns a control flow given a set of services.

Definition 8 A control flow pattern, pat, is a function pat: P(TWS)1  CFlow, that returns a
control flow pat(S) given a set of transactional services S. pat defines for each service s  S, its
activation condition ActCond(s).

In our approach, we consider the following patterns: sequence, AND-split, OR-split, XOR-split,
AND-join, OR-join, XOR-join and m-out-of-n (van der Aalst, ter Hostede et al. 2003). Our paper
(Bhiri, Godart et al. 2006) details how we define each of these patterns according to the definition
8. Figure 3 illustrates the application of the patterns AND-split, AND-join, XOR-split, and XOR-
join.

Patterns transactional potential

A workflow pattern pat defines a control flow pat(S) given a set of services. As all control flows,
pat(S) possesses a potential transactional flow. We define for each workflow pattern, pat, a
function, potentialpat, that returns given a set of services S the potential transactional flow of
pat(S).

Definition 9 Let pat a pattern. The function potentialpat: P(TWS)  TFlow, returns given a set of
services S, the potential transactional flow of the control flow pat(S). potentialpat defines for each
service s  S its potential compensation condition, ptCpsCond(s), its potential alternative
condition, ptAltCond(s), and its potential cancellation condition ptCnlCond(s).

Our paper (Bhiri, Godart et al. 2006) details the potential functions of the patterns AND-split,
OR-split, XOR-split, AND-join, OR-join, XOR-join and m-out-of-n. Figure 4 illustrates the
application of the potential functions of the patterns AND split, AND join, XOR split, and XOR
join.

TCS specification

Specifying a TCS returns to define its control and its transactional flow. In the following we show
how we make use of (i) workflow patterns for defining TCS’ control flow and (ii) their
transactional potential for defining TCS’ transactional flow.

1 Let S a set of elements, P(S) denotes the set of subsets of S.

International Journal of Web Services Research , Vol.3, No.2, 2008

 10

Control flow specification

We call pattern instance, the control flow resulting from the application of a pattern to a
set of services. Let pat a pattern and S a set of services, pat(S) is an instance of pat. We use
pattern instances as the basic brick for specifying TCS’ control flow (Bhiri, Godart et al.
2006). Indeed, in our approach a control flow is defined as the union of pattern instances.
More formally:

TCS cs = (ES,Prec)  a set of patterns {P1, . . . ,Pn} and a partition S of ES: S = {S1, . . .Sn}

(with ES = 1 i n (Si) | getFControl(cs) = 1 i n Pi(Si).

Figure 3 shows how we define the control flow of the OTA service as a union of pattern
instances.

Figure 3. The control flow of the OTA service is defined as a union of pattern instances

Transactional flow specification

The transactional flow of a TCS is included in the potential transactional flow of its control flow.
Thus, the first step to define the transactional flow of a TCS is specifying its potential
transactional flow. The potential transactional flow of a TCS is the union of the potential
transactional flows of its patterns instances. We define the function potential that returns the
potential transactional flow of a given control flow.

Definition 10 The function potential returns the potential transactional flow of a given control
flow:

CFlow  TFlow
Cf =  i pati(Si)  ptf =  i potentialpati(Si)

Figure 4 displays the transactional potential flow of the control flow defined in figure 3. It
illustrates how it is the union of the potential transactional flow of the control flow pattern
instances.

International Journal of Web Services Research , Vol.3, No.2, 2008

 11

Figure 4. The potential transactional flow of the OTA service is the union of potential transactional

flow of its pattern instances

Web Service Logging

Following a common requirement in the areas of business processes and services management,
we expect the composite services to be traceable, meaning that the system should in one way or
another keep track of ongoing and past executions. Several research projects deal with the
technical facilities necessary for the collecting and the logging of Web services execution log
(Sahai, Machiraju et al. 2001; Fauvet, Dunas et al. 2002 ; Rouached, Gaaloul et al. 2006). In the
following, we examine and formalize the logging possibilities in service oriented architectures
which is a requirement to enable the approach described in this paper.

Web service collecting solutions

The first step in the Web Service mining process consists of gathering the relevant Web data,
which will be analyzed to provide useful information about the Web Service behavior. We
discuss how these log records could be obtained by using existing tools or specifying additional
solutions. Then, we show that the mining abilities are tightly related to the information provided
in web service log and depend strongly on its richness.

Existing logging solutions provide a set of tools to capture web services logs. These solutions
remain quite “poor” to mine advanced web service behaviors. That is why advanced logging
solutions should propose a set of developed techniques that allows us to record the needed
information to mine more advanced behavior. This additional information is needed in order to be
able to distinguish between web services composition instances.

Existing logging solutions

There are two main sources of data for Web log collecting, corresponding to the interacting two
software systems: data on the Web server side and data on the client side. The existing techniques
are commonly achieved by enabling the respective Web server’s logging facilities. There already
exist many investigations and proposals on Web server log and associated analysis techniques.
Actually, papers on Web Usage Mining WUM (Punin, Krishnamoorthy et al. 2001) describe the
most well-known means of web log collection. Basically, server logs are either stored in the

International Journal of Web Services Research , Vol.3, No.2, 2008

 12

Common Log Format2 or the more recent Combined Log Format3. They consist primarily of
various types of logs generated by the Web server. Most of the Web servers support as a default
option the Common Log Format, which is a fairly basic form of Web server logging.

However, the emerging paradigm of Web services requires richer information in order to fully
capture business interactions and customer electronic behavior in this new Web environment.
Since the Web server log is derived from requests resulting from users accessing pages, it is not
tailored to capture service composition or orchestration. That is why, we propose in the following
a set of advanced logging techniques that allows to record the additional information to mine
more advanced behavior.

Advanced logging solutions

Identifying web service composition instance

Successful mining for advanced architectures in Web Services models requires composition
(choreography/ orchestration) information in the log record. Such information is not available in
conventional Web server logs. Therefore, the advanced logging solutions must provide an
identifier for both choreography and orchestration and a case identifier in each logged interaction.

A known method for debugging is to insert logging statements into the source code of each
service in order to call another service or component, responsible for logging. However, this
solution has a main disadvantage: we do not have ownership over third parties code and we
cannot guarantee they are willing to change it on someone else behalf. Furthermore, modifying
existing applications may be time consuming and error prone.

Since all interactions between Web Services happen through the exchange of SOAP message
(over HTTP), another alternative is to use SOAP headers that provides additional information on
the message’s content concerning choreography. Basically, we modify SOAP headers to include
and gather the additional needed information capturing choreography details. Those data are
stored in the special <WSHeaders>. This tag encapsulates headers attributes like:
choreographyprotocol, choreographyname, choreographycase and any other
tag inserted by the service to record optional information; for example, the
<soapenv:choreographyprotocol> tag, may be used to register that the service was
called by WS − CDL choreography protocol. The SOAP message header may look as shown in
Figure 5. Then, we use SOAP intermediaries (Anbazhagan and Arun 2002) which are an
application located between a client and a service provider. These intermediaries are capable of
both receiving and forwarding SOAP messages. They are located on web services provider and
they intercept SOAP request messages from either a Web service sender or captures SOAP
response messages from either a Web service provider. On Web service client-side, this remote
agent can be implemented to intercept those messages and extract the needed information. The
implementation of client-side data collection methods requires user cooperation, either in
enabling the functionality of the remote agent, or to voluntarily use and process the modified
SOAP headers but without changing the Web service implementation itself (the disadvantage of
the previous solution).

2 http://httpd.apache.org/docs/logs.html
3 http://www.w3.org/TR/WD-logfile.html

International Journal of Web Services Research , Vol.3, No.2, 2008

 13

< soapenv : Header >

< soapenv : choreographyprotocol
soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : string” >WS−CDL

< /soapenv : choreographyprotocol >
< soapenv : choreographyname

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : string” > OTA

< /soapenv : choreographyname >
< soapenv : choreographycase

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : int” > 123

< /soapenv : choreographycase >
< /soapenv : Header >

Figure 5. The SOAP message header

Concerning orchestration log collecting, since the most web services orchestration are using a
WSBPEL engine, which coordinates the various orchestration’s web services, interprets and
executes the grammar describing the control logic, we can extend this engine with a sniffer that
captures orchestration information, i.e., the orchestration-ID and its instance-ID. This solution is
centralized, but less constrained than the previous one which collects choreography information.

Using these advanced logging facilities, we aim at taking into account web services’ neighbors in
the mining process. The term neighbors refers to other Web services that the examined Web
Service interacts with. The concerned levels deal with mining web service choreography interface
(abstract process) through which it communicates with others web services to accomplish a
choreography, or discovering the set of interactions exchanged within the context of a given
choreography or composition.

Collecting Web service composition instance

The focus in this section is on collecting and analyzing single web service composition instance.
The issue of identifying several instances has been discussed in the previous section. The exact
structure of the web logs or the event collector depends on the web service execution engine that
is used. In our experiments, we have used the engine bpws4j4 that uses log4j5 to generate logging
events. Log4j is an Open Source logging API developed under the Jakarta Apache project. It
provides a robust, reliable, fully configurable, easily extendible, and easy to implement
framework for logging Java applications for debugging and monitoring purposes. The event
collector (which is implemented as a remote log4j server) sets some log4j properties of the
bpws4j engine to specify level of event reporting (INFO, DEBUG etc.), and the destination
details of the logged events. At runtime bpws4j generates events according to the log4j properties
set by the event collector. Figure 6 shows some example of log4j ‘logging event’ generated by
bpws4j engine. The event extractor captures logging event and converts it to a unique TCS log
format. These expressions are described in next section.

2006-03-13 10:40:39,634 [Thread-35] INFO bpws.runtime - Outgoing

4 http://alphaworks.ibm.com/tech/bpws4j
5 http://logging.apache.org/log4j

International Journal of Web Services Research , Vol.3, No.2, 2008

 14

response: [WSIFResponse:serviceID =
’{http://tempuri.org/services/CRS}CustomerRegServicefb0b0-fbc5965758--8000’operationName
= ’completed’

isFault = ’false’ outgoingMessage = ’org.apache.wsif.base.WSIFDefaultMessage@
1df3d59 name:null parts[0]:[JROMBoolean: : true]’
faultMessage = ’null’ contextMessage = ’null’]

2006-03-13 10:40:39,634 [Thread-35] DEBUG bpws.runtime.bus -
Response

for external invoke is[WSIFResponse:serviceID=’{http://tempuri.org/services
/CCRS}CustomerRegServicefb0b0-fbc5965758--8000’
operationName = ’authenticate’ isFault = ’false’ outgoingMessage =
org.apache.wsif.base.WSIFDefaultMessage@1df3d59 name:null parts[0]:
[JROMBoolean: : true]’faultMessage = ’null’ contextMessage = ’null’]

2006-03-13 10:40:39,634 [Thread-35] DEBUG bpws.runtime.bus -
Waiting
for request

Figure 6. Example of log4j 'logging event'

Web mining log structure

The UML class diagram in figure 7 represents a TCS log structure. This log structure represents
syntheses through a unique format the information captured by log4j. The conversion from log4j
to this format is given in more details in our paper (Rouached, Gaaloul et al. 2006).

As shown, a TCSLog (see definition 8) is composed of a set of EventStreams. Each
EventStream traces the execution of one case (instance). It consists of a set of Events that
capture the services life cycle performed in a particular TCS instance. An Event is described by
the service identifier that it concerns, the current service state (aborted, failed, cancelled,
completed and compensated) and the time when it occurs (TimeStamp).

Definition 11 A TCSLog is considered as a set of EventStreams. Each EventStream
represents the execution of one case. More formally, an EventStream is defined as a
quadruplet EventStream: (beginTime, endTime, sequenceLog, SOccurence) where:
- (begin: TimeStamp) and (end: TimeStamp) are the moment of log beginning and end,
- sequenceLog : Event* is an ordered Event set belonging to one TCS case,
- (SOccurence:int) is the instance number.

So, TCSLog: (TCSID, {ServiceStreami: EventStream; 0  i  number of TCS instantiations}) is a
TCS log where ServiceStreami is the EventStream of the ith TCS execution case.

An example of an EventStream extracted from our TCS model example is given below:

EventStream(5, 20, [Event(CRS, 5, completed), Event(LTA, 6, completed), Event(FR, 8,
completed), Event(HR, 9, completed), Event(ADC, 12, completed), Event(PCC, 13, failed),

Event(PCh, 15, completed), Event(SD, 20, completed)],1)

International Journal of Web Services Research , Vol.3, No.2, 2008

 15

Figure 7. Structure of a TCS log

Control Flow Mining

In this section, we are interested in discovering “elementary” TCS patterns: Sequence, AND-split,
OR-split, XOR-split, AND-join, OR-join, and M-out-of-N Join patterns inspired from workflow
patterns (van der Aalst, ter Hostede et al. 2003). Our control flow mining approach proceeds in
three steps : Step (i) the construction of statistical dependency table SDT, Step (ii) the statistical
specifications of patterns’ sequential, conditional and concurrent behaviors, and Step (iii) the
mining of TCS patterns through a set of rules using these statistical specifications.

Construction of the statistical dependency table SDT

We use statistical calculus that extracts activation dependencies between services executed
without “exceptions” (i.e. they reached successfully their completed state). There is no need to
use others EventStreams relating to failure executions containing failed or aborted or
compensated or canceled states. In fact, these cases concern only TCS transactional behavior
which tailors the mechanisms for failures handling and recovery. For these reasons, we need to
filter TCS log and take only EventStreams of instances executed without failures. We denote
by TCSLogcompleted this TCS log selection.

Thus, the minimal condition to discover TCS patterns is to have TCS logs containing at least the
completed event states. This feature allows us to mine control flow from “poor” logs which
contain only completed event state. Any information system using transactional systems offer this
information in some form (van der Aalst, Weijters et al. 2003).

From TCSLogcompleted we extract, for each service A, the following information in the statistical
dependency table (SDT): (i) The overall frequency of this service (denoted #A) and (ii) The

International Journal of Web Services Research , Vol.3, No.2, 2008

 16

activation dependencies to previous Bi services (denoted P(A/Bi)). The size of SDT is N*N, where
N is the number of TCS services. The (m,n) table entry (notation P(m/n)) is the frequency of the
nth service immediately preceding the mth service. The table 1 represents a fraction of the SDT of
our motivating example. For instance, P(HR/LTA)=0.69 expresses that if HR occurs then we
have 69% of chance that LTA occurs directly before in the TCS log.

As it is computed, the initial SDT presents some problems to express correctly services
dependencies especially relating to concurrent and parallel behavior. In the following, we detail
these issues and propose solutions to correct them.

P(x,y) CRS LTA HR FR ADC
CRS 0 0 0 0 0
LTA 0.54 0 0 0.46 0
HR 0 0.69 0 0.31 0
FR 0.46 0.31 0.23 0 0

ADC 0 0 0.77 0.23 0

#P=#CRS=#LTA=#HR=#FR=#ADC=#ST=100
#PCC=#PCh=#PTIP=35

Table 1. Fraction of Statistical Dependencies Table SDT (P(x,y)) and Services Frequencies (#)

Erroneous dependencies

If we assume that each EventStream from TCSLog comes from a sequential (i.e. no
concurrent behavior) TCS, a zero entry in SDT represents a causal independence and a non-zero
entry means a causal dependency (i.e. sequential or conditional relations). But in case of
concurrent behavior, EventStreams may contain interleaved events sequences from
concurrent threads. As consequence, some entries, in initial SDT, can indicate nonzero entries
that do not correspond to dependencies. For example the EventStream given in section 4
“suggests” erroneous activation dependencies between LTA and FR in one side and FR and HR in
another side. Indeed, LTA comes just before FR and FR comes immediately before HR. These
erroneous entries are reported by P(FR/LTA) and P(HR/FR) in SDT which are different to zero.
These entries are erroneous because there are no activation dependencies between these services
as it was suggested. Underlined values in SDT report this behavior for other similar cases.

Formally, two services A and B are in concurrence iff P(A/B) and P(B/A) entries in SDT are
different from zero. Based on this definition, we propose an algorithm (Gaaloul, Baina et al.
2005) to discover services parallelism and then mark the erroneous entries in SDT. This algorithm
scans the initial SDT and marks concurrent services dependencies by changing their values to
(−1). Through this marking, we can eliminate the confusion caused by concurrent behaviors
producing these erroneous non-zero entries.

Undetectable dependencies

For concurrency reasons, a service might not depend on its immediate predecessor in the
EventStream, but it might depend on another “indirectly” preceding service. As an example of
this behavior, FR is logged between LTA and HR in the EventStream given in section 4. As
consequence, LTA does not occur always immediately before HR in TCSLog. Thus we have only
P(HR/LTA)=0.66 that is an under evaluated dependency frequency. In fact, the right value

International Journal of Web Services Research , Vol.3, No.2, 2008

 17

between these services is 1 because the execution of HR depends exclusively on LTA. Similarly,
values in bold in SDT report this behavior for other cases.

To discover these indirect dependencies, we introduce the notion of service concurrent window
(definition 5.1). A service concurrent window (CW) is related to the service of its last event and
covers its directly and indirectly preceding services. Initially, the CW width of a service (i.e. the
number of services within) is equal to 2. Every time this service is in concurrence with another
service we add 1 to this width. If this service is not in concurrence with other services and has
preceding concurrent services, then we add their number to CW width. For example FR is in
concurrence with LTA and HR, the width of its CW is equal to 3. Based on this we give an
algorithm (Gaaloul, Baina et al. 2005) that calculates the CW width for each service and regroups
them in the CW table. This algorithm scans the “marked” SDT and updates the CW table in
consequence.

Definition 12 A Window (see figure 7) defines a log slide over an EventStream
S:EventStream (bStream, eStream, sLog, TCSocc). Formally, we define a log window as a triplet
window(wLog, bWin, eWin) :
- (bWin: TimeStamp) and (eWin: TimeStamp) are the moment of the window beginning

and end (with bStream  bWin and eWin  eStream),
- wLog  sLog and  e: event  S.sLog where bWin  e.TimeStamp ≤ eWin)  e  wLog.

After that, we proceed through an EventStream partition (definition 5.2) that builds a set of
partially overlapping Windows over the EventStream using the CW table. Finally, we give an
algorithm (Gaaloul, Baina et al. 2005) that computes the final SDT. For each CW, it computes for
its last service the frequencies of its preceded services. The final SDT will be found by dividing
each row entry by the frequency of its service.

Definition 13 A Partition (see figure 7) builds a set of partially overlapping Windows
partition over an EventStream. Partition: TCSLog → (Window)*
S : EventStream(bStream, eStream, sLog, TCSocc) → {wi:Window; 1 ≤ i ≤ n}:
- w1.bWin = bStream and wn.eWin = eStream,
- w : window  Partition, e:Event = the last event in w, width(w)= CW[e.serviceID],
-  0  i  n; wi+1.wLog - {the last e:Event in wi+1.wLog}  wi.wLog and wi+1.wLog 

wi.wLog.

By applying previous algorithms, we have computed the final SDT (table 2) which will be used to
discover TCS patterns. Note that, our approach adjusts dynamically, through the CW width, the
process calculating services dependencies. Indeed, this width is sensible to concurrent behavior: it
increases in case of concurrence and is “neutral” in case on concurrent behavior absence.

P(x,y) CRS LTA HR FR ADC
CRS 0 0 0 0 0
LTA 1 0 0 -1 0
HR 0 1 0 -1 0
FR 1 -1 -1 0 0

ADC 0 0 1 1 0
Table 2. Fraction of new calculated SDT

Statistical specifications of sequential, conditional and concurrent properties

International Journal of Web Services Research , Vol.3, No.2, 2008

 18

We have identified three kinds of statistical properties (sequential, conditional and concurrent)
which describe the main behaviors of TCS patterns. Then, we have specified these properties
using SDT’s statistics. We use theses properties to identify separately TCS patterns from log.
This behavior provides a dynamic algorithm that builds global solution (i.e. global WS
composition) based on local solutions (i.e. TCS patterns) iteratively. We begin with the statistical
exclusive dependency property (property 1) which characterizes, by the way, the sequence
pattern.

Property 1 Mutual exclusive dependency property (as P1): A mutual exclusive dependency
relation between a service Si and its immediately preceding previous service Sj specifies that the
enactment of the service Si depends only on the completion of service Sj and the completion of Sj
enacts only the execution of Si. It is expressed in terms of:
- services frequencies: #Si = #Sj
- services dependencies: P(Si/Sj) = 1  0  k, l < n; k  j; P(Si/Sk) = 0   l  i; P(Sl/Sj) = 0.

The next two statistic properties: concurrency property (property 2) and choice property (property
3) are used to insulate patterns behaviors in terms of concurrence and choice after a “fork” or
before a “join” point.

Property 2 Concurrency property (as P2): A concurrency relation between a set of services
{Si,0  i  n} belonging to the same workflow specifies how, in terms of concurrency, the
enactment of these services is performed. This set of services is commonly found after a ‘‘fork”
operator or before a ‘‘join” operator. We have distinguished three services concurrency
behaviors:
- P2.1: Global concurrency where in the same instantiation the whole services are performed

simultaneously : 0  i  j < n; #Si = #Sj  P(Si/Sj) = −1
- P2.2: Partial concurrency where in the same instantiation we have at least a partial

concurrent execution of services : ( 0  i  j < n; P(Si/Sj) = −1)
- P2.3: No concurrency where there is no concurrency between services: (0  i  j < n; 

P(Si/Sj)  −1)

Property 3 Choice property (as P3): A choice is a relation between the two operands before and
after the ‘‘join” and the ‘‘fork” operator. It specifies, in terms of control flow, how the
workflow instance performs the choice of services’ operands activations (i.e. which services are
executed after a ‘‘fork” operator or before a ‘‘join” operator). The two operands of the
“fork” operator (respectively the “join” operator) performing this relation are: (operand 1) a
service S from which comes (respectively to which) a single thread of control which splits
(respectively converges) into (respectively from) (operand 2) multiple services {Si, 0  i < n}. We
have distinguished three services choice behaviors:
- P3.1: Free choice where a part of services from the second operand are chosen. We have in

terms of services frequencies (#S  




1

0

n

i

(#Si))  (#Si  #S) and in terms of services

dependencies we have :
o In “fork” operator (Si occurs certainly after S occurrence): 0 i< n; P(Si/S)= 1
o In “join” operator (S occurs certainly after some Si occurrences “1 <”, but not

always after all Si “< n”) : 1 < 




1

0

n

i

P(S/Si) < n

International Journal of Web Services Research , Vol.3, No.2, 2008

 19

- P3.2: Single choice where only one service is chosen from the second operand. We have in

terms of services frequencies (#S = 




1

0

n

i

(#Si)) and in terms of services dependencies we have:

o In “fork” operator (Si occurs certainly after S occurrence): 0  i < n; P(Si/S) = 1
o In “join” operator (S occurs certainly after only one of Si occurrences):






1

0

n

i

P(S/Si) = 1

- P3.3: No choice where all services in the second operand are executed. We have in terms of
services frequencies 0  i <n, #S = #Si and in terms of services dependencies we have:

o In “fork” operator (Si occurs certainly after S occurrence): 0  i< n; P(Si/S) = 1
o In “join” operator (S occurs certainly after all Si occurrences): 0i< n; P(S/Si)=1

Patterns mining

Using statistical specifications of sequential, conditional and concurrent behaviors, the last step is
the identification of TCS patterns through a set of rules. In fact, each pattern has its own statistical
features which abstract statistically its activation dependencies, and represent its unique identifier.

Our control flow mining rules are characterized by a “local” TCS patterns discovery. Indeed,
these rules proceed through a local log analyzing that allows us to recover partial results of
mining TCS patterns. In fact, to discover a particular TCS pattern we need only events relating to
pattern’s elements. Thus, even using only fractions of TCS logs, we can discover correctly
corresponding TCS patterns (which their events belong to these fractions).

We divided the TCS patterns in three categories : sequence, fork and join patterns. Note that the
rules formulas noted by : (P1) fingers the statistical exclusive sequential property, (P2) fingers the
statistical concurrency property and (P3) fingers the statistical choice property.

Sequence pattern: In this category, we find only the sequence pattern (table 3). In this pattern,
the enactment of the B service depends only on the completion of the A service. So we have used
the statistical exclusive dependency property to ensure this relation linking B to A.

Rules TCS patterns

(P1) (#B = #A)

Sequence Pattern

(P1) (P(B/A) = 1)

Table 3. Rules of sequence TCS pattern

Fork patterns: The three patterns of this category (table 4) have a “fork” point where a single
thread of control splits into multiple threads of control which can be, according to the used
pattern, executed or not. The AND-split and OR-split patterns differentiate themselves
through the no choice and free choice properties. Effectively, only a part of services are executed
in the OR-split pattern after a “fork” point, while all the Bi services are executed in the And-
split pattern. The non-parallelism between Bi in the XOR-split pattern are ensured by the no
concurrency property while the partial and the global parallelism in OR-split and AND-
split is identified through the application of the statistical partial and global concurrency
properties.

International Journal of Web Services Research , Vol.3, No.2, 2008

 20

Join patterns: The three patterns of this category (table 5) have a “join” point where multiple
threads of control merge in a single thread of control. The number of necessary branches for the
activation of the B service after the “join” point depends on the used pattern. The single choice
and the no concurrency properties are used to identify the XOR-join pattern where two or more
alternative branches come together without synchronization and none of the alternative branches
is ever executed in parallel. As for the AND-join pattern where multiple parallel services
converge into one single thread of control, the no choice and the global concurrency are both used
to discover this pattern. In contrary of the M-out-of-N-Join pattern, where we need only the
termination of M of the N incoming concurrent services to enact the B service, the concurrency
between Ai would be partial and the choice is free.

Rules TCS patterns

(P3) (


n

i 1

(#Bi)= #A)

XOR-split Pattern

(P3) ( 1  i  n;
P(Bi/A) = 1) 

(P2)( 1  i, j  n;
P(Bi/Bj) = 0)

(P3) ( 1  i  n; #Bi = #A

AND-split Pattern

(P3) ( 1  i  n;
P(Bi/A) = 1) 

(P2)( 1  i, j  n;
P(Bi/Bj)  0)

(P3) (#A  


n

i 1

(#Bi))

( 1  i  n; #Bi  #A)

OR-split Pattern

(P3) ( 1  i  n;
P(Bi/A) = 1) 

(P2)( 1  i, j  n;
P(Bi/Bj)  0)

Table 4. Rules of fork TCS patterns

Transactional flow mining

In this section, we show how we proceed to discover a TCS transactional flow given its control
flow and its set of termination states. Regarding our motivating example, we suppose that the two
previous mining steps lead to discover the TCS control flow as defined initially by the designers
and the TCS set of termination states shown in table 4.

International Journal of Web Services Research , Vol.3, No.2, 2008

 21

Key Idea
A termination state with failure is reached after certain component service(s)
failure(s). Such a kind of termination states keeps track of failure(s) produced during the
execution and the applied recovery mechanisms. For instance, the termination state
with failure ts4 (see table 4) is reached following HR failure. In addition, the recovery
mechanism applied consists in compensating FR and aborting the overall execution.

Rules TCS patterns

(P3) (


n

i 1

(#Ai)= #B)

XOR-join Pattern

(P3) (


n

i 1

P(B/Ai) = 1) 

(P2)( 1  i, j  n;
P(Ai/Aj) = 0)

(P3) ( 1  i  n; #Ai = #B

AND-join Pattern

(P3) ( 1  i  n;
P(B/Ai) = 1) 

(P2)( 1  i, j  n;
P(Ai/Aj)  0)

(P3) (m*#B  


n

i 1

(#Ai))

( 1  i  n; #Ai  #B)

M-out-of-N-join Pattern

(P3) (m 




n

i 1

P(B/Ai)  n) 

(P2)( 1  i, j  n;
P(Bi/Bj)  0)

Table 5. Rules of join TCS patterns

 CRS LTA HR FR ADC PCC PCh PTIP SD
ts1 completed completed completed completed completed completed initial initial completed
ts2 completed completed completed completed completed initial completed initial completed
ts3 completed completed completed completed completed initial initial completed completed
ts4 completed completed failed compensated aborted aborted aborted aborted aborted
ts5 completed completed completed completed failed aborted aborted aborted aborted
ts6 completed completed failed canceled aborted aborted aborted aborted aborted
ts7 completed completed completed completed completed failed completed initial completed
ts8 completed completed completed completed completed initial initial failed aborted

Table 4. The extracted set of termination states of the OTA service

International Journal of Web Services Research , Vol.3, No.2, 2008

 22

For the following, we argue that the control flow, cf , is known and fixed. Let STSwithFailure a set of
termination states with failure of a composite service cs (of which we know only
its control flow cf). The transactional flow induced by STSwithFailure is the transactional flow
(defined according to cf) leading to STSwithFailure as a set of termination states with failure. It is
defined by the reverse function of computeTSwithFailure: computeTS−1

withFailure. This function defines
for each component service s: its transactional properties and its compensation, cancellation, and
alternative conditions induced by STSwithFailure. These conditions specify respectively when s shall
be compensated, canceled, or activated as an alternative according to STSwithFailure.

Thereafter to compute a transactional flow of a TCS given its control flow and its set of
termination states it suffices to implement the function computeTS−1

withFailure. Implementing this
function returns to implement how to compute the transactional properties and the transactional
conditions induced by STSwithFailure.

Computing services transactional properties induced by STSwithFailure

Given the set of termination states of a composite service we can, easily, deduce for each of its
component services, s, its set of termination states STS(s). For example, given the set of
termination states of the service OTA we can deduce that the set of termination states of FR is
STS(FR)={completed, compensated, cancelled}. We use the following rules to compute the
transactional properties of a component service.  component service, s
1. By default s is retriable and not compensatable,
2. if s.failed  STS(s) then s is not retriable,
3. if s.compensated  STS(s) then s is compensatable.

The first and second rules allow deducing if a service is retriable or not. The first and third rules
allow deducing if a service is compensatable or not. By applying these rules we can deduce,
among others, that FR is retriable and compensatable. Figure 8.a summarizes these computed
transactional properties of component services. Bold properties are the ones that do not match
with the initial model.

Computing transactional conditions induced by STSwithFailure

In the following we show how we proceed to compute the compensation condition induced by
STSwithFailure for a given component service s. We proceed similarly to compute the cancellation
and alternative conditions. Algorithm 1 allows computing the compensation condition of s
induced by STSwithFailure: CpsCondSTSwithFailure(s). The principle is: a potential compensation
condition of s becomes a compensation condition induced by STSwithFailure if it occurs in a
termination state (with failure) where s is compensated.
Thus, the algorithm will go through the set of termination states (line 4 to line 14). For each
termination state where s is compensated (line 5), the algorithm looks for the potential
compensation condition of s that holds in this state (line 6 to line 13). Line 7 and line 13 allows
going through the potential compensation conditions of s. The Boolean variable “satisfied” (line 6
and line 11) enables to mark if the current potential compensation condition holds or not in the
current termination state (variable ts). A potential compensation condition that holds in ts is
considered as a compensation condition of s induced by STSwithFailure (line 10). This condition is
retrieved from the set of potential compensation condition of s in order to not to be examined
again in the other termination states (line 12).

Input: STS: the TCS set of termination states

International Journal of Web Services Research , Vol.3, No.2, 2008

 23

PtCpsCond(s): The potential compensation condition of s defined by the control flow
Output: CpsCondSTSwithFailure(s): the compensation condition of s induced by STSwithFailure
Data: ts: the current termination state in STS
PtCpsCondi(s): a potential compensation condition of s
satisfied: a Boolean variable set to true when PtCpsCondi(s) is satisfied in ts

1 begin
2 CpsCondSTSwithFailure(s)  
3 ts  the next ts in STS
4 while ts  null do
5 if the state of s in ts is compensated then
6 satisfied  false
7 PtCpsCondi(s)  the next PtCpsCondi(s) in PtCpsCond(s)
8 while none satisfied and PtCpsCondi(s)  null 
9 if PtCpsCondi(s) is satisfied in ts then
10 CpsCondSTSwithFailure(s)  CpsCondSTSwithFailure(s) PtCpsCondi(s)
11 satisfied  true
12 PtCpsCond(s)  PtCpsCond(s) - PtCpsCondi(s)

13 PtCpsCondi(s)  the next PtCpsCondi(s) in PtCpsCond(s)

14 ts  the next ts in STS
15 end

Algorithm 1. Extracting the compensation condition of a service s induced by STSwithFailure

For example, the potential compensation condition of FR, HR.failed, becomes a compensation
condition because it is satisfied in ts4 (in which the state of FR is compensated). Figure 8.a
illustrates the discovered TCS after the control flow and transactional flow mining.

Improving a TCS recovery mechanisms

To improve TCS recovery mechanisms, we introduce the concept of intuitively valid
transactional flow. An intuitively valid transactional flow is, as its name stands, a
transactional flow that respects the following properties of well transactional behavior: (P1)
following a service failure, it tries first to execute an alternative if it exists, (P2) otherwise (in case
of a fatal failure causing the overall composite service failure) it compensates the work already
done and (P3) cancel all running executions in parallel. For example, the discovered transactional
flow shown in figure 8.a is not intuitively valid since it does not respect, among others,
the property P1 for the service PTIP and the property P2 for the service ADC.

To improve a TCS recovery mechanisms, we propose a set of rules that generate suggestions to
designers in order to define an intuitively valid transactional flow (given the computed
transactional properties). We suppose that F means F is eventually true:  component service, s
1.  ptAltCondi(s)  AltCond(s), (ptAltCondi(s))  ptAltCondi(s)  AltCond(s)  suggest that

AltCond(s) = AltCond(s)  ptAltCondi(s).
2.  ptCpsCondi(s)  ptCpsCond(s), (ptCpsCondi(s))  ptCpsCondi(s) CpsCond(s) 

suggest that
a. s must be compensatable and
b. CpsCond(s) = CpsCond(s)  ptCpsCondi(s).

International Journal of Web Services Research , Vol.3, No.2, 2008

 24

3.  ptCnlCondi(s)  ptCnlCond(s),  (ptCnlCondi(s))  ptCnlCondi(s)  CnlCond(s) 
suggest that CnlCond(s) = CnlCond(s)  ptCnlCondi(s).

Figure 8. Discovering and improving the OTA service

The first rule aims at ensuring the above property P1. It postulates that each potential alternative
condition of s, ptAltCondi(s), eventually true must be considered as an alternative condition of s.
For example, the potential alternative condition of PCh (and PCC), PTIP.failed is eventually true
(since PTIP is not retriable) and is not considered as one of its alternative conditions. By applying
this rule we generate the following suggestion: S1: add an alternative dependency from PTIP to
PCh and S2: add an alternative dependency from PTIP to PCC.

The second rule aims at ensuring the property P2. It postulates that each potential compensation
condition of s, ptCpsCondi(s), eventually true must be considered as a compensation condition of
s. For instance, the potential compensation condition of HR (and FR), ADC.failed, is eventually
true (since ADC is not retriable) and is not considered as one of its compensation condition. By
applying this rule we generate the suggestion S3: add two compensation dependencies from ADC
to FR and from ADC to HR. Similarly by applying this rule we generate the suggestion S4: add a
compensation dependency from HR to LTA. The third rule aims at ensuring the property P3. It
postulates that each potential cancellation condition of s, ptCnlCondi(s), eventually true must be
considered as a cancellation condition of s.

It is worthy to note that the designers have the final decisions about which suggestions consider
and which refuse. For instance, designers may reject the above suggestions S2 and S4 because
PCC is not retriable and LTA is without effect. Like this, our approach allows to take into account

International Journal of Web Services Research , Vol.3, No.2, 2008

 25

designers specific needs that may violate the well behavior properties introduced above. Figure
8.b illustrates the OTA service after improvement.

Related work

In this paper we presented an original approach for ensuring reliable Web services compositions.
Different from previous works, our approach starts from a composite service (CS for short)
executions log and uses a set of mining techniques to discover its control flow and its
transactional flow. Then, based on this mining step, we use a set of rules to improve its recovery
mechanisms according to designers’ specific needs.

Generally, formal previous approaches develop, using their modeling formalisms, a set of
techniques to analyze the composition model and check some properties. (Bultan, Fu et al. 2003)
proposes a formal framework for modeling, specifying and analyzing the global behavior of Web
services compositions. This approach models web services by mealy machines (finite state
machines with input an output). Based on this formal framework, authors illustrate the
unexpected nature of the interplay between local and global composite Web services. In
(Hamadi, Benatallah et al. 2003), authors propose Petri net-based algebra for composing Web
services. This formal model allows the verification of properties and the detection of
inconsistencies both between and within services.

Other works follow transactional approaches. Emerged standards such as WS-TXM (Acid, BP,
LRA) (Doug, Martin et al. 2003), WS-Atomic-Transaction (Little and Wilkinson 2007) and WS-
Business-Activity (Freund and Litlle 2007) define transaction protocols between composed
services. These approaches rely on advanced transactional models (Elmagarmid 1992).
(Limthanmaphon and Zhang 2004) presents a transaction management model based on the
tentative hold and compensation concepts. (Pires, Benevides et al. 2002) presents a framework
composed of a multilayered architecture, an XML-based language, and a transactional model.
(Bhiri, Perrin et al. 2005) proposes a transactional approach to ensure the failure atomicity
required by the designers.

Although powerful, the above formal approaches may fail, in some cases, to ensure CS reliable
executions even if they formally validate their composition models. This is because properties
specified in the studied composition models may not coincide with the reality (i.e. effective CSs
executions).

To the best of our knowledge, there are practically no approaches to transactional web services
correction based on event-based logs, and in general there are very few contributions in this area.
Prior art in this field is limited to estimating deadline expirations and exceptions prediction (Sayal,
Casati et al. 2002; Grigori, Casati et al. 2004). They describe a tool set on top of HPs Process
Manager which includes a so-called ‘‘BPI Process Mining Engine”. It supports business and IT
users in managing process execution quality by providing several features, such as analysis,
prediction, monitoring, control, and optimization. However, they neither discuss the correctness
of transactional interactions nor address the issue of failures handling and recovery. Indeed, our
approach differs from the above: we discover and prevent transactional anomalies and also
propose solutions to enhance the CS modeling. We start from a CS log and analyze it in order to
reengineer the CS model.

A number of research efforts in the area of workflow management have been directed for mining
workflows models. This issue is close to that we propose in terms of discovery. There are

International Journal of Web Services Research , Vol.3, No.2, 2008

 26

practically no approaches to transactional behavior mining except in (Gaaloul, Bhiri et al. 2004a ;
Gaaloul, Bhiri et al. 2004b). Indeed, previous works in workflow discovery focus mainly in
control flow mining. The idea of applying process mining in the context of workflow
management was first introduced in (Agrawal, Gunopulos et al. 1998). This work proposes
methods for automatically deriving a formal model of a process from a log of events related to its
executions and is based on workflow graphs, which are inspired by workflow products such as
IBM MQSeries workflow (formerly known as Flowmark) and InConcert. Cook and Wolf (Cook
and Wolf 1998a) investigated similar issues in the context of software engineering processes.
These works are limited to sequential processes. Cook and Wolf extended their work, in (Cook
and Wolf 1998b), to concurrent processes. Herbst et al. (Herbest, 2000a; Herbest, 2000b) present
an inductive learning component used to support the acquisition and adaptation of sequential
process models, generalizing execution traces from different workflow instances to a workflow
model covering all traces. Starting from the same kind of process logs, van der Aalst et al. (van
der Aalst, Weijters et al. 2003) explore also the area of workflow process mining. They propose
techniques to discover workflow models expressed in their own desired workflow modeling
notation, which is based on Petri nets. Compared to these work we focus on concurrent behavior
in our control flow mining. Indeed, we give a better specification of concurrency behavior
through the discovery of CS patterns witch are well-formed structures giving an abstract
description of recurrent class of control flow interactions. In besides, we propose a set of control
flow mining rules that are characterized by a ”local” CS patterns discovery. These rules are
context-free, they proceed through a local log analyzing enabling us to recover correctly partial
results even if we have only fractions of CS log.

Conclusion

In this paper we presented a reengineering approach in order to improve recovery mechanisms of
Composite Web services (CS for short). Starting from a CS executions log, we use a set of mining
techniques to discovering its control and transactional flow. Then, based on this mining step, we
use a set of rules to improve its composition model. The originality of our approach is that we
correct and improve CS composition models based on their effective execution and behavior.

We introduced a transactional Web service model that integrates the workflow adequacy
modeling (rich and complex control structure) and the transactional models reliability
(transactional semantics and dependencies with sound recovery mechanisms). In addition, we
discussed the existing Web logging solutions and give advanced solutions in order to capture CS
execution history.

Our control flow mining approach is original regarding other proposed techniques. It is
characterized by a ”local” discovery techniques that allows to recover partial results. In besides, it
discovers more behavioral complex features with a better specification of ”fork” point and ”join”
point.

However, the work described in this paper represents an initial investigation. In our future works,
we hope to discover more complex patterns by using more metrics (e.g. entropy, periodicity, etc.)
and by enriching the TCS log. We are also interested in the modeling and the discovery of more
complex transactional characteristics of cooperative TCSs.

ACKNOWLEGMENT

International Journal of Web Services Research , Vol.3, No.2, 2008

 27

This material is based upon works supported by the EU funding under the SUPER project (FP6-
026850).

REFERENCES

Agrawal R., Gunopulos D., Leymann F. (1998). Mining Process Models from Workflow Logs,
Proceedings of the 6th International Conference on Extending Database Technology, Valencia, Spain,
March 1998, 469-498.

Anbazhagan, M., Arun, N. (2002). Use SOAP-based intermediaries to build chains of Web service
functionality. Retrieved September 1, 2002 from http://www.ibm.com/developerworks/java/library/ws-
soapbase/?loc=dwmain.

Bhiri, S., Godart, C., Perrin, O. (2006). Transactional patterns for reliable web services compositions,
Proceedings of the 6th international conference on Web engineering, Palo Alto, July 2006, 137-144.

Bhiri, S., Perrin, O., Godart, C. (2005). Ensuring required failure atomicity of composite Web services,
Proceedings of the 14th International World Wide Web Conference, Chiba, Japan, May 2005, 138-147.

Bultan, T., Fu, X., Hull, R., Su, J. (2003). Conversation specification : a new approach to design and
analysis of e-service composition, Proceedings of the 12th International World Wide Web Conference,
Budapest, Hungary, May 2003, 403-410.

Cook, J. E., Wolf, A. L. (1998a). Discovering models of software processes from event-based data, ACM
Transactions on Software Engineering and Methodology (TOSEM), v(7), n° 3, 215-249.

Cook, J. E., Wolf, A. L. (1998b). Event-based detection of concurrency, Proceedings of 6th ACM SIGSOFT
FSE conference, Florida, USA, November 1998, 35-45.

Doug, B., Martin, C., Oisin, H., Mark L., Jeff M., Eric N., Jim W., Keith S. (2003). Web Services
Composite Application Framework (WS-CAF). Retrieved July 28, 2003 from
http://www.arjuna.com/standards/ws-caf/.

Elmagarmid, A. K. (ed.). (1992). Database transaction models for advanced applications, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Fauvet, M.-C., Dumas, M., Benatallah, B. (2002). Collecting and Querying Distributed Traces of
Composite Service Executions, Proceedings of the 14th International Conference on Cooperative
Information Systems, California, USA, October-November 2002, 373-390.

Freund, T., Little M. (ed.). (2007). Web Service Business Activity Version 1.1. Retrieved April 16, 2007
from http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf.

Gaaloul, W., Baïna, K., Godart, C. (2005). Towards Mining Structural Workflow Patterns, Proceedings of
DEXA, Copenhagen, Denmark, August 2005, 24-33.

Gaaloul, W., Bhiri, S., Godart, C. (2004a). Discovering Workflow Patterns from Timed Logs, Proceedings
of Informationssysteme im E-Business und E-Government, Beiträge des Workshops derGI-Fachgruppe
EMISA, LNI, Luxemburg, October 2004, 84-94.

Gaaloul, W., Bhiri, S., Godart, C. (2004b). Discovering Workflow Transactional Behavior from Event
based Log, Proceedings of the 12th International Conference on Cooperative Information Systems,
Cyprus, October 2004, 25-29.

Gamma, E., Helm, R., Johnson, R., Vlisside, J. (1995). Design Patterns : Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, Massachusetts, 1995.

Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.-C. (2004). Business process
intelligence, Computers in Industry, v(53), n° 3, 321-343.

Hamadi, R., Benatallah, B. (2003). A Petri net-based model for web service composition », Proceedings of
the Australasian Database Conference, Adelaide, Australia, February 2003, 191-200.

International Journal of Web Services Research , Vol.3, No.2, 2008

 28

Herbest, J. (2000a). A Machine Learning Approach to Workflow Management, Proceedings of the 11th
European Conference on Machine Learning, Barcelona, Spain, May – June 2000, 183-194.

Herbest, J. (2000b). Dealing with Concurrency in Workflow Induction, Proceedings of the European
Concurrent Engineering Conference, Leicester, United Kingdom, April 2000.

Limthanmaphon, B., Zhang, Y. (2004). Web service composition transaction management, Proceedings of
the 15th Australasian Database Conference, Dunedin, New Zealand, January 2004, 171-179.

Little, M., Wilkinson, A. (ed.). (2007). Web Service Atomic Transaction Version 1.1. Retrieved April 16,
2007 from http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf.

Mehrotra, S., Rastogi, R., Korth, H. F., Silberschatz, A. (1992). A Transaction Model for Multidatabase
Systems, Proceedings of International Conference on Distributed Computing Systems, Yokohama, Japan,
June 1992, 56-63.

Pires, P. F., Benevides, M. R. F., Mattoso, M. (2002). Building ReliableWeb Services Compositions,
Proceedings of Web, Web-Services, and Database Systems, Erfurt, Germany, October 2002, 59-72.

Punin, J., Krishnamoorthy, M., Zaki, M. (2001). Web Usage Mining: Languages and Algorithms,
Proceedings of Studies in Classification, Data Analysis, and Knowledge Organization, Springer-Verlag,
2001.

Rouached, M., Gaaloul, W., van der Aalst, W. M. P., Bhiri, S., Godart, C. (2006). Web Service Mining and
verification of Properties: An approach based on Event Calculus. Proceedings of the International
Cooperative Information Systems, Montpellier, France, October 2006, 408-425.

Sahai, A., Machiraju, V., Ouyang, J., Wurster K. (2001). Message tracking in SOAP-based Web services,
Technical Report HPL-2001-199, Retrieved 2001 from http://www.hpl.hp.com/techreports/2001/HPL-
2001-199.html.

Sayal, M., Casati, F., Shan, M., Dayal U. (2002). Business Process Cockpit, Proceedings of 28th
International Conference on Very Large Data Bases, Hong Kong, China, August 2002, 880-883.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski B., Barros A. P. (2003). Workflow Patterns,
Distributed and Parallel Databases, v(14), n° 1, 5-51.

van der Aalst, W. M. P., Weijters, T., Maruster, L. (2004). Workflow Mining: Discovering Process Models
from Event Logs, IEEE Trans. Knowl. Data Eng, v(16), n° 9, 1128-1142.

ABOUT THE AUTHOR(S)

Dr. Sami Bhiri is a postdoctoral researcher at DERI - the National University of Ireland, Galway, where he
is involved in managing several EU projects. Before joining DERI, he was a research and teaching assistant
in the University of Nancy 1 and in the ECOO team of the LORIA-INRIA research laboratory. His research
interests are in the area of applying semantics to B2B Integration, Service Oriented Computing and
Business Process Management.

Dr. Walid Gaaloul is a postdoctoral researcher at the National University of Ireland, Galway, where he is
involved in several EU projects. Before joining DERI, he was a research in the ECOO team of the LORIA-
INRIA research laboratory and teaching assistant in the University of Nancy 1. His research interests lie in
the area of Business Process Management, Process intelligence, Process reliability, Service Oriented
Computing and semantics for B2B Integration.

Prof. Dr. Claude Godart is full time Professor at Nancy University, France and scientific director of the
INRIA ECOO project. His centre of interest concentrates on the consistency maintenance of the data
mediating the cooperation between several partners. This encompasses advanced transaction models, user
centric workflow and web services composition models. He has been implicated in several transfer projects
with industries (France, Europe, and Japan) for a wide range of applications including e-commerce,
software processes and e-learning.

