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ABSTRACT: 
 
Ensuring composite services reliability is a challenging problem. Indeed, due to the inherent 
autonomy and heterogeneity of Web services it is difficult to predict and reason about the 
behavior of the overall composite service. 
Generally, previous approaches develop, using their modeling formalisms, a set of techniques to 
analyze the composition model and check “correctness” properties. Although powerful, these 
approaches may fail, in some cases, to ensure CS reliable executions even if they formally 
validate its composition model. This is because properties specified in the studied composition 
model remains assumptions that may not coincide with the reality (i.e. effective CS executions). 
Sharing the same issue, we present a reengineering approach that starts from CS executions log to 
improve its recovery mechanisms. Basically, we propose a set of mining techniques to discover 
CS transactional behavior from an event based log. Then, based on this mining step, we use a set 
of rules in order to improve its reliability. 
 
KEY WORDS: 
Web Services Compositions, Mining, Reliability, Transactional Web Service.   
 

Introduction 
 
Nowadays, enterprises are able to outsource their internal business processes as services and 
make them accessible via the Web. Then, they can dynamically combine individual services to 
provide new value-added composite services (CS for short). Due to the inherent autonomy and 
heterogeneity of Web services, a fundamental problem concerns the guarantee of correct 
executions of a CS. An execution is correct if it reaches its objectives or fails (properly) according 
to the designers requirements. 
 
Motivating example Let consider an application for online travel arrangement carried out by a 
composite service as illustrated in figure 1.The customer specifies its requirements in terms of 
destination and hotel through the CRS service. The application launches in parallel flight and 
hotel reservation (FR and HR respectively) (after a study of the local transport accommodations  
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Figure 1. A composite Web service for Online Travel Arrangement (OTA for short) 

 
(LTA)). The ADC service disposes administrative documents. Then, the customer is requested to 
pay by credit card (PCC), by check (PCh), or by TIP (PTIP). The Send Documents (SD) service 
ensures the delivery of documents to the customer. To deal with exceptions, designers specify 
additional mechanisms for failures handling and recovery. First, they specify that the hotel 
reservation can be compensated (by cancellation for instance) when the FR service fails to reserve 
a flight, and reciprocally. Second, to ensure the payment, they specify the PCh service as a 
payment alternative for the PCC service. Similarly, they specify the PTIP service as a payment 
alternative for the PCh service with the assumption that the PTIP service always succeeds. 
Finally, designers specify that CRS, LTA, ADC and SD services are sure to complete. The main 
problem at this stage is how to ensure that the specified CS model guaranties reliable executions.  
 
Generally, previous approaches develop, based on their modeling formalisms, a set of techniques 
to analyze the composition model and check   “correctness” properties. Although powerful, these 
approaches may fail, in some cases, to ensure CS reliable executions even if they formally 
validate the CS model. This is because properties   specified in the studied composition models 
remains assumptions that may not coincide with the reality. 
 
Back to our example, let us suppose for instance, that in reality (by observation of sufficient 
execution cases) the FR and PCh services never fail and the PTIP service is not sure to complete. 
That means, among other, (i) there is no need for the HR service to support compensation policies 
(which can be costly), and (ii) the payment can fail while the hotel and flight reservations are 
maintained. Formal approaches cannot deal with such anomalies. 
 
Mining the effective transactional behavior allows to detect gaps mentioned above and to improve 
the application reliability. For instance in our example, mining the transactional behavior allows 
to improve the CS model by specifying the PCh service as a payment alternative for the PTIP 
service (since we notice that PCh is sure to complete).  
 
Overview of our approach As explained in section 2, we distinguish between the control flow 
and the transactional flow of a composite service. The control flow specifies its execution logic 
(without undesired failures). While the transactional flow defines its recovery mechanisms. 
 
In this paper we present an approach to improve CS recovery mechanisms based on the analysis 
of its execution history. We proceed in two steps. First, we discover the effective recovery 
mechanisms (transactional flow) of the composite service. Then, we use a set of rules in order to 
improve its composition model. Figure 2 gives an overview of the main steps of our approach: 
- Collecting execution history: The purpose of this phase is keeping track of the composite 

service execution by capturing the relevant generated events. 
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- Analyzing the execution history: The purpose of this phase is mining the effective 
transactional flow of a composite service. For that we need first to mine its effective control 
flow and extract its set of termination states. 

- Improving the composition model: Based on the execution history analysis we use a set of 
rules to improve the composite service recovery mechanisms.  
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Figure 2. Overview of our approach 

 
The remainder of this paper is organized as follows. In section 2 we introduce our transactional 
Web service model. Section 3 illustrates how we model a composite Web service according to the 
presented model. Section 4 discusses Web services logging and shows how we can capture 
composite service execution history. Section 5 and Section 6 present respectively our control flow 
and transactional flow mining techniques. In section 7 we show how we proceed to improve CS 
recovery mechanisms. Section 8 discusses some related work. Section 9 concludes our paper.  
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Transactional Web Service Model 
 
In this section, we introduce our Web services composition model. We introduce the concept of a 
transactional Web service (TWS for short). Then we show how we combine a set TWS to define 
a new value-added service. 
 
Transactional Web Service: TWS 
 
In this paper, by Web service we mean a self-contained modular program that can be discovered 
and invoked across the Internet. A transactional Web service is a Web service of which the 
behavior manifests transactional properties. 
 
The main transactional properties of a Web service we are considering are retriable, 
compensatable and pivot (Mehrotra, Rastogi et al. 1992). A service s is said to be retriable if it is 
sure to complete after several finite activations. s is said to be compensatable if it offers 
compensation policies to semantically undo its effects. Then, s is said to be pivot if once it 
successfully completes, its effects remains for ever and cannot be semantically undone. Naturally, 
a service can combine properties, and the set of all possible combinations is {; retriable; 
compensatable; pivot; (retriable, compensatable); (retriable, pivot)}. 
 
Every service can be associated to a life cycle state chart that models the possible states through 
which the executions of this service can go, and the possible transitions between these states. The 
set of states and transitions depend on the service transactional properties. Each service has a 
minimal set of states (initial, aborted, active, cancelled, failed, completed) and a minimal set of 
transitions (abort(), activate(), cancel(), fail(), complete()). When a service is instantiated, the 
state of the instance is initial. Then this instance can be either aborted or activated. Once it is 
active, the instance can normally continue its execution or it can be cancelled during its 
execution. In the first case, it can achieve its objective and successfully completes or it can fail. A 
compensatable service has in addition, a state compensated and a transition compensate(). A 
retriable service has in addition a transition retry().  
 
Within a transactional service, we distinguish between external and internal transitions. External 
transitions are fired by external entities. Typically they allow a service to interact with the outside 
and to specify composite services orchestration (see next section). The external transitions that we 
are considering are activate(), abort(), cancel(), and compensate(). Internal transitions are fired by 
the service itself (the service agent). Internal transitions we are considering are complete(), fail(), 
and retry().We note TWS the set of transactional Web services. 
 
Transactional Composite Web Service: TCS 
 
A transactional composite (Web) service (TCS for short) is a composite Web service of which the 
component services are TWS. Such a service takes advantage of its component services 
transactional properties to specify failure handling and recovery mechanisms. We note TCS the 
set of transactional composite Web services. 
 
Composition of transactional Web service 
 
A TCS defines a set of preconditions on each component service’s external transition in order to 
define the orchestration schema. These preconditions specify for each component service when it 
will be aborted, activated, canceled, or compensated. For example, the OTA service specifies that 
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ADC will be activated after the completion of HR and FR. That means the precondition of the 
transition activate() of ADC is the completion of HR and the completion of FR. Thus, a TCS can 
be defined as the set of its component services and the set of the preconditions defined on their 
external transitions. More formally we define a TCS as following.  
 
Definition 1: A transactional composite Web service tcs is a couple tcs = (ES  TWS, Prec) 
where ES is the set of its component Web services and Prec is a function that defines for each 
component service’s external transition a set of preconditions for its activation. 
 
Thus, we distinguish for each component service, s, a set of exclusive preconditions for each of 
its external transition, activate(), abort(), cancel(), and compensate(). For instance, the OTA 
service specifies that PCh will be activated either after the completion of ADC (exclusively) or 
after the failure of PCC. That means Prec(PCh.activate()) = {(ADC.completed  PCh chosen for 
delivery), PCC.failed}. 
 
Preconditions express at a higher abstract level relations (successions, alternatives, etc) between 
component services in form of dependencies. These dependencies express how services are 
coupled and how the behavior of certain component service(s) influences the behavior of other 
service(s). For example the precondition on the external transition activate() of the PCh service 
express (i) a succession relations (or dependency) between the ADC service and the PCh service 
and (ii) an alternative relation (or dependency) between the PCC service and the PCh service. 
 
Definition 2 Let be cs a TCS, s1 and s2 two component services of cs, s1.t1() a transition of s1, and 
s2.t2() an external transition of s2, a dependency from s1.t1() to s2.t2(), denoted dep(s1.t1(), s2.t2()), 
exists if the activation of s1.t1() may fire the activation of s2.t2(). 
 
In our approach, we consider activation, alternative, abortion, compensation and cancellation 
dependencies which we detail in the following.  
 
Activation dependency and activation condition: An activation dependency expresses a 
succession relation between two services. An activation dependency from s1 to s2 exists iff the 
completion of s1 may fire the activation of s2. Such dependency is defined according to the 
activation condition of s2 ActCond(s2). ActCond(s) specifies when s will be activated (as a 
successor for other(s) service(s)). 
 
For example, the OTA service shown in figure 1 defines an activation dependency from HR to 
ADC, and from FR to ADC such that ADC will be activated after the completion of HR and FR. 
That means ActCond(ADC)={HR.completed  FR.completed}. 
 
Alternative dependency and alternative condition: Alternative dependencies allow defining 
execution alternatives as forward recovery mechanisms. An alternative dependency from s1 to s2 
exists iff the failure of s1 may fire the activation of s2. Such dependency is defined according to 
the alternative condition of s2 AltCond(s2). AltCond(s) specifies when s will be activated (as an 
alternative) for other(s) service(s). 
 
For instance the OTA service shown in figure 1 defines an alternative dependency from PCC to 
PCh such that PCh will be activated when PCC fails. That means AltCond(PCh) = {PCC.failed}. 
 
Abortion dependency and abortion condition: An abortion dependency allows propagating 
failures (causing the TCS abortion) from one service to its successor(s) by aborting them. An 
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abortion dependency from s1 to s2 exists iff the failure, cancellation or the abortion of s1 may fire 
the abortion of s2. Such dependency is defined according to the abortion condition of s2 
AbtCond(s2). AbtCond(s) specifies when s will be aborted after the failure, the cancellation, or the 
abortion of other(s) service(s). 
 
Compensation dependency and compensation condition: A compensation dependency allows 
defining a backward recovery mechanism by compensation. A compensation dependency from s1 
to s2 exists iff the failure or the compensation of s1 may fire the compensation of s2. Such 
dependency is defined according to the compensation condition of s2 CpsCond(s2). CpsCond(s) 
specifies when s will be compensated after the failure or the compensation of other(s) service(s). 
 
The OTA service described in figure 1 defines a compensation dependency from HR to FR such 
that FR will be compensated when HR fails. That means CpsCond(FR) = {HR. f ailed}. 
 
Cancellation dependency and cancellation condition: A cancellation dependency allows 
signaling a service execution failure to other service(s) being carried out in parallel by canceling 
their execution if necessary. A cancellation dependency from s1 to s2 exists iff the failure of s1 
may fire the cancellation of s2. Such dependency is defined according to the cancellation 
condition of s2 CnlCond(s). CnlCond(s) specifies when s will be canceled after the failure other(s) 
service(s). 
 
Control and transactional flow of a TCS  
 
We call the activation and abortion dependencies control dependencies. We call the compensation, 
cancellation and alternative dependencies transactional dependencies. Control and transactional 
dependencies express at a higher abstract level respectively the control flow and the 
transactional flow of a TCS. 
 
Control flow The control flow of a TCS specifies the partial ordering of component 
services activations. Intuitively the control flow of a TCS is defined by the set of its activation 
dependencies. Formally, we define a control flow as a TCS where its dependencies are only 
activation dependencies. 
 
Definition 3 A control flow is a TCS, cf = (ES,Prec) such that s  ES AltCond(s) = ; 
CpsCond(s) = ; and CnlCond(s) = .  
 
We note CFlow the set of all control flows. We define the function getCFlow that returns the 
control flow of a given TCS. 
 
Definition 4 We define the function getCFlow that returns the control flow of a TCS.  
getCFlow: TCS         CFlow  

     sc = (ES,Prec)   cf = (ES’,Prec’)  
such that ES’ = ES and s  ES Prec’(s.activate()) = ActCond(s); Prec’(s.cancel()) = ; 
Prec’(s.compensate()) = . 
 
Transactional flow The transactional flow of a TCS specifies the recovery mechanisms. 
Intuitively, a transactional flow of a TCS is defined by its component services transactional 
properties and its set of transactional dependencies. Formally we define a transactional flow as a 
TCS where its dependencies are only transactional dependencies. 
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Definition 5 A transactional flow is a TCS, tf = (ES,Prec) such that s  ES 
ActCond(s)=.  
 
We note TFlow the set of all transactional flows. We define the function getTFlow that returns the 
transactional flow of a given TCS. 
 
Definition 6 We define the function getTFlow that returns the transactional flow of a TCS. 
getTFlow: TCS        TFlow  

    sc = (ES,Prec)   tf = (ES’,Prec’)  
such that ES’= ES and s  ES Prec’(s.activate()) = AltCond(s). 
 
A TCS, cs, can be defined as the union of its control flow, getCFlow(cs), and its transactional 
flow getTFlow(cs). In general, the union of two TCS cs1 and cs2 is a TCS where (i) the set of its 
component services is the union of cs1’s and cs2’s component services (ii) the precondition of an 
external transition of a component service s is the one defined by cs1 if s belongs only to cs1, the 
one defined by cs2 if s belongs only to cs2, or the union of the preconditions defined by cs1 and cs2 
if s belongs to both of them. 
 
Definition 7 Let two TCS cs1 and cs2: cs1 = (ES1,Prec1) and cs2 = (ES2,Prec2). The union of cs1 
and cs2 is the TCS defined as follows: cs = cs1  cs2 = (ES,Prec) where 
- ES = ES1  ES2 
- s  ES  

 
Prec(s)= 

Prec1(s) if s  ES1  s  ES2 
Prec2(s) if s  ES1  s  ES2 
Prec1(s)  Prec2(s) if s  ES1 s  ES2 

 
Relation between the control flow and the transactional flow of a TCS 
 
A TCS transactional flow is tightly related to its control Flow. Indeed, the recovery mechanisms 
(defined by the transactional flow) depend on the execution process logic (defined by the control 
flow). For example, regarding the OTA composite service, it is possible to define the PCh service 
as an alternative to the PCC service because (according to the XOR control flow operator) they 
are defined on exclusive branches. 
 
More generally, a control flow implicitly tailors all possible recovery mechanisms. We call a 
potential transactional flow of a given TCS the transactional flow including all possible 
transactional dependencies (i.e. recovery mechanisms) that can be defined w.r.t to its control 
flow. More formally each component service, s, has according to the TCS control flow: 
- ptCpsCond(s): its potential compensation condition that specifies when it may eventually be 

compensated. 
- ptAltCond(s): its potential alternative condition that specifies when it may eventually be 

activated as an alternative. 
- ptCnlCond(s): its potential cancellation condition that specifies when it may eventually be 

canceled. 
 
Back to our example, according to the OTA service control flow FR may be eventually 
compensated (i) either after the failure of ADC, (ii) or after the compensation of ADC (ii) or after 
the failure of HR. That means the potential compensation conditions of FR are the failure of ADC, 
the compensation of ADC, or the failure of HR: ptCpsCond(FR) = {ADC.failed, 
ADC.compensated, HR. f ailed}. 
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Many TCS can be specified according to the same control flow cf . Each one of them extends cf 
with a transactional flow included in its (cf) potential transactional flow, potential(cf). More 
formally:  

TCS cs defined according to a control flow cf 
cs = getCFlow(cs)  getTFlow(cs) such that 

getCFlow(cs) = cf and getTFlow(cs)  potential(cf). 
 
Figure 8 illustrates two TCS defined according to the same control flow. Each of these TCS 
extend the control flow shown in figure 3 by a transactional flow included in its potential 
transactional flow defined in figure 4.  
 
TCS set of termination states 
  
Many executions can be instantiated according to the same TCS model. The state at a specific 
time of a TCS instance composed of n services can be represented by the tuple (s1,s2, . . .sn), 
where si is the state of the service instance xi at this time. The set of termination states of a TCS is 
the set off all possible termination states of all its instances.  
 
We distinguish two kinds of termination state. The first one corresponds to the termination states 
reached after normal executions (without unexpected failures according to the control flow). We 
call a termination state of this first type a termination state without failure. The 
set of termination states without failures of a TCS is defined by its control 
flow.  
 
The second kind of termination state corresponds to the ones reached in case of failure(s) of 
certain component service(s) (according to the transactional flow). We call a termination state of 
this second type a termination state with failure. The set of termination 
states with failure of a TCS is defined by its transactional flow. We define the function 
computeTSwithFailure that returns the set of termination states with failure of a given 
TCS (more precisely given its transactional flow). 
 

Pattern based modeling 
 
In the previous section, we presented our transactional Web service model allowing capturing 
both the control and the transactional flow of a TCS. In this section, we show how we model a 
TCS. We adopt an approach based on workflow patterns (van der Aalst, ter Hostede et al. 2003). 
We extend them in order to specify, in addition to the control flow they are considering by 
default, TCS’ transactional flow. 
 
Pattern based modeling is interesting for many reasons. Patterns are relatively simple (compared 
to workflow language) thanks to the abstraction they ensure. Patterns are practical since they are 
deduced from the practice. In addition they enhance reusability and comprehension between 
designers. Pattern based modeling allows also modular and local processing. In the following, 
section 3.1 introduces the composition patterns. Section 3.2 shows how we make use of them in 
order to specify TCS. 
 
Composition patterns 
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In the following, we present the workflow patterns from the perspective of our model. Then we 
show how a given workflow pattern implicitly tailors a set of possible transactional flow. 
 
Workflow patterns 
 
As defined in (Gamma, Helm et al. 1995), a pattern “is the abstraction from a concrete form 
which keeps recurring in specific non arbitrary contexts”. Regarding that, a workflow pattern (van 
der Aalst, ter Hostede et al. 2003) can be seen as an abstract description of a recurrent class of 
interactions. For example, the AND-join pattern (see figure 3) describes an abstract services 
interactions as follows: a service is activated after the completion of several other services. 
 
Regarding our TCS model, the basic workflow patterns consider only the control flow side. Thus, 
they can be considered as control flow patterns. Formally, we define a control flow pattern as a 
function that returns a control flow given a set of services. 
 
Definition 8 A control flow pattern, pat, is a function pat: P(TWS)1   CFlow, that returns a 
control flow pat(S) given a set of transactional services S. pat defines for each service s  S, its 
activation condition ActCond(s). 
  
In our approach, we consider the following patterns: sequence, AND-split, OR-split, XOR-split, 
AND-join, OR-join, XOR-join and m-out-of-n (van der Aalst, ter Hostede et al. 2003). Our paper 
(Bhiri, Godart et al. 2006) details how we define each of these patterns according to the definition 
8. Figure 3 illustrates the application of the patterns AND-split, AND-join, XOR-split, and XOR-
join. 
 
Patterns transactional potential  
 
A workflow pattern pat defines a control flow pat(S) given a set of services. As all control flows, 
pat(S) possesses a potential transactional flow. We define for each workflow pattern, pat, a 
function, potentialpat, that returns given a set of services S the potential transactional flow of 
pat(S). 
 
Definition 9 Let pat a pattern. The function potentialpat: P(TWS)   TFlow, returns given a set of 
services S, the potential transactional flow of the control flow pat(S). potentialpat defines for each 
service s  S its potential compensation condition, ptCpsCond(s), its potential alternative 
condition, ptAltCond(s), and its potential cancellation condition ptCnlCond(s). 
 
Our paper (Bhiri, Godart et al. 2006) details the potential functions of the patterns AND-split, 
OR-split, XOR-split, AND-join, OR-join, XOR-join and m-out-of-n. Figure 4 illustrates the 
application of the potential functions of the patterns AND split, AND join, XOR split, and XOR 
join. 
 
TCS specification 
 
Specifying a TCS returns to define its control and its transactional flow. In the following we show 
how we make use of (i) workflow patterns for defining TCS’ control flow and (ii) their 
transactional potential for defining TCS’ transactional flow. 
 

                                                 
1 Let S a set of elements, P(S) denotes the set of subsets of S. 
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Control flow specification  
 
We call pattern instance, the control flow resulting from the application of a pattern to a 
set of services. Let pat a pattern and S a set of services, pat(S) is an instance of pat. We use 
pattern instances as the basic brick for specifying TCS’ control flow (Bhiri, Godart et al. 
2006). Indeed, in our approach a control flow is defined as the union of pattern instances. 
More formally:   

 
TCS cs = (ES,Prec)  a set of patterns {P1, . . . ,Pn} and a partition S of ES: S = {S1, . . .Sn} 

(with ES = 1 i n (Si) | getFControl(cs) = 1 i n Pi(Si). 
 
Figure 3 shows how we define the control flow of the OTA service as a union of pattern 
instances. 
 

 
Figure 3. The control flow of the OTA service is defined as a union of pattern instances 

 
Transactional flow specification  
 
The transactional flow of a TCS is included in the potential transactional flow of its control flow. 
Thus, the first step to define the transactional flow of a TCS is specifying its potential 
transactional flow. The potential transactional flow of a TCS is the union of the potential 
transactional flows of its patterns instances. We define the function potential that returns the 
potential transactional flow of a given control flow.  
 
Definition 10 The function potential returns the potential transactional flow of a given control 
flow:  

CFlow   TFlow 
Cf =  i pati(Si)   ptf =  i potentialpati(Si) 

 
Figure 4 displays the transactional potential flow of the control flow defined in figure 3. It 
illustrates how it is the union of the potential transactional flow of the control flow pattern 
instances. 
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Figure 4. The potential transactional flow of the OTA service is the union of potential transactional 

flow of its pattern instances 
 

Web Service Logging 
  
Following a common requirement in the areas of business processes and services management, 
we expect the composite services to be traceable, meaning that the system should in one way or 
another keep track of ongoing and past executions. Several research projects deal with the 
technical facilities necessary for the collecting and the logging of Web services execution log 
(Sahai, Machiraju et al. 2001; Fauvet, Dunas et al. 2002 ; Rouached, Gaaloul et al. 2006). In the 
following, we examine and formalize the logging possibilities in service oriented architectures 
which is a requirement to enable the approach described in this paper. 
 
Web service collecting solutions 
 
The first step in the Web Service mining process consists of gathering the relevant Web data, 
which will be analyzed to provide useful information about the Web Service behavior. We 
discuss how these log records could be obtained by using existing tools or specifying additional 
solutions. Then, we show that the mining abilities are tightly related to the information provided 
in web service log and depend strongly on its richness. 
 
Existing logging solutions provide a set of tools to capture web services logs. These solutions 
remain quite “poor” to mine advanced web service behaviors. That is why advanced logging 
solutions should propose a set of developed techniques that allows us to record the needed 
information to mine more advanced behavior. This additional information is needed in order to be 
able to distinguish between web services composition instances. 
 
Existing logging solutions 
 
There are two main sources of data for Web log collecting, corresponding to the interacting two 
software systems: data on the Web server side and data on the client side. The existing techniques 
are commonly achieved by enabling the respective Web server’s logging facilities. There already 
exist many investigations and proposals on Web server log and associated analysis techniques. 
Actually, papers on Web Usage Mining WUM (Punin, Krishnamoorthy et al. 2001) describe the 
most well-known means of web log collection. Basically, server logs are either stored in the 
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Common Log Format2 or the more recent Combined Log Format3. They consist primarily of 
various types of logs generated by the Web server. Most of the Web servers support as a default 
option the Common Log Format, which is a fairly basic form of Web server logging. 
 
However, the emerging paradigm of Web services requires richer information in order to fully 
capture business interactions and customer electronic behavior in this new Web environment. 
Since the Web server log is derived from requests resulting from users accessing pages, it is not 
tailored to capture service composition or orchestration. That is why, we propose in the following 
a set of advanced logging techniques that allows to record the additional information to mine 
more advanced behavior. 
 
Advanced logging solutions 
 
Identifying web service composition instance 
 
Successful mining for advanced architectures in Web Services models requires composition 
(choreography/ orchestration) information in the log record. Such information is not available in 
conventional Web server logs. Therefore, the advanced logging solutions must provide an 
identifier for both choreography and orchestration and a case identifier in each logged interaction. 
 
A known method for debugging is to insert logging statements into the source code of each 
service in order to call another service or component, responsible for logging. However, this 
solution  has a main disadvantage: we do not have ownership over third parties code and we 
cannot guarantee they are willing to change it on someone else behalf. Furthermore, modifying 
existing applications may be time consuming and error prone. 
 
Since all interactions between Web Services happen through the exchange of SOAP message 
(over HTTP), another alternative is to use SOAP headers that provides additional information on 
the message’s content concerning choreography. Basically, we modify SOAP headers to include 
and gather the additional needed information capturing choreography details. Those data are 
stored in the special <WSHeaders>. This tag encapsulates headers attributes like: 
choreographyprotocol, choreographyname, choreographycase and any other 
tag inserted by the service to record optional information; for example, the 
<soapenv:choreographyprotocol> tag, may be used to register that the service was 
called by WS − CDL choreography protocol. The SOAP message header may look as shown in 
Figure 5. Then, we use SOAP intermediaries (Anbazhagan and Arun 2002) which are an 
application located between a client and a service provider. These intermediaries are capable of 
both receiving and forwarding SOAP messages. They are located on web services provider and 
they intercept SOAP request messages from either a Web service sender or captures SOAP 
response messages from either a Web service provider. On Web service client-side, this remote 
agent can be implemented to intercept those messages and extract the needed information. The 
implementation of client-side data collection methods requires user cooperation, either in 
enabling the functionality of the remote agent, or to voluntarily use and process the modified 
SOAP headers but without changing the Web service implementation itself (the disadvantage of 
the previous solution). 
 
 

                                                 
2 http://httpd.apache.org/docs/logs.html 
3 http://www.w3.org/TR/WD-logfile.html 
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< soapenv : Header > 

< soapenv : choreographyprotocol 
soapenv : mustUnderstand = ”0” 
xsi : type = ”xsd : string” >WS−CDL 

< /soapenv : choreographyprotocol > 
< soapenv : choreographyname 

soapenv : mustUnderstand = ”0” 
xsi : type = ”xsd : string” > OTA 

< /soapenv : choreographyname > 
< soapenv : choreographycase 

soapenv : mustUnderstand = ”0” 
xsi : type = ”xsd : int” > 123 

< /soapenv : choreographycase > 
< /soapenv : Header > 
 

Figure 5. The SOAP message header 
 
Concerning orchestration log collecting, since the most web services orchestration are using a 
WSBPEL engine, which coordinates the various orchestration’s web services, interprets and 
executes the grammar describing the control logic, we can extend this engine with a sniffer that 
captures orchestration information, i.e., the orchestration-ID and its instance-ID. This solution is 
centralized, but less constrained than the previous one which collects choreography information. 
 
Using these advanced logging facilities, we aim at taking into account web services’ neighbors in 
the mining process. The term neighbors refers to other Web services that the examined Web 
Service interacts with. The concerned levels deal with mining web service choreography interface 
(abstract process) through which it communicates with others web services to accomplish a 
choreography, or discovering the set of interactions exchanged within the context of a given 
choreography or composition. 
 
Collecting Web service composition instance  
 
The focus in this section is on collecting and analyzing single web service composition instance. 
The issue of identifying several instances has been discussed in the previous section. The exact 
structure of the web logs or the event collector depends on the web service execution engine that 
is used. In our experiments, we have used the engine bpws4j4 that uses log4j5 to generate logging 
events. Log4j is an Open Source logging API developed under the Jakarta Apache project. It 
provides a robust, reliable, fully configurable, easily extendible, and easy to implement 
framework for logging Java applications for debugging and monitoring purposes. The event 
collector (which is implemented as a remote log4j server) sets some log4j properties of the 
bpws4j engine to specify level of event reporting (INFO, DEBUG etc.), and the destination 
details of the logged events. At runtime bpws4j generates events according to the log4j properties 
set by the event collector. Figure 6 shows some example of log4j ‘logging event’ generated by 
bpws4j engine. The event extractor captures logging event and converts it to a unique TCS log 
format. These expressions are described in next section. 
 
2006-03-13 10:40:39,634  [Thread-35]  INFO  bpws.runtime - Outgoing 

                                                 
4 http://alphaworks.ibm.com/tech/bpws4j 
5 http://logging.apache.org/log4j 
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response: [WSIFResponse:serviceID = 
’{http://tempuri.org/services/CRS}CustomerRegServicefb0b0-fbc5965758--8000’operationName 
= ’completed’ 

isFault = ’false’ outgoingMessage = ’org.apache.wsif.base.WSIFDefaultMessage@ 
1df3d59 name:null parts[0]:[JROMBoolean: : true]’ 
faultMessage = ’null’ contextMessage = ’null’] 

2006-03-13 10:40:39,634  [Thread-35]  DEBUG  bpws.runtime.bus - 
Response 

for external invoke is[WSIFResponse:serviceID=’{http://tempuri.org/services 
/CCRS}CustomerRegServicefb0b0-fbc5965758--8000’ 
operationName = ’authenticate’  isFault = ’false’  outgoingMessage = 
org.apache.wsif.base.WSIFDefaultMessage@1df3d59 name:null parts[0]: 
[JROMBoolean: : true]’faultMessage = ’null’  contextMessage = ’null’] 

2006-03-13 10:40:39,634  [Thread-35]  DEBUG  bpws.runtime.bus - 
Waiting 
for request 

Figure 6. Example of log4j 'logging event' 
 
 
Web mining log structure 
 
The UML class diagram in figure 7 represents a TCS log structure. This log structure represents 
syntheses through a unique format the information captured by log4j. The conversion from log4j 
to this format is given in more details in our paper (Rouached, Gaaloul et al. 2006).  
 
As shown, a TCSLog (see definition 8) is composed of a set of EventStreams. Each 
EventStream traces the execution of one case (instance). It consists of a set of Events that 
capture the services life cycle performed in a particular TCS instance. An Event is described by 
the service identifier that it concerns, the current service state (aborted, failed, cancelled, 
completed and compensated) and the time when it occurs (TimeStamp).  
 
Definition 11 A TCSLog is considered as a set of EventStreams. Each EventStream 
represents the execution of one case. More formally, an EventStream is defined as a 
quadruplet EventStream: (beginTime, endTime, sequenceLog, SOccurence) where: 
- (begin: TimeStamp) and (end: TimeStamp) are the moment of log beginning and end, 
- sequenceLog : Event* is an ordered Event set belonging to one TCS case, 
- (SOccurence:int) is the instance number.  
 
So, TCSLog: (TCSID, {ServiceStreami: EventStream; 0  i  number of TCS instantiations}) is a 
TCS log where ServiceStreami is the EventStream of the ith TCS execution case.  
 
An example of an EventStream extracted from our TCS model example is given below: 
 

EventStream(5, 20, [Event(CRS, 5, completed), Event(LTA, 6, completed), Event(FR, 8, 
completed), Event(HR, 9, completed), Event(ADC, 12, completed), Event(PCC, 13, failed), 

Event(PCh, 15, completed), Event(SD, 20, completed)],1) 
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Figure 7. Structure of a TCS log 

 

Control Flow Mining 
 
In this section, we are interested in discovering “elementary” TCS patterns: Sequence, AND-split, 
OR-split, XOR-split, AND-join, OR-join, and M-out-of-N Join patterns inspired from workflow 
patterns (van der Aalst, ter Hostede et al. 2003). Our control flow mining approach proceeds in 
three steps : Step (i) the construction of statistical dependency table SDT, Step (ii) the statistical 
specifications of patterns’ sequential, conditional and concurrent behaviors, and Step (iii) the 
mining of TCS patterns through a set of rules using these statistical specifications. 
 
Construction of the statistical dependency table SDT 
 
We use statistical calculus that extracts activation dependencies between services executed 
without “exceptions” (i.e. they reached successfully their completed state). There is no need to 
use others EventStreams relating to failure executions containing failed or aborted or 
compensated or canceled states. In fact, these cases concern only TCS transactional behavior 
which tailors the mechanisms for failures handling and recovery. For these reasons, we need to   
filter TCS log and take only EventStreams of instances executed without failures. We denote 
by TCSLogcompleted this TCS log selection. 
 
Thus, the minimal condition to discover TCS patterns is to have TCS logs containing at least the 
completed event states. This feature allows us to mine control flow from “poor” logs which 
contain only completed event state. Any information system using transactional systems offer this 
information in some form (van der Aalst, Weijters et al. 2003). 
 
From TCSLogcompleted we extract, for each service A, the following information in the statistical 
dependency table (SDT): (i) The overall frequency of this service (denoted #A) and (ii) The 
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activation dependencies to previous Bi services (denoted P(A/Bi)). The size of SDT is N*N, where 
N is the number of TCS services. The (m,n) table entry (notation P(m/n)) is the frequency of the 
nth service immediately preceding the mth service. The table 1 represents a fraction of the SDT of 
our motivating example. For instance, P(HR/LTA)=0.69 expresses that if HR occurs then   we 
have 69% of chance that LTA occurs directly before in the TCS log. 
 
As it is computed, the initial SDT presents some problems to express correctly services 
dependencies especially relating to concurrent and parallel behavior. In the following, we detail 
these issues and propose solutions to correct them. 
 

P(x,y) CRS LTA HR FR ADC 
CRS 0 0 0 0 0
LTA 0.54 0 0 0.46 0
HR 0 0.69 0 0.31 0
FR 0.46 0.31 0.23 0 0

ADC 0 0 0.77 0.23 0
 

#P=#CRS=#LTA=#HR=#FR=#ADC=#ST=100 
#PCC=#PCh=#PTIP=35 

Table 1. Fraction of Statistical Dependencies Table SDT (P(x,y)) and Services Frequencies (#) 
 
 
Erroneous dependencies 
 
If we assume that each EventStream from TCSLog comes from a sequential (i.e. no 
concurrent behavior) TCS, a zero entry in SDT represents a causal independence and a non-zero 
entry means a causal dependency (i.e. sequential or conditional relations). But in case of 
concurrent behavior, EventStreams may contain interleaved events sequences from 
concurrent threads. As consequence, some entries, in initial SDT, can indicate nonzero entries 
that do not correspond to dependencies. For example the EventStream given in section 4 
“suggests” erroneous activation dependencies between LTA and FR in one side and FR and HR in 
another side. Indeed, LTA comes just before FR and FR comes immediately before HR. These 
erroneous entries are reported by P(FR/LTA) and P(HR/FR) in SDT which are different to zero. 
These entries are erroneous because there are no activation dependencies between these services 
as it was suggested. Underlined values in SDT report this behavior for other similar cases. 
 
Formally, two services A and B are in concurrence iff P(A/B) and P(B/A) entries in SDT are 
different from zero. Based on this definition, we propose an algorithm (Gaaloul, Baina et al. 
2005) to discover services parallelism and then mark the erroneous entries in SDT. This algorithm 
scans the initial SDT and marks concurrent services dependencies by changing their values to 
(−1). Through this marking, we can eliminate the confusion caused by concurrent behaviors 
producing these erroneous non-zero entries. 
 
Undetectable dependencies  
 
For concurrency reasons, a service might not depend on its immediate predecessor in the 
EventStream, but it might depend on another “indirectly” preceding service. As an example of 
this behavior, FR is logged between LTA and HR in the EventStream given in section 4. As 
consequence, LTA does not occur always immediately before HR in TCSLog. Thus we have only 
P(HR/LTA)=0.66 that is an under evaluated dependency frequency. In fact, the right value 
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between these services is 1 because the execution of HR depends exclusively on LTA. Similarly, 
values in bold in SDT report this behavior for other cases. 
 
To discover these indirect dependencies, we introduce the notion of service concurrent window 
(definition 5.1). A service concurrent window (CW) is related to the service of its last event and 
covers its directly and indirectly preceding services. Initially, the CW width of a service (i.e. the 
number of services within) is equal to 2. Every time this service is in concurrence with another 
service we add 1 to this width. If this service is not in concurrence with other services and has 
preceding concurrent services, then we add their number to CW width. For example FR is in 
concurrence with LTA and HR, the width of its CW is equal to 3. Based on this we give an 
algorithm (Gaaloul, Baina et al. 2005) that calculates the CW width for each service and regroups 
them in the CW table. This algorithm scans the “marked” SDT and updates the CW table in 
consequence. 
 
Definition 12 A Window (see figure 7) defines a log slide over an EventStream 
S:EventStream (bStream, eStream, sLog, TCSocc). Formally, we define a log window as a triplet 
window(wLog, bWin, eWin) : 
- (bWin: TimeStamp) and (eWin: TimeStamp) are the moment of the window beginning 

and end (with bStream  bWin and eWin  eStream), 
- wLog  sLog and  e: event  S.sLog where bWin   e.TimeStamp ≤ eWin)  e  wLog.  
 
After that, we proceed through an EventStream partition (definition 5.2) that builds a set of 
partially overlapping Windows over the EventStream using the CW table. Finally, we give an 
algorithm (Gaaloul, Baina et al. 2005) that computes the final SDT. For each CW, it computes for 
its last service the frequencies of its preceded services. The final SDT will be found by dividing 
each row entry by the frequency of its service. 
 
Definition 13 A Partition (see figure 7) builds a set of partially overlapping Windows 
partition over an EventStream. Partition: TCSLog → (Window)* 
S : EventStream(bStream, eStream, sLog, TCSocc) → {wi:Window; 1 ≤ i ≤ n}: 
- w1.bWin = bStream and wn.eWin = eStream, 
- w : window  Partition, e:Event = the last event in w, width(w)= CW[e.serviceID], 
-  0  i  n; wi+1.wLog - {the last e:Event in wi+1.wLog}  wi.wLog and wi+1.wLog  

wi.wLog. 
 
By applying previous algorithms, we have computed the final SDT (table 2) which will be used to 
discover TCS patterns. Note that, our approach adjusts dynamically, through the CW width, the 
process calculating services dependencies. Indeed, this width is sensible to concurrent behavior: it 
increases in case of concurrence and is “neutral” in case on concurrent behavior absence. 
 

P(x,y) CRS LTA HR FR ADC 
CRS 0 0 0 0 0
LTA 1 0 0 -1 0
HR 0 1 0 -1 0
FR 1 -1 -1 0 0

ADC 0 0 1 1 0
Table 2. Fraction of new calculated SDT 

 
Statistical specifications of sequential, conditional and concurrent properties 
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We have identified three kinds of statistical properties (sequential, conditional and concurrent) 
which describe the main behaviors of TCS patterns. Then, we have specified these properties  
using SDT’s statistics. We use theses properties to identify separately TCS patterns from log. 
This behavior provides a dynamic algorithm that builds global solution (i.e. global WS 
composition) based on local solutions (i.e. TCS patterns) iteratively. We begin with the statistical 
exclusive dependency property (property 1) which characterizes, by the way, the sequence 
pattern. 
 
Property 1 Mutual exclusive dependency property (as P1): A mutual exclusive dependency 
relation between a service Si and its immediately preceding previous service Sj specifies that the 
enactment of the service Si depends only on the completion of service Sj and the completion of Sj 
enacts only the execution of Si. It is expressed in terms of: 
- services frequencies: #Si = #Sj 
- services dependencies: P(Si/Sj) = 1  0   k, l < n; k  j; P(Si/Sk) = 0    l  i; P(Sl/Sj) = 0. 
 
The next two statistic properties: concurrency property (property 2) and choice property (property 
3) are used to insulate patterns behaviors in terms of concurrence and choice after a “fork” or 
before a “join” point. 
 
Property 2 Concurrency property (as P2): A concurrency relation between a set of services 
{Si,0  i  n} belonging to the same workflow specifies how, in terms of concurrency, the 
enactment of these services is performed. This set of services is commonly found after a ‘‘fork” 
operator or before a ‘‘join” operator. We have distinguished three services concurrency 
behaviors: 
- P2.1: Global concurrency where in the same instantiation the whole services are performed 

simultaneously : 0  i  j < n; #Si = #Sj  P(Si/Sj) = −1 
- P2.2: Partial concurrency where in the same instantiation we have at least a partial 

concurrent execution of services : ( 0  i  j < n; P(Si/Sj) = −1) 
- P2.3: No concurrency where there is no concurrency between services: (0  i  j < n;  

P(Si/Sj)  −1) 
 
Property 3 Choice property (as P3): A choice is a relation between the two operands before and 
after the ‘‘join” and the ‘‘fork” operator. It specifies, in terms of control flow, how the 
workflow instance performs the choice of services’ operands activations (i.e. which services are 
executed after a ‘‘fork” operator or before a ‘‘join” operator). The two operands of the 
“fork” operator (respectively the “join” operator) performing this relation are: (operand 1) a 
service S from which comes (respectively to which) a single thread of control which splits 
(respectively converges) into (respectively from) (operand 2) multiple services {Si, 0  i < n}. We 
have distinguished three services choice behaviors:  
- P3.1: Free choice where a part of services from the second operand are chosen. We have in 

terms of services frequencies (#S  




1

0

n

i

(#Si))  (#Si  #S) and in terms of services 

dependencies we have : 
o In “fork” operator (Si occurs certainly after S occurrence): 0 i< n; P(Si/S)= 1 
o In “join” operator (S occurs certainly after some Si occurrences “1 <”, but not 

always after all Si “< n”) : 1 < 




1

0

n

i

P(S/Si) < n 
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- P3.2: Single choice where only one service is chosen from the second operand. We have in 

terms of services frequencies (#S = 




1

0

n

i

(#Si)) and in terms of services dependencies we have: 

o In “fork” operator (Si occurs certainly after S occurrence): 0  i < n; P(Si/S) = 1 
o In “join” operator (S occurs certainly after only one of Si occurrences): 






1

0

n

i

P(S/Si) = 1 

- P3.3: No choice where all services in the second operand are executed. We have in terms of 
services frequencies 0  i <n, #S = #Si and in terms of services dependencies we have: 

o In “fork” operator (Si occurs certainly after S occurrence): 0  i< n; P(Si/S) = 1 
o In “join” operator (S occurs certainly after all Si occurrences): 0i< n; P(S/Si)=1 

 
Patterns mining 
 
Using statistical specifications of sequential, conditional and concurrent behaviors, the last step is 
the identification of TCS patterns through a set of rules. In fact, each pattern has its own statistical 
features which abstract statistically its activation dependencies, and represent its unique identifier. 
 
Our control flow mining rules are characterized by a “local” TCS patterns discovery. Indeed, 
these rules proceed through a local log analyzing that allows us to recover partial results of 
mining TCS patterns. In fact, to discover a particular TCS pattern we need only events relating to 
pattern’s elements. Thus, even using only fractions of TCS logs, we can discover correctly 
corresponding TCS patterns (which their events belong to these fractions). 
 
We divided the TCS patterns in three categories : sequence, fork and join patterns. Note that the 
rules formulas noted by : (P1) fingers the statistical exclusive sequential property, (P2) fingers the 
statistical concurrency property and (P3) fingers the statistical choice property.  
 
Sequence pattern: In this category, we find only the sequence pattern (table 3). In this pattern, 
the enactment of the B service depends only on the completion of the A service. So we have used 
the statistical exclusive dependency property to ensure this relation linking B to A. 
 

Rules TCS patterns 
 

 

(P1) (#B = #A) 
 

Sequence Pattern 
 

 

(P1) (P(B/A) = 1) 
 

Table 3. Rules of sequence TCS pattern 
 
Fork patterns: The three patterns of this category (table 4) have a “fork” point where a single 
thread of control splits into multiple threads of control which can be, according to the used 
pattern, executed or not. The AND-split and OR-split patterns differentiate themselves 
through the no choice and free choice properties. Effectively, only a part of services are executed 
in the OR-split pattern after a “fork” point, while all the Bi services are executed in the And-
split pattern. The non-parallelism between Bi in the XOR-split pattern are ensured by the no 
concurrency property while the partial and the global parallelism in OR-split and AND-
split is identified through the application of the statistical partial and global concurrency 
properties. 
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Join patterns: The three patterns of this category (table 5) have a “join” point where multiple 
threads of control merge in a single thread of control. The number of necessary branches for the 
activation of the B service after the “join” point depends on the used pattern. The single choice 
and the no concurrency properties are used to identify the XOR-join pattern where two or more 
alternative branches come together without synchronization and none of the alternative branches 
is ever executed in parallel. As for the AND-join pattern where multiple parallel services 
converge into one single thread of control, the no choice and the global concurrency are both used 
to discover this pattern. In contrary of the M-out-of-N-Join pattern, where we need only the 
termination of M of the N incoming concurrent services to enact the B service, the concurrency 
between Ai would be partial and the choice is free. 
 
 

Rules TCS patterns 
 

 

(P3) (


n

i 1

(#Bi)= #A) 

 

XOR-split Pattern 
 

 

 

(P3) ( 1  i  n; 
P(Bi/A) = 1)  

(P2)(  1  i, j  n; 
P(Bi/Bj) = 0) 

 
 

 

(P3) ( 1  i  n; #Bi = #A 
 

AND-split Pattern 
 

 

(P3) ( 1  i  n; 
P(Bi/A) = 1)  

(P2)(  1  i, j  n; 
P(Bi/Bj)  0) 

 

 

 

(P3) (#A  


n

i 1

(#Bi)) 

( 1  i  n; #Bi  #A) 
 

OR-split Pattern 
 
 

 

 

(P3) ( 1  i  n; 
P(Bi/A) = 1)  

(P2)(  1  i, j  n; 
P(Bi/Bj)  0) 

 

Table 4. Rules of fork TCS patterns 

Transactional flow mining 
 
In this section, we show how we proceed to discover a TCS transactional flow given its control 
flow and its set of termination states. Regarding our motivating example, we suppose that the two 
previous mining steps lead to discover the TCS control flow as defined initially by the designers 
and the TCS set of termination states shown in table 4. 
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Key Idea 
A termination state with failure is reached after certain component service(s) 
failure(s). Such a kind of termination states keeps track of failure(s) produced during the 
execution and the applied recovery mechanisms. For instance, the termination state 
with failure ts4 (see table 4) is reached following HR failure. In addition, the recovery 
mechanism applied consists in compensating FR and aborting the overall execution.  
 

Rules TCS patterns 
 

 

(P3) (


n

i 1

(#Ai)= #B) 

 

XOR-join Pattern 
 

 

(P3) (


n

i 1

P(B/Ai) = 1)  

(P2)(  1  i, j  n; 
P(Ai/Aj) = 0) 

 

 

 

(P3) ( 1  i  n; #Ai = #B 
 

AND-join Pattern 
  

(P3) ( 1  i  n; 
P(B/Ai) = 1)  

(P2)(  1  i, j  n; 
P(Ai/Aj)  0) 

 

 

(P3) (m*#B  


n

i 1

(#Ai)) 

( 1  i  n; #Ai  #B) 
 

M-out-of-N-join Pattern 
 
 
 
  

(P3) (m  




n

i 1

P(B/Ai)  n)  

(P2)(  1  i, j  n; 
P(Bi/Bj)  0) 

 

Table 5. Rules of join TCS patterns 

 
 

 CRS LTA HR FR ADC PCC PCh PTIP SD 
ts1 completed completed completed completed completed completed initial initial completed 
ts2 completed completed completed completed completed initial completed initial completed 
ts3 completed completed completed completed completed initial initial completed completed 
ts4 completed completed failed compensated aborted aborted aborted aborted aborted 
ts5 completed completed completed completed failed aborted aborted aborted aborted 
ts6 completed completed failed canceled aborted aborted aborted aborted aborted 
ts7 completed completed completed completed completed failed completed initial completed 
ts8 completed completed completed completed completed initial initial failed aborted 

Table 4. The extracted set of termination states of the OTA service 
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For the following, we argue that the control flow, cf , is known and fixed. Let STSwithFailure a set of 
termination states with failure of a composite service cs (of which we know only 
its control flow cf). The transactional flow induced by STSwithFailure is the transactional flow 
(defined according to cf) leading to STSwithFailure as a set of termination states with failure. It is 
defined by the reverse function of computeTSwithFailure: computeTS−1

withFailure. This function defines 
for each component service s: its transactional properties and its compensation, cancellation, and 
alternative conditions induced by STSwithFailure. These conditions specify respectively when s shall 
be compensated, canceled, or activated as an alternative according to STSwithFailure. 
 
Thereafter to compute a transactional flow of a TCS given its control flow and its set of 
termination states it suffices to implement the function computeTS−1

withFailure. Implementing this 
function returns to implement how to compute the transactional properties and the transactional 
conditions induced by STSwithFailure.  
 
Computing services transactional properties induced by STSwithFailure 
 
Given the set of termination states of a composite service we can, easily, deduce for each of its 
component services, s, its set of termination states STS(s). For example, given the set of 
termination states of the service OTA we can deduce that the set of termination states of FR is 
STS(FR)={completed, compensated, cancelled}. We use the following rules to compute the 
transactional properties of a component service.  component service, s 
1. By default s is retriable and not compensatable,  
2. if s.failed  STS(s) then s is not retriable, 
3. if s.compensated  STS(s) then s is compensatable.  
 
The first and second rules allow deducing if a service is retriable or not. The first and third rules 
allow deducing if a service is compensatable or not. By applying these rules we can deduce, 
among others, that FR is retriable and compensatable. Figure 8.a summarizes these computed 
transactional properties of component services. Bold properties are the ones that do not match 
with the initial model. 
 
Computing transactional conditions induced by STSwithFailure 
 
In the following we show how we proceed to compute the compensation condition induced by 
STSwithFailure for a given component service s. We proceed similarly to compute the cancellation 
and alternative conditions. Algorithm 1 allows computing the compensation condition of s 
induced by STSwithFailure: CpsCondSTSwithFailure(s). The principle is: a potential compensation 
condition of s becomes a compensation condition induced by STSwithFailure if it occurs in a 
termination state (with failure) where s is compensated. 
Thus, the algorithm will go through the set of termination states (line 4 to line 14). For each 
termination state where s is compensated (line 5), the algorithm looks for the potential 
compensation condition of s that holds in this state (line 6 to line 13). Line 7 and line 13 allows 
going through the potential compensation conditions of s. The Boolean variable “satisfied” (line 6  
and line 11) enables to mark if the current potential compensation condition holds or not in the 
current termination state (variable ts). A potential compensation condition that holds in ts is 
considered as a compensation condition of s induced by STSwithFailure (line 10). This condition is 
retrieved from the set of potential compensation condition of s in order to not to be examined 
again in the other termination states (line 12). 
 
Input: STS: the TCS set of termination states 
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PtCpsCond(s): The potential compensation condition of s defined by the control flow 
Output: CpsCondSTSwithFailure(s): the compensation condition of s induced by STSwithFailure 
Data: ts: the current termination state in STS 
PtCpsCondi(s): a potential compensation condition of s 
satisfied: a Boolean variable set to true when PtCpsCondi(s) is satisfied in ts 
 

1   begin 
2       CpsCondSTSwithFailure(s)    
3       ts  the next ts in STS  
4       while ts  null do 
5             if the state of s in ts is compensated then  
6                satisfied   false 
7                PtCpsCondi(s)  the next PtCpsCondi(s)  in PtCpsCond(s)  
8                   while none satisfied and PtCpsCondi(s)  null  
9                        if PtCpsCondi(s) is satisfied in ts then  
10                           CpsCondSTSwithFailure(s)  CpsCondSTSwithFailure(s) PtCpsCondi(s) 
11                           satisfied   true  
12                           PtCpsCond(s)  PtCpsCond(s) - PtCpsCondi(s) 
 

13                     PtCpsCondi(s)  the next PtCpsCondi(s) in PtCpsCond(s) 
 

14            ts  the next ts in STS 
15 end 

Algorithm 1. Extracting the compensation condition of a service s induced by STSwithFailure 

 
For example, the potential compensation condition of FR, HR.failed, becomes a compensation 
condition because it is satisfied in ts4 (in which the state of FR is compensated). Figure 8.a 
illustrates the discovered TCS after the control flow and transactional flow mining.  

Improving a TCS recovery mechanisms 
 
To improve TCS recovery mechanisms, we introduce the concept of intuitively valid 
transactional flow. An intuitively valid transactional flow is, as its name stands, a 
transactional flow that respects the following properties of well transactional behavior: (P1) 
following a service failure, it tries first to execute an alternative if it exists, (P2) otherwise (in case 
of a fatal failure causing the overall composite service failure) it compensates the work already 
done and (P3) cancel all running executions in parallel. For example, the discovered transactional 
flow shown in figure 8.a is not intuitively valid since it does not respect, among others, 
the property P1 for the service PTIP and the property P2 for the service ADC.  
 
To improve a TCS recovery mechanisms, we propose a set of rules that generate suggestions to 
designers in order to define an intuitively valid transactional flow (given the computed 
transactional properties). We suppose that F means F is eventually true:  component service, s 
1.  ptAltCondi(s)  AltCond(s), (ptAltCondi(s))  ptAltCondi(s)  AltCond(s)  suggest that 

AltCond(s) = AltCond(s)  ptAltCondi(s). 
2.  ptCpsCondi(s)  ptCpsCond(s), (ptCpsCondi(s))  ptCpsCondi(s) CpsCond(s)  

suggest that 
a. s must be compensatable and 
b. CpsCond(s) = CpsCond(s)  ptCpsCondi(s). 
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3.  ptCnlCondi(s)  ptCnlCond(s),  (ptCnlCondi(s))  ptCnlCondi(s)  CnlCond(s)  
suggest that CnlCond(s) = CnlCond(s)  ptCnlCondi(s). 

 

 
Figure 8. Discovering and improving the OTA service 

 
The first rule aims at ensuring the above property P1. It postulates that each potential alternative 
condition of s, ptAltCondi(s), eventually true must be considered as an alternative condition of s. 
For example, the potential alternative condition of PCh (and PCC), PTIP.failed is eventually true 
(since PTIP is not retriable) and is not considered as one of its alternative conditions. By applying 
this rule we generate the following suggestion: S1: add an alternative dependency from PTIP to 
PCh and S2: add an alternative dependency from PTIP to PCC.  
 
The second rule aims at ensuring the property P2. It postulates that each potential compensation 
condition of s, ptCpsCondi(s), eventually true must be considered as a compensation condition of 
s. For instance, the potential compensation condition of HR (and FR), ADC.failed, is eventually 
true (since ADC is not retriable) and is not considered as one of its compensation condition. By 
applying this rule we generate the suggestion S3: add two compensation dependencies from ADC 
to FR and from ADC to HR. Similarly by applying this rule we generate the suggestion S4: add a 
compensation dependency from HR to LTA. The third rule aims at ensuring the property P3. It 
postulates that each potential cancellation condition of s, ptCnlCondi(s), eventually true must be 
considered as a cancellation condition of s.  
 
It is worthy to note that the designers have the final decisions about which suggestions consider 
and which refuse. For instance, designers may reject the above suggestions S2 and S4 because 
PCC is not retriable and LTA is without effect. Like this, our approach allows to take into account 
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designers specific needs that may violate the well behavior properties introduced above. Figure 
8.b illustrates the OTA service after improvement. 
 

Related work 
 
In this paper we presented an original approach for ensuring reliable Web services compositions. 
Different from previous works, our approach starts from a composite service (CS for short) 
executions log and uses a set of mining techniques to discover its control flow and its 
transactional flow. Then, based on this mining step, we use a set of rules to improve its recovery 
mechanisms according to designers’ specific needs. 
  
Generally, formal previous approaches develop, using their modeling formalisms, a set of 
techniques to analyze the composition model and check some properties. (Bultan, Fu et al. 2003) 
proposes a formal framework for modeling, specifying and analyzing the global behavior of Web 
services compositions.  This approach models web services by mealy machines (finite state 
machines with input an output). Based on this formal framework, authors illustrate the 
unexpected nature of the interplay between local and global composite Web services.  In 
(Hamadi, Benatallah et al. 2003), authors propose Petri net-based algebra for composing Web 
services. This formal model allows the verification of properties and the detection of 
inconsistencies both between and within services.  
 
Other works follow transactional approaches. Emerged standards such as WS-TXM (Acid, BP, 
LRA) (Doug, Martin et al. 2003), WS-Atomic-Transaction (Little and Wilkinson 2007) and WS-
Business-Activity (Freund and Litlle 2007) define transaction protocols between composed 
services. These approaches rely on advanced transactional models (Elmagarmid 1992). 
(Limthanmaphon and Zhang 2004) presents a transaction management model based on the 
tentative hold and compensation concepts. (Pires, Benevides et al. 2002) presents a framework 
composed of a multilayered architecture, an XML-based language, and a transactional model. 
(Bhiri, Perrin et al. 2005) proposes a transactional approach to ensure the failure atomicity 
required by the designers. 
 
Although powerful, the above formal approaches may fail, in some cases, to ensure CS reliable 
executions even if they formally validate their composition models. This is because properties 
specified in the studied composition models may not coincide with the reality (i.e. effective CSs 
executions).  
 
To the best of our knowledge, there are practically no approaches to transactional web services 
correction based on event-based logs, and in general there are very few contributions in this area. 
Prior art in this field is limited to estimating deadline expirations and exceptions prediction (Sayal, 
Casati et al. 2002; Grigori, Casati et al. 2004). They describe a tool set on top of HPs Process 
Manager which includes a so-called ‘‘BPI Process Mining Engine”. It supports business and IT 
users in managing process execution quality by providing several features, such as analysis, 
prediction, monitoring, control, and optimization. However, they neither discuss the correctness 
of transactional interactions nor address the issue of failures handling and recovery. Indeed, our 
approach differs from the above: we discover and prevent transactional anomalies and also 
propose solutions to enhance the CS modeling. We start from a CS log and analyze it in order to 
reengineer the CS model. 
 
A number of research efforts in the area of workflow management have been directed for mining 
workflows models. This issue is close to that we propose in terms of discovery. There are 
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practically no approaches to transactional behavior mining except in  (Gaaloul, Bhiri et al. 2004a ; 
Gaaloul, Bhiri et al. 2004b). Indeed, previous works in workflow discovery focus mainly in 
control flow mining. The idea of applying process mining in the context of workflow 
management was first introduced in (Agrawal, Gunopulos et al. 1998). This work proposes 
methods for automatically deriving a formal model of a process from a log of events related to its 
executions and is based on workflow graphs, which are inspired by workflow products such as 
IBM MQSeries workflow (formerly known as Flowmark) and InConcert. Cook and Wolf (Cook 
and Wolf 1998a) investigated similar issues in the context of software engineering processes. 
These works are limited to sequential processes. Cook and Wolf extended their work, in (Cook 
and Wolf 1998b), to concurrent processes. Herbst et al. (Herbest, 2000a; Herbest, 2000b) present 
an inductive learning component used to support the acquisition and adaptation of sequential 
process models, generalizing execution traces from different workflow instances to a workflow 
model covering all traces. Starting from the same kind of process logs, van der Aalst et al. (van 
der Aalst, Weijters et al. 2003) explore also the area of workflow process mining. They propose 
techniques to discover workflow models expressed in their own desired workflow modeling 
notation, which is based on Petri nets. Compared to these work we focus on concurrent behavior 
in our control flow mining. Indeed, we give a better  specification of concurrency behavior 
through the discovery of CS patterns witch are well-formed structures giving an abstract 
description of recurrent class of control flow interactions. In besides, we propose a set of control 
flow mining rules that are characterized by a ”local” CS patterns discovery. These rules are 
context-free, they proceed through a local log analyzing enabling us to recover correctly partial 
results even if we have only fractions of CS log. 
 
Conclusion 
 
In this paper we presented a reengineering approach in order to improve recovery mechanisms of 
Composite Web services (CS for short). Starting from a CS executions log, we use a set of mining 
techniques to discovering its control and transactional flow. Then, based on this mining step, we 
use a set of rules to improve its composition model. The originality of our approach is that we 
correct and improve CS composition models based on their effective execution and behavior.  
 
We introduced a transactional Web service model that integrates the workflow adequacy 
modeling (rich and complex control structure) and the transactional models reliability 
(transactional semantics and dependencies with sound recovery mechanisms). In addition, we 
discussed the existing Web logging solutions and give advanced solutions in order to capture CS 
execution history.  
 
Our control flow mining approach is original regarding other proposed techniques. It is 
characterized by a ”local” discovery techniques that allows to recover partial results. In besides, it 
discovers more behavioral complex features with a better specification of ”fork” point and ”join” 
point.  
 
However, the work described in this paper represents an initial investigation. In our future works, 
we hope to discover more complex patterns by using more metrics (e.g. entropy, periodicity, etc.) 
and by enriching the TCS log. We are also interested in the modeling and the discovery of more 
complex transactional characteristics of cooperative TCSs. 
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