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Abstract— In this paper, we present a system allowing non-
expert users to teach new words to their robot. In opposition
to most of existing works in this area which focus on the
associated visual perception and machine learning challenges,
we choose to focus on the HRI challenges with the aim to
show that it may improve the learning quality. We argue
that by using mediator objects and in particular a handheld
device, we can develop a human-robot interface which is not
only intuitive and entertaining but will also “help” the user
to provide “good” learning examples to the robot and thus
will improve the efficiency of the whole learning system. The
perceptual and machine learning parts of this system rely
on an incremental version of visual bag-of-words. We also
propose a system called ASMAT that makes it possible for
the robot to incrementally build a model of a novel unknown
object by simultaneously modelling and tracking it. We report
experiments demonstrating the fast acquisition of robust object
models using this approach.

I. INTRODUCTION

Social robots are drawing an increasing amount of interest

both in scientific and economic communities. These robots

should typically be able to interact naturally and intuitively

with non-expert humans, particularly in the context of do-

mestic services or entertainment. Yet, an important challenge

needs to be addressed: providing the robot with the capability

to adapt and operate in uncontrolled, novel and/or changing

environments, in particular when interacting with non-expert

humans. Thus, the robot should have the ability to discover

its environment. Among the various challenges that this

implies, we focus here on the problem of how a robot

can learn through the interactions with the human and in

particular, how a non-expert human can teach a new word

to a robot typically associated with an object in its close

environment.

However, in its full generality, this brings up very hard

problems and in particular the issue of how the robot can

infer the conceptual meaning of a new word [1]. Here, we

will restrict ourselves to the specific case where a given word

is only associated with a single concrete object. Thus, we

are not dealing with concepts, but only with visual object

instance recognition. Nevertheless, this is a very ambitious

project since several important obstacles still need to be

crossed:

• Attention drawing: How can a human smoothly, ro-

bustly and intuitively draw the attention of a robot

towards himself and towards the interaction when the

robot is doing its own activity? How can the human

draw the robot’s attention even if he is not in its field

of view?

• Pointing: How can a human designate an object to

a robot and draw its attention toward this particular

object? If the object is not in the field of view of the

robot, how to push the robot to move adequately? When

the object is within the field of view, how can the human

point at this particular object and how could the object

be robustly extracted from its background?

• Joint attention: How can the human understand what

the robot is paying attention to? How can the human

accurately know what the robot is seeing? How can joint

attention be realized [2][3]?

• Naming: How can the human introduce a symbolic

form that the robot can perceive, register, associate with

the object, and later on recognize when repeated by the

human? What modaliti(es) shall be used to ensure ease

of use, naturalness, and robustness?

• Categorization: How can associations between words

and visual representations of objects be memorized and

reused later on to allow the human to have the robot

search an object associated with a word he has already

taught to the robot? Like when human children learn

language, social partners can only try to guide the

acquisition of meanings but cannot program directly the

appropriate representations in the learner’s brain. Thus,

the process of data collection may lead to inappropriate

learning examples. False interpretations could ensue

from a wrong data collection. How can we maximize the

efficiency of example collection while keeping intuitive

and pleasant interaction with non-expert humans? How

can we recognize when two examples are related to the

same object? Could the human help the robot during

this process?

• Searching: How can a human intuitively ask for the

robot to find or point to an already known object?

How can easily and robustly the matching word can

be recognized? How can the user intuitively help the

recognition?

Thus, in order to give the ability to a non-expert human to



teach new words to its robot, we have to address visual recog-

nition, machine learning and also Human-Robot Interaction

(HRI) challenges. In this paper, we argue that by focusing on

the HRI challenges we could significantly improve the whole

learning system. We therefore propose a system to tackle

some of these challenges (attention drawing, pointing, joint

attention and naming) and illustrate the improvement in the

efficiency of the learning system brought by this approach.

II. RELATED WORK

Over the past few years, some works tried to address

these issues by transposing human-human modes of inter-

action. Scassellati developed mechanism of shared attention

through gaze monitoring and pointing gesture [4]. In his

work, he used a fixed upper-torso humanoid robot. Many

researches also tried to recognize pointing gestures in order

to designate objects to a robot [5][6]. Steels et al. developed

a complete social framework based on direct interactions

(pointing gestures and speech recognition) to allow an user

to teach words to an AIBO [1]. In this work, the authors

are more specifically focusing on the visual perception and

machine learning issues. Yet, the HRI was identified has a

major limitation of their system. In particular, they showed

that the lack of robustness of the interface lead to some bad

learning examples and so decreased the learning performance

[7]. Thus, in this paper we are proposing an integrated system

allowing to teach new words to a robot, with a special

attention on the HRI challenges. More specifically, we tried

to develop an intuitive, efficient and entertaining interface,

which also makes it possible for the user to provide the

system with good learning examples. By doing so, we are

hoping to improve the performance of the whole learning

system.

As presented above, in most of the related works, authors

choose to use the direct interactions (gesture recognition,

gaze tracking or voice recognition) to try to address the above

mentioned HRI challenges. In particular, this approach po-

tentially provides really natural interactions which is particu-

larly important with non-expert users. Unfortunately, existing

associated techniques are not robust enough in uncontrolled

environments (due to noise, lighting or occlusion) and most

social robots have a body whose shape and perceptual

apparatus is not compatible with those modes of interaction

(small angle of view, small height...). This implies that such

an approach will fail if one is interested in intuitive and

robust interaction with non-expert users in unconstrained

environments.

We argue that one way to help to achieve intuitively and

robustly some of the functionalities presented above is to

develop simple artefacts that will serve as mediators between

the human and the robot to enable natural communication, in

much the same way as icon based artefacts were developed

for leveraging natural linguistic communication between

human and certain bonobos [8]. More particularly, we argue

that using mobile devices, such as illustrated in figure 1

may enable to circumvent some of theses problems. Though

it may seem less natural to use a device as a mediator

Fig. 1. Using a handheld device as a mediator object to control the
movements of a social robot.

object between humans and robots, by allowing a robust,

reliable and working interaction, it may lead to actually

more practical and usable interactions. Such interfaces may

provide pleasant and nonrestrictive interactions, and so rather

quickly become sort of “natural” interactions.

These kinds of interfaces have already been used to

interact with a robot. Kemp. et al have shown how a

laser pointer can be intuitively used by people with severe

motor impairments to robustly designate objects to a robot

[9]. Thanks to the laser spot light, the human can also

accurately know what he is pointing at. Yanco et al. used an

interface based on an input device (touch screen or joystick)

to select objects which will be grasped by a wheelchair

mounted robotic arm [10]. In their work the user can directly

monitor the object selection on the screen of the device.

As we try to do in our system, they both can draw the

robot attention toward objects and so realize joint attention

between the human and the robot. However their robot is able

to automatically grasp the object from a detected 3D spot,

in a framework that requires image segmentation algorithm

and/or a priori objects knowledge. If objects are not known

beforehand these are still hard problems.

In order to circumvent this problem, we argue in this paper

that is possible to have the user segmenting himself the object

from the image in an intuitive manner by using a handheld

touch-screen device. Indeed, the screen of the device can

be used to provide the human with information about what

the robot is perceiving, which is interesting with non-expert

users who are particularly proned to make assumptions about

the capacity and behavior of the robot. But it also allows to

transfer information from the human to the robot, through

easily perceivable gestures [11]. Moreover, these sketches

and gestures are natural cues and so are natural for people to

use [12]. Thus, we can develop intuitive collaborative interac-

tion allowing the human to supervise the robot and allowing

the robot to take advantage from the human capabilities [13].

In particular, here we can display the camera stream on the

screen and let the user to encircle the interesting object on

the touch-screen. Finally, handheld devices allow the human



to be next to the robot and physically engaged, for example

allowing to catch objects and waving them physically in the

robot’s field of view. They also allow tele-interaction with

the robot through the video feedback of the camera.

Other handheld device based interfaces have been devel-

oped recently. For instance, Fong et al. used a PDA for

remote driving [14], and Kaymaz et al. used it to tele-operate

a mobile robot [15]. Sakamoto et al. showed how they can

control a house cleaning robot through sketches on a Tablet

PC [16]. However, to our knowledge nobody used a handheld

device for such teaching interactions. We already proposed a

prototype based on a handheld device to teach new words to a

robot [17]. This prototype was developed with a special care

to the classical design lessons in HRI and HCI [18][19][20].

The exploratory study indicated that it was a promising

approach, providing an intuitive and efficient interface for

non-expert users. We also compared different interfaces for

showing object to a robot and concluded that the gesture

interface based on a handheld device was stated as the most

satisfying by the users [21]. In this paper, we propose a full-

system with advanced visual perception, machine learning

and HRI components.

III. OUTLINE OF THE SYSTEM

A. Visual perception

We adopted the popular “bags of visual words” approach

to process images in our system. Bags of visual words is a

method developed for image categorization [22] that relies on

a representation of images as a set of unordered elementary

visual features (the words) taken from a dictionary (or code

book). Using a given dictionary, a classifier is simply based

on the frequencies of the words in an image, thus ignoring

any global image structure. The term “bag of words” refers

to document classification techniques that inspired these

approaches where documents are considered as unordered

sets of words. Several applications also exist for robotics,

notably for navigation (e.g. [23], [24]).

The words used in image processing are based on local

image features such as the SURF keypoints [25] we are

using in this paper. As these features can be noisy and are

represented in high dimension spaces, they are categorized

using vector quantization techniques (such as k-means) and

the output clusters of this categorization are the words of

the dictionary. Instead of building the dictionary off-line on

an image database as is performed in most applications, we

use an incremental dictionary construction ([26]) that makes

it possible to start with an empty dictionary and build it as

the robot discovers its surroundings. This make it possible

to learn objects without any a priori on the object type or

the environment of the robot.

This model has two interesting characteristics for our

application: the use of feature sets make it robust to partial

object occlusions and the feature space quantization bring

robustness to image noise linked to camera noise or varying

illumination. More over, with the incremental dictionary

construction, this quantization is adapted as the environment

evolve (for example when light change from natural to

artificial).

B. Machine learning

For our application, the classifier designed for object

recognition should be trained incrementally, i.e. it should be

able to process new examples and learn new objects without

the need to reprocess all the previous data. To achieve

that, we use a generative method in which training entails

updating a statistical model of objects, and classifying entails

evaluating the likelihood of each object given a new image.

More specifically, we use a voting method based on

the statistics of visual words appearance in each object.

The recorded statistics (according to the learning method

described later) are the number of appearance awo of each

visual word w of the dictionary in the training examples

of each object o. For object detection in a new image, we

extract all the visual words from this image and make each

word w vote for all objects o for which awo 6= 0. The vote

is performed using the term frequency–inverted document

frequency (tf–idf) weighting [27] in order to penalize the

more common visual words. An object is recognized if the

quality of the vote result (measured as the difference between

the best vote and the second best) is other a threshold.

Estimating the statistics awo require the labelling of exam-

ples with the associated object name. As will be described

later, we will use two methods for example labelling depend-

ing on the information given by the user : labelling the whole

image or labelling only an image area given by the user and

representing the object . Additionally, we will propose a new

scheme for automatically labelling new examples from an

initial user labelled example (see section III-D).

C. Human Robot Interaction

We choose to use the Nao robot as our test platform.

Indeed, to us it well represents the present of social robotics:

with a toy-aspect and classical inputs (camera, microphone).

Furthermore, it is a biped robot and it has a complex skeletal

so it leads to complex motions. Finally, as it is a humanoid,

user will probably be more proned to teach it new words.

Our system was embedded on an Apple iPhone used as

a mediator object between the human and the robot. We

choose this device because it allows to display information

on the screen to the user and also allows to interact through

“natural” gestures through a large amount of possibilities due

to the multi-touch capacities. Moreover, thanks to the large

success of the iPhone we can take advantage of a well-known

interface, allowing ease of use.

In this system, the screen of the handheld device displays

the video stream of the robot’s camera (at about 15 fps). It

accurately shows what the robot is looking at, which can thus

be monitored by the user allowing to resolve the ambiguity of

what the robot is really seeing (see figure 2). As mentioned

above, achieving such an ability with direct interaction is

difficult with personal robots such as Nao humanoid or the

AIBO robot due to the specific morphology of such robots



Fig. 2. We display the video stream of the camera of the robot on the
screen. This allows to accurately monitor what the robot is seeing and thus
really achieving joint attention situation.

and the particular characteristic of their camera, in partic-

ular with non-expert users who are specifically proned to

make really ambitious assumptions about the robot capacity.

Moreover, having a visual feedback seems to entertain the

user [21], while the robot is moving for instance.

Fig. 3. Drawing attention towards an object: the user first sketches
directions to position the robot such that the object is in its field of view
(left), and if he wants to center the robot’s sight on a specific spot just tap
on it (right).

When the human wants to draw the robot attention toward

an object which is not in its field of view, the user can sketch

on the screen to make it move in an appropriate position: ver-

tical strokes for forward/backward movements and horizontal

strokes for right/left turns. Elementary heuristics are used to

recognize these straight sketches. The moves of the robot

are continuous until the user re-touch the screen in order to

stop it. Another stroke can directly be drawn to go on the

next move (for instance, go forward then directly turn right).

Pointing on a particular point on the screen makes the robot

look at the corresponding spot (see figure 3).

When the user wants to show an object which is in the

field of view of the robot, and thus on the screen, in order to

teach a name for this object, it sketches a circle around this

object on the touch screen (as shown on figure 4). Circling is

a really intuitive gesture because users directly “select” what

they want to draw attention to. This gesture is particularly

well-suited to touch-screen based interactions. For instance,

Schmalstieg et al. used the circling metaphor to select objects

in a virtual world [28]. As for the straight strokes, heuristics

are here used to recognize circular sketches, based on the

shape of the stroke and the distance between the first and

the last point of the sketch. This simple gestures has two

important functions:

Fig. 4. Encircling an object allows the user to notify the robot that he
wants to teach a name for this object. But it also provides an useful rough
object segmentation.

• First, it allows to clearly separate, by using two different

gestures, the action of drawing the robot attention

toward an object and the user’s will of teaching a new

word for this object.

• Second, circling is also a crucial help for the robot since

it provides a rough visual segmentation of the object,

which is otherwise a very hard task in unconstrained

environments. With the stroke and the background im-

age, we can extract the selected area and define it as our

object’s image. Classical computer graphics algorithms

are used to compute this area (Bresenham line drawing

and flood fill).

Fig. 5. Some objects can not be segmented with the classical object
segmentation algorithms. For instance, on the left the object has almost the
same color than the background. In the middle example, the object is not
movable and so can not be segmented with the motion based segmentation
method. On the right example, an automatic method can not guess if the user
wants to show only the head of the giraffe or the whole poster. Furthermore,
this is a 2D object and so the range method can not deal with it.

In this paper, we argue that object segmentation is still

a hard task in unconstrained and unknown environments.

Different approaches have been developed over the past years

to address this problem. However, they are still suffering

from a lack of robustness. For example, Region growing al-

gorithms try to address this problem by determining regions

where color or texture are homogeneous. These region are

iteratively expanded from a seed [29]. Yet, these algorithms

can not deal with complex objects made up of several sub-

parts with various colors and textures. Moreover the colors or

textures of the object can also be similar to the background



(examples are shown on the figure 5). A lot of researches

have also studied how the boundaries of the object could be

determined through its motion : motion based segmentation

[30]. Although, this algorithm can only segment carryable or

movable object. Range segmentation algorithms use images

containing depth information to compute regions belonging

to the same surface [31]. Of course, this approach does not

allow to recognize 2D objects such as a poster. By asking

the user to segment the image with a circling stroke, we

circumvent all the above mentioned problems and we can

deal with all the kind of objects, allowing us to work in

unconstrained environments.

Fig. 6. When a joint attention situation has been achieved on an object,
a set of actions are presented to the user, which can in particular decide to
teach a name for this object

Once this object is encircled, a menu pops-up showing

several interaction options : naming, guessing or high-level

actions such as approach, as drawn on figure 6. The “name”

choice makes the system wait for the user to enter a referent.

In this prototype, we choose to enter the name through a

virtual keyboard which allows us to quickly have a whole

working system (see figure 7). Moreover, it also allows

to circumvent the name recognition problem. Obviously, in

further work other modalities such as vocally naming will

be used. Once the user has entered the word he wanted to

teach, the visual features inside the circle are added to our

learning system and the corresponding words are labelled as

belonging to the model of the object (as described in section

III-B).

Fig. 7. When the user has decided to teach a name for an object, the
system is waiting for him to enter a word with the virtual keyboard.

Later on, when the robot has learnt some words, the user

can ask it to look for one of this object by entering the

looking menu and selecting the object he wants the robot to

look for, as shown on figure 8. A simple search algorithm

have been developed to move the robot until it detects the

searched object by using the visual bag-of-words system.

Fig. 8. Once the robot has learnt some words, the user can ask the robot
to look for one, by selecting it on the looking menu.

D. Active simultaneous modelling and tracking : ASMAT

As presented above, each time the user encircles an object,

our system only improves the model of the object with a

single image. However, the appearance of an object can

drastically changes from different points of view, so multiple

images of an object are needed in order to be able to

recognize it, in spite of the point of view [32]. So we develop

a system allowing to automatically collect many learning

examples, with different points of view, from a single user’s

intervention (see figure 9). Through this approach, we think

we can get a much more robust model of an object and

provide a less restrictive interaction to the users.

Fig. 9. We can automatically extract image of an object from different
points-of-view with our active simultaneous modelling and tracking (AS-

MAT) system in which the robot turns around the objects, and thus improve
the model of the object and make it more robust.

With this system, when the user encircles an object on

the screen of the device, we make the robot turn around the

object and take pictures of the object from different points

of view. However, this a hard problem because we do not

have any a priori model of the object in order to track it,

and to get a model of the object we need to be able to track

it. In order to achieve such an ability we need to be able to

simultaneously model and track an object without any prior

data. A related system was already presented by Dowson

et al. [33], but using previously recorded video, while we

can here directly define the movements of the camera.

For this reason, we called our system active simultaneous

modelling and tracking (ASMAT). With this system, the robot

incrementally constructs a model of the object, thanks to the



incremental bag-of-words method which is used at the same

time to robustly track the object and thus to enable the robot

to turn around it.

The robot incrementally turns around the object through

N steps. The robot goes from one position to the next one

by moving sideways and turning itself in order to keep the

tracked object in the center of its sight. For each stationary

position, we lightly move the head of the robot to quickly

get M different images of the object. For each image, we

first find the SURF keypoints (in order to work in real time)

matching the model of the object. We compute the gravity

center of these points and compute the average distance to

this center. We then filter the points which are too far from

this average region. Finally, we define the bounding box of

the elected points as the object, i.e. we add to the model of

the object all the keypoints inside this box (see algorithm 1).

Such an approach allows the learning system to quickly get

a robust model of the object (as shown in the experiments in

section IV-B). However, this system can lead to exponential

deviation due to fact that the constructed model is also used

to track the object, thus the more the system is mistaken more

he will be mistaken. To circumvent this problem, we could

display on the screen of the iPhone the bounding box of the

tracked object allowing the user to stop the robot as soon as

it goes wrong and for instance, ask the user to re-encircle

the object in order to restart the process. However, this

possibility has not yet been implemented and thus evaluated.

Algorithm 1 ASMAT(user encircled image)

keypoints← extract keypoints(user encircled image)
update object model(keypoints)

while not user stop() and i < N do

for j in 1 to M do

move robot head()
keypoints← extract keypoints(robot camera)
matches← find matching object model(keypoints)
elected← filter isolate points(matches)
bb← compute bounding box from points(elected)
for each kp in keypoints inside bb do

update object model(kp)
end for

end for

walk step around object()
keypoints← extract keypoints(robot camera)
matches← find matching object model(keypoints)
center ← compute gravity center(matches)
robot center sight(center)
i← i + 1

end while

IV. EXPERIMENTS

A. Encircling

In order to test our integrated recognition system (visual

perception, machine learning and HRI), we needed to recre-

ate a realistic test environment. First of all, we characterize

the environment and the kind of object the humans would

teach to robot in a home environment. To us, these objects

will probably be everyday objects which can be found for

instance in a living room. We can then define two main

groups of objects:

• small, light and carryable objects as a newspaper, keys

or a ball

• bigger, fixed objects as a plant or a plug

We think that the first categories will represent the most

important part of taught objects. Furthermore, they also

probably are the hardest to recognize due to the background

changes. To our knowledge, the most matching database

would be the ETH-80 image set. However, this database

uses class object and not only instances. Furthermore, a

neutral background is used which is not representative of

unconstrained environments. The point of view is also quite

similar from one image to another, while the robot will have

to recognize an object from different points of view. Thus, we

decided to create our own database with a special attention to

our criteria. We chose 20 different everyday objects, which

are rather small, carryable and well-textured. As our objects

are carryable, we must be able to recognize them in spite of

their location, i.e. with different backgrounds. So we chose

five different backgrounds (on the ground, on a desk, at a

window, in front of a bookcase and in the kitchen) and took

two pictures by object and by background. So, finally we

got 10 images by object taken with different points of view

but at the rather same height (figure 10). Every images has

been roughly segmented with a stroke encircling the object.

Our database is deliberately rather small because we want to

be able to recognize an object with few learning examples

provided by the user. To us, ten user’s examples seems to

already be a maximum in order to keep an nonrestrictive

interaction. The image were taken and encircled by the

authors. Furthermore, they were taken with the camera of

the iPhone, and converted to a low resolution (320x240) to

correspond to a common resolution.

Fig. 10. Several examples of a specially constructed objects database
corresponding to the kind of objects we think an human would like to teach
to its robot (everyday object, small and carryable). The images were taken
with different backgrounds in order to be able to recognize objects in spite
of their location.



In order to test our recognition system, we use the follow-

ing experimental protocol.

• We randomly choose N images per object.

• We train our learning system with these images.

• We test our learning system with the other images (10

- N images per object).

• The test is repeated 20 times in order to circumvent the

randomize effect.

• The final results are the mean recognition rate of each

test.

As shown on the figure 11, encircling the objects allows

us to improve the recognition rate by 20% in average. So,

we can see that we the recognition rate maximum (about

80%) was reached by giving six encircled learning examples,

while the maximum with nine full images was not reached.

By simply encircling the objects on the screen, the user can

improve our recognition system and in particular can achieve

robust recognition with fewer learning examples. Thus, we

can reduce the number of user’s interventions.

Fig. 11. We can notice that with the encircled images, we have a recognition
rate superior of 20% in average than with the full image. Thus, we reach
the maximum recognition rate faster (from the sixth encircled example with
encircled image while it is still not reached with nine full learning examples).

However, our images were here not gathered in “real”

conditions. Indeed, the images were not taken with a robot

by non-expert users. Nevertheless, we try to reproduce a

plausible interaction, by taking pictures with possible angles

of view, with a common resolution for camera... Furthermore,

the encircling was done by the authors. Thus, we should, in

a future experience, test if non-expert users would provide

as good inputs, as were given by the expert users and see if

we can get the same results.

B. ASMAT

As mentioned above, we developed a system to automat-

ically get a larger set of learning examples by making the

robot turn around the objects. We try to evaluate the impact

of such a method on the learning process. So, we designed an

experiment where a user taught four different objects to the

robot by encircling them on the screen of an iPhone. Then,

the robot automatically turned around the object. At each

step, the robot moves sideways and forward. Then it turns

in order to recenter its sight on the center of the tracked

objects. Then we take five snapshots with lightly different

positions of the head. We repeat this operation five times, so

25 images were taken by learning example. For each object,

the user give five different learning examples with different

points of view of the object. We define two conditions:

• In condition A, we only use the first image (the one

encircled by the user) to train our recognition system.

• In condition B, we use all the 25 images labelled using

our ASMAT system to train the recognition system.

We then used a similar database as the one used above (5

backgrounds, 2 images per background and per object), with

our four objects to test the quality of the learning.

As we can see on the figure 12, with the condition A, we

have a linear progression of the recognition rate according

to the number of learning examples : with five learning

examples we reached about 60% of recognition. With the

condition B, we can notice a really fast increase of the

recognition rate. A maximum (about 80%) is reached from

the second learning examples. We can also notice that this

maximum is not reached with the condition A even after the

fifth examples. Thus, the ASMAT system seems to allow the

getting of a robust and reliable model of an object with really

few user’s interventions.

Fig. 12. Recognition rate according to the number of examples given by
the user. We define two conditions, one with the ASMAT, the other without
it. We can notice that by using this system, we can get a more accurate
model of an object with fewer user’s learning examples.

V. CONCLUSION AND FUTURE WORKS

A. Conclusion

Our proposed system, based on a combination of advanced

HRI, visual perception and machine learning methods, allows

non-expert users to intuitively and robustly teach new words

to their robot. By using the touch-screen to transfer informa-

tion, we have developed collaborative interactions, improving



the mutual understanding between the robot and the human.

We also showed that the interface may help the user to

provide good learning examples which will thus improve the

whole learning system.

B. Future works

In future works we will try to evaluate the impact of

different interfaces on the learning by designing a compar-

ative user’s study with different kind of interfaces (with an

iPhone, with a laser pointer and with direct interactions). We

will compare them with a “learning quality” measure, but

also with satisfaction questionnaires to assess their usability.

It would also be interesting to evaluate the impact of the

ASMAT system on the user’s experience, especially with

non-expert users. Thus, it could enhance the interaction, by

making it more lively and more entertaining for the users. On

the other hand, the extra time taken to do the active learning,

may fatigue users.

Then, we will use a vocal naming system and so we

will have to be able to compare two vocal words. We

will also allow the user to improve the learning through

collaborative interactions, where he could help the clustering

of the different learning examples, and try to evaluate the real

impact of such a feature.
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[21] P. Rouanet, J. Béchu, and P.-Y. Oudeyer, “A comparison of three
interfaces using handheld devices to intuitively drive and show objects
to a social robot : the impact of underlying metaphors,” RO-MAN,
2009.

[22] G. Csurka, C. Dance, L. Fan, J. Williamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in ECCV04 workshop on

Statistical Learning in Computer Vision, 2004, pp. 59–74.
[23] J. Wang, R. Cipolla, and H. Zha, “Vision-based global localization

using a visual vocabulary,” in Proceedings of the 2005 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), 2005.
[24] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “Real-time

visual loop-closure detection,” in Proceedings of the International

Conference on Robotics and Automation (ICRA), 2008.
[25] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust

features (surf),” Comput. Vis. Image Underst., vol. 110, no. 3, pp.
346–359, 2008.

[26] D. Filliat, “Interactive learning of visual topological navigation,” in
Proceedings of the 2008 IEEE International Conference on Intelligent

Robots and Systems (IROS 2008), 2008.
[27] J. Sivic and A. Zisserman, “Video google: A text retrieval approach

to object matching in videos,” in IEEE International Conference on

Computer Vision (ICCV), 2003.
[28] D. Schmalstieg, L. M. Encarnaç ao, and Z. Szalavári, “Using trans-
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