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Abstract

In this paper we present a method to robustly detect circular arcs in a line drawing image. The method
is fast, robust and very reliable, and is capable of assessing the quality of its detection. It is based on
Random Sample Consensus minimization, and uses techniques that are inspired from object tracking in
image sequences. It is based on simple initial guesses, either based on connected line segments, or on
elementary mainstream arc detection algorithms. Our method consists of gradually deforming these circular
arc candidates as to precisely fit onto the image strokes, or to reject them if the fitting is not possible, this
virtually eliminates spurious detections on the one hand, and avoiding non-detections on the other hand.

1 Introduction

Finding circular arcs is one the recurring problems in graphical document interpretation or symbol recognition.
The main difficulty with the existing approaches is that they often are of considerable complexity (e.g. Hough-
like [6] or feature grouping approaches [2]) sensitive to image quality, line thickness, or rely on a number of
user defined parameters or thresholds that make them extremely difficult to apply to generic problems or on
heterogeneous document sets.

The approach developed in this paper reduces the set of needed parameters to a minimal set of very elemen-
tary and visually significant values and can be applied without prior knowledge of the document set, regardless
of line widths, connectedness or complexity. It relies on elementary (3,4)-distance transform skeletonization [9]
and segment detection [7]. Unlike extremely efficient methods like [4], ours does not require reasonable seg-
mentation of arcs. This work is tightly related to [5].

The following section establishes how to determine if a single circular arc is present, provided we have a
rough initial guess of its position, and how to robustly detect and locate it using RANSAC (Random Sample
Consensus [3]). Section 3 then explains how to generalize to detecting and localizing any number of circles,
without a priori knowledge of their position. The last two sections conclude by eliminating spurious detections
and by establishing the limits of the approach.

2 Determining the Presence of a Circular Arc

In this section we address the problem of detecting a circular arc, given an initial estimate of its center (xc, yc),
its radius σ, and its two endpoints pl and pr

1. This estimate, as we shall see further, can be very approximate.
The main goal, in this first stage, is to detect whether or not, an arc is present in the image, near the vicinity of
the given parameters.

2.1 General Algorithm

We are mainly exploiting the algorithm described in [5], with one major adjunction. The cited method has been
developed to identify and locate full circles, and therefore only needs to consider adapting to two variables:

1In this document we shall conveniently ignore the fact that there is a small ambiguity with defining an arc by the center of its
corresponding circle, the radius and the endpoints: one also has at least the orientation of the arc to consider as to know what part of
the circle between the two endpoints is belonging to the arc, and which part isn’t.



Figure 1: Example of circle hypotheses: in blue, the initial guess; in green, points correctly lying on the
conjectured circle; in red, point closest to the circle.

the center (xc, yc), and the radius σ. This is not the case anymore for detecting arcs, since two parameters are
added: pl and pr, the left and right endpoints.

The general approach we develop consists of taking the set P = {pi} of all pixels pi lying on the discrete
circular arc A0 defined by (xc, yc), σ, pl and pr. As in, [5], we define, for each of these pixels pi, the discrete
line ∆i, starting at (xc, yc), and passing through pi. Let qi be the pixel on ∆i that is the closest black pixel to
pi. Let Q0

a = {qi}. Q0
a therefore is the set of all black pixels closest to the initial estimate A0 in the direction

of the circle radius.
Figure 1 gives an illustration of this estimation. Initial guesses are drawn in blue. For each conjectured

circle, green pixels are those found at the correct distance from the center, while red ones lie on the radius and
are closest to the circle.

Now, let C1 be the best fitting circle over Q0
a (any criterion can be used, but we are using the Least Median

of Squares – cf. section 2.2), and let us generalize the previous step, such that Qt
c contains the set of all black

pixels closest to the theoretical circle Ct in the direction of the circle radius (and similarly for Qt
a).

By construction, Qt
a ⊂ Qt

c, and while this new set of points allows for a re-estimation of (xc, yc), σ, the
other parameters pl and pr need to be re-evaluated as well. The approach is the following:

Let τ t be the error measure between At and Qt
a. i.e. τ t represents the fitness between the model At and its

corresponding data Qt
a. Let At

< ⊂ At a smaller circular arc2 than At such that τ t
< > τ t and that

∀At⋆|At
< ⊂ At⋆ ⊂ At : τ t⋆ < τ t. (1)

In other terms, At
< is a smaller arc that fits the dataset better than At and all intermediate arcs fit less. This

means that At
< is the largest sub-arc fitting the data better than At.

2“smaller” meaning having the same center and radius, but having a smaller aperture while being fully included in the “larger” one.



We do a similar search by increasing the arc size thus obtaining At ⊂ At
> a larger circular arc than At such

that τ t
> > τ t and that

∀At⋆|At ⊂ At⋆ ⊂ At
< : τ t⋆ < τ t, (2)

At
> thus being the smallest super-arc fitting the data better than At.
We can then define At+1 as being the argmaxτ

{

At
<,At,At

>

}

. Continuing this iteration until At = At+1

will yield the best estimate of the arc (if any) closest to the initial A0.
In the following sections we detail the different steps of this general approach.

2.2 Using RANSAC and LMedS

Since there is no guarantee that any At or Qt may effectively contain points that form a circle, it may be
extremely hazardous to use global minimization approaches (like Least Squares, for instance) [8]. It is known
that these estimators are very sensitive to outliers or spurious data that does not conform to the required model
[1]. Using these functions would invariably lead to degenerate convergence.

RANSAC [3] is much better suited for fitting very noisy data – especially data containing measures that
do not belong to the model that is to be estimated – The approach consists of selecting the strict minimum of
data points required for estimating an instance of the model (e.g. three points for estimating a circle) and then
computing the residual error of the other data points to this model. This is done a number of times, and the final
model is the one with the lowest residual error.

More formally: let Qt be the set of model points. Qt supposedly, and in the worst case, contains a ratio of
τ outliers. Let qn, q′n and q′′n be three random points belonging to Qt, and let Cn be the circle defined by and
passing through qn, q′n and q′′n. Let δ (C, p) be the distance of a point p to a circle C, and let Medτ (S) be the
τ -quantile median value of the set S. We then define the residual error of a set of model points Qt to a circle
Cn as

RsdErr
(

Qt, Cn

)

= Medτ

({

δ (Cn, p) |p ∈ Qt
})

. (3)

RsdErr gives the maximum distance of a set of points to a circle, discarding a proportion of τ outliers.
With RANSAC we choose R random subsets of 3 points within Qt, each giving rise to the computation of a

circle Cn. For each subset, we compute the corresponding RsdErr
(

Qt, Cn

)

, thus obtaining

Ct+1 = argmin
Cn,n∈[1...R]

(

RsdErr
(

Qt, Cn

))

. (4)

The number of required subsets can be formally deduced from both the quality of the data (expected rate of
outliers τ ), the dimensionality of the problem (here 6, since we need three points for estimating a circle, each
point having two dimensions) and the required confidence in the result [3].

3 Robust Arc Detection

The previously presented method does a very good job of robustly determining whether there is a circular arc
close to a given center and radius (xc, yc) and σ. However, it needs some initial guess on where to search. The
method we are developing here proceeds in three main phases:

1. Generate a high number of possible arc candidates, without consideration of uniqueness, overlapping or
exact localization.

2. Verify the quality of each candidate using the approach described in section 2. The output of this verifi-
cation is a list A of genuine arcs, correctly fitted on the image data.

3. Detect and merge multiple and/or partial detections of the same curves as to obtain a set of unique,
disjoint arcs.



3.1 Arc Candidate Generation

In order to obtain the largest possible set of arc candidates, we automatically segment the image using a basic
Rosin & West line segment vectorization [7]. We then simply enumerate all connected pairs of segments. Each
pair gives us three points, which is exactly the amount of data that allows for getting an initial guess for a
circular arc: (p1, p2, p3). These points define a unique circle on the one hand, and furthermore, since they are
ordered – p2 being in the middle – they define the left and right extrema for the definition of an arc.

This approach is combined with direct arc detection from [7] as to produce the largest possible set of arc
candidates to bootstrap our localization method (cf. section 2).

3.2 Merging of multiple detections

Since the method is based on unfiltered hypothesis generation, it has a clear tendency toward over-segmentation,
as shown in Figures 2 and 3. The main idea behind being tolerant towards this over-segmentation is to be
confident that (almost) all image pixels belonging to an arc are covered by at least one initial arc candidate.
Merging arcs should therefore result in a full coverage of each arc of the image by one unique, genuine arc.
The middle column of Figures 2 and 3 show the results of the hypothesis generation. We can see that some of
the arcs are covered by several arc estimates and that some others are covered by adjacent - but not necessarily
overlapping - sectors. Merging arc candidates representing the same circular arc in the image requires two
distinct operations: merging estimates covering the same pixels and merging arc candidates not sharing the
same pixels but being partial estimates of a same wider arc. These two operations can be performed by first
increasing the aperture of the arcs (cf. section 3.2.1), thus making hypothetical arcs share pixels, and, secondly,
merging the arc candidates sharing pixels (cf. section 3.2.3). For merging arcs, we do not use the full circle
image, but the image skeleton [5].

3.2.1 Increasing Aperture

To increase the aperture of an arc, we first set a threshold to the maximum distance between a point from the
discrete hypothetical arc and the closest pixel, as shown in Figure 4, where the distance is measured on the line
going through the center of the hypothetical arc and a point on the hypothetical arc.

The increase of the aperture of an arc is done by starting from the endpoints of the candidate arc pl and
pr and then increasing the aperture pixel-wise, as long as the distance to the closest pixel remains below the
threshold.

3.2.2 Finding Which Arcs to Merge

Once the set of maximal arc candidates obtained, overlapping ones or those lying on the same image curve
need to respond to the following criteria in order to be merged:

1. A non-empty intersection between two arcs means that these two arcs are likely part of a same covering
arc. However two arcs having common closest pixels are not necessarily sub-arcs of a same arc as shown
in Figure 5.

2. Arcs having comparable radii are merge candidates. This is checked through a radius ratio with the
formula:

|r1 − r2|

max (r1, r2)
< RatioRadiusError. (5)

Checking the center of the circle is less robust since small changes in curvature may be visually insignif-
icant, but generate large differences in the center position.



Figure 2: GREC 2007 contest images: original image (left) – initial hypotheses (middle) – final segmentation
(right)



Figure 3: GREC 2007 contest images: original image (left) – initial hypotheses (middle) – final segmentation
(right)



Figure 4: Distance between a point of the hypothetical arc and the closest pixel: in blue the hypothetical arc;
in Grey, image pixels; in green, distance between a point on the hypothetical arc and the closest pixel; in red,
threshold

3. Arcs having opposed normal vectors (cf. Figure 5) are not eligible for merging, even though they may
overlap. This criterion is verified by choosing a point I from the overlapping part of two arcs, and
constructing a vector

−−→
IO1 that originates from I and finishes at O1 the center of the first arc, and defining

similarly a vector
−−→
IO2. We then compute the scalar product of these vectors:

−−→
IO1 ·

−−→
IO2 = |

−−→
IO1||

−−→
IO2| cos θ (6)

If the sign of the product is positive, we consider that the two arcs stem from the same covering one.

O1O2 I

Figure 5: Intersection of arcs with opposed curvature signs or with significantly different radii

Once these criteria are verified, three different configurations may occur for merging. They are depicted in
Figure 6. In configuration A the two arcs are “adjacent” sharing some pixels, in configuration B one arc includes
another and in configuration C the two arcs are “explementary”. The covering arc is formed by considering that
the two arcs belong to the same circle. Therefore the resulting arc is the union of the two arcs as if they had the
same center and the same radius, in other words, the computation of the arc’s angle and aperture is based on
the angles and apertures of the two arcs.

3.2.3 Merging Arcs

The last phase consists of creating the final, genuine arcs by merging the selected candidates corresponding
to the previously described criteria. The method developed here tries to find the three points of the equilateral
triangle which is circumscribed by the merged arc circle. This increases the odds of having the best fitting circle
as with this method we avoid choosing either noisy or numerically instable points. This procedure begins by
choosing either the arc 1 or 2, and then computes the edge length of the circumscribed equilateral triangle

edgeLength = 2ri sin
π

3
, (7)

where ri is the radius of the circle.



Figure 6: Intersection configurations (top) and corresponding covering arcs (bottom). Configurations are la-
beled from left to right: A,B and C.

Now, let Ri be the subset of image curve points (Q) which are close to the arc candidate Ci

R = {p ∈ Q|δ (C, p) < RsdErr (Q, C)} . (8)

We can then define a partitioning of the points (D1 and D2) belonging to the two arc candidates, as well as their
intersection I

I = R1 ∩R2,D1 = R1\R2,D2 = R2\R1. (9)

We then define p3 and p1 such that

p3p1 = min
pi∈I,pj∈D2

|edgeLength − pipj | (10)

and find p2 such that
p2p3 + p2p1 = max

pi∈D2

(pip3 + pip1). (11)

If we consider that the initial arcs belong effectively to the same circle, this method constructs the equilateral
triangle and gives three points of a same circle. The more the three points are distant from each other, the more
accurate the construction of the new circle is.

In fact, we are likely to find a better distributed set of three points over a circle if instead of using D1 and D2

we use R1 and R2.

4 Experiments

Figures 2 and 3 show results on the GREC 2007 contest images. The initial images are in black, while detected
arcs are in Grey (right column). In most cases all the arcs are detected, however in some cases, we can see that
the arc estimate might partially cover the image arc. We can overcome this by increasing the “actual” angle as
far as filterCoverage holds for the arc. In one example, some arcs are not detected, as no corresponding
hypotheses are supplied as shown in Figure 2, and some arcs get merged improperly. This can be avoided by
tuning the likelyOnSameArc check, as described in the next section.



4.1 Parameters and their Influence

The parameter likelyOnSameArc verifies whether the two arcs are partial estimates of a same arc by check-
ing the criteria defined in 3.2.2. To compare two arcs radii, the RatioRadiusError 64% makes the merge possible
for most arcs having common black pixels and avoids merging arcs with significantly different radii as shown
in Figure 7. For the image in Figure 7 65% was too high and resulted in a loss of precision as shown within the
red rectangle.

Figure 7: RatioRadiusError tuning;the original image;64% filter; 65% filter

The filterCoverage parameter is used to keep only those arc candidates that have a sufficient per-
centage of pixels effectively lying on pixels of the image. This process uses the original image instead of the
skeleton image. The coverage percentage of filterCoverage is set to 89% to ensure keeping only accurate
estimates.
preFilterCoverage checks if the percentage of pixels of the discrete estimate of the given arc lying

effectively on black pixels of the original image, oversteps a cover percentage and returns a boolean. This pro-
cess uses the original image instead of the skeleton image. The cover percentage of preFilterCoverage
can be lower than the cover percentage defined for filterCoverage, as some intermediate arcs that do not
withstand the cover percentage of filterCoverage might be merged with another arc resulting in an arc
that does withstand the cover percentage of filterCoverage. The percentage 89% proved to be a good
value for the cover percentage of preFilterCoverage, while 90% removed some good circles as shown
in Figure 8

Figure 8: Cover percentage tuning;the original image; 89% filter; 90% filter

The merging algorithm can be improved by increasing the aperture of the arcs “virtually’. In other words,



each arc has two angles and two apertures. The “virtual” angle and aperture are those which are increased and
used to check if two arcs have to be merged. The actual angle and aperture are not changed. In fact, while in-
creasing the actual aperture, the discrete arc of an estimate might no longer withstand the preFilterCoverage
processing, as it is likely to have more pixels that are not black. Thus by keeping the initial angle and aperture
unchanged we maintain arcs that were not merged. Moreover when performing the merge, the points used to
construct the new arc are from the closest points of the actual arc, which is more accurate especially if we
choose the points from those who belong as well to the black pixels of the image. The “virtual” increase uses
the threshold defined in 3.2.1, namely a value of 3.

5 Conclusion and Further Work

In this paper we have presented a highly efficient and complete arc detection algorithm that needs extremely
few parameters or contextual knowledge to operate. We have validated it on quite difficult images, coming
from the GREC 2007 contest. Further work will include stroke width integration in order to obtain a more
precise localization of the arcs, as well as a more quantitative assessment of the positioning and localization of
the detected arcs.
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