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Abstract: In this paper we use stochastic geometry to propose
two models for Aloha-based linear VANETs. The first one uses
Signal over Interference plus Noise Ratio (SINR) capture condition
to qualify a successful transmission, while the second one expresses
the transmission throughput as a function of SINR using Shan-
non’s law. Assuming Poisson distribution of vehicles, power-law
mean path-loss and Rayleigh fading, in these models we derive
explicit formulas for the mean throughput and the probability
of a successful reception at a given distance. Furthermore, we
optimize two quantities directly linked to the achievable network
throughput: the mean density of packet progress and the mean
density of information transport. This is realized by tuning the
communication range and the probability of channel access. We
also present numerical examples and study the impact of external
noise on an optimal tuning of network parameters.

Index Terms—VANETs, MAC (Medium Access Control) Layer
Optimization, Throughput

I. INTRODUCTION

VANETs are important because they can help to increase

safety on our road networks. However they are difficult to study

through simulations because they can encompass a very large

number of nodes which are usually highly mobile. Additionally,

their node density can also vary rapidly. Consequently there has

been increasing interest by the research community in analytical

modeling of VANETs. Such an analysis would be of great use

to design efficient and reliable VANETs.

Several current wireless communication networks use Carrier

Sense Multiple Access (CSMA) or a variant as their MAC

protocol. While CSMA is in common use, it is difficult to

study analytically because it leads to complex patterns of nodes

transmitting simultaneously. In contrast the Aloha protocol

leads to simpler patterns, if we assume that the vehicle positions

follow a spatial Poisson process.

Since Aloha is easier to study analytically than CSMA, we

have chosen it as the MAC protocol for our linear VANET.

We believe that the analysis presented in this paper will be

of help to anyone studying the characteristics of VANETs and

designing applications, protocols and hardware for them. In

other words, we believe that this paper provides a solid insight

into dependence of the network behavior on key parameters

such as the node density, probability of medium access or

typical communication range.

II. RELATED WORK

There have been several simulation studies of VANETs, in

particular using CSMA-based MAC schemes. However, to the

best of authors’ knowledge, there are not many publications

on the analytical study of linear VANETs with a solid inter-

ference model and SINR dependent performance metrics. A

few analytical studies of CSMA techniques in two-dimensional

(2D) MANET networks can be found such as [3], but with a

very simplified interference models. For a precise interference

model, the analysis of (slotted) Aloha is much easier as

compared to a similar analysis of CSMA. However most of the

studies of Aloha are for 2D MANET networks such as [5, 6].

The contribution of this paper is a rigorous analysis of some

linear VANET models using (slotted) Aloha as their access

scheme. The basic network and interference model, described in

Section III-A, as well as the mathematical tools for its analysis

are borrowed from [1] and [2]. Specifically, in Section III-B

we analyze the network performance under a SINR capture

(non-outage) condition, while in Section III-C we assume that

the channel throughput is given by the famous Shannon’s

log(1 + SINR) law. In both cases, we optimize the global

network throughput using the transmission range and Aloha

medium access probability. In contrast to the 2D situation

this optimization in 1D does not degenerate. We also study

the impact of external noise on this optimization. Section IV

discusses the numerical examples, followed by the conclusion

in Section V.

III. A STOCHASTIC MODEL FOR A LINEAR VANET

A. Network and Interference Model

The model and the mathematical tools are borrowed from [1]

and [2]. We consider an infinite linear network. Let Φ =
{(Xi, ei)} be a marked Poisson point process with intensity

λ on the line R, where

• Φ = {Xi} denotes the locations of vehicles,

• {ei}i is the medium access indicator of station i; ei = 1
for the station which is allowed to emit and ei = 0 for the

station which is not allowed to emit. The random variables

ei are independent, with P(ei = 1) = p.

Note first that Φ can be represented as a pair of independent

Poisson p.p. representing emitters Φ1 = {Xi : ei = 1}, and

nodes Φ0 = {Xi : ei = 0} which are not allowed to emit (at

a given time slot). These processes have intensities of λp and

λ(1 − p) respectively.

For simplicity we assume that each transmitting vehicle (in

Φ1) uses the same transmit power S, with a default value of

S = 1 W. To compute the mean received power (without fading

effects) we use the attenuation function l(r) = (Ar)−β where r
is the distance between the emitter and the receiver. We assume

that A = 1 without loss of generality. Our mathematical linear

model of the network requires β > 1 (in order for the sum of

all powers received at a given location to have a finite mean).

Typically beta is larger than 2 and our default value is β = 4.



We also take into account a random fading F(x,y) between

two vehicles located respectively at x and y. Thus, the ac-

tual signal power decay between these two vehicles will be

F(x,y)l(|x − y|). Throughout the paper we assume that the

values of F(x,y) are independent and exponentially distributed

identically with a mean 1/µ, which corresponds to the situation

of independent Rayleigh fading.

We also consider an independent external noise (i.e., inde-

pendent of Φ, e.g., thermal) and denote it at (a given location)

by W .

We assume that each vehicle in Φ transmits towards its

own receiver located within the distance R from it (and

not represented in Φ). This is sometimes called the “bipolar

network model” in contrast to the model where each emitter in

Φ1 chooses its receiver within Φ0. It allows us to study essential

network performance characteristics at the medium access level

without modeling particular routing schemes.

Suppose that a vehicle located at x transmits a signal with

power S that is received by a vehicle located at y. The Signal

over Interference plus Noise Ratio (SINR) of this communica-

tion will be

SINR(x,y) =
SF(x,y)l(|x− y|)

W + IΦ1(y)
(3.1)

where IΦ1 is the shot-noise process of Φ1: IΦ1(y) =
∑

Xi∈Φ1 SF(y,Xi)l(|y −Xi|).
In what follows we will present the analysis of the network

performance assuming first some particular coding scheme that

requires SINR to be larger than some threshold T (SINR

capture (non-outage) condition) for the successful transmission

at a fixed given bit-rate. Later, in subsection III-C, we will

assume an adaptive coding scheme in which, for a given SINR

level, the appropriate choice of the coding scheme allows us to

obtain a bit-rate close to that given by Shannon’s law.

B. SINR capture

In this section we assume a fixed given bit-rate and that y
successfully receives the signal form x if

SINR(x,y) ≥ T , (3.2)

where SINR(x,y) is given by (3.1) and T is the SINR-threshold

related to the bit-rate given some particular coding scheme.

Let us denote the indicator that (3.2) holds by δ(x, y,Φ1).
Note that by stationarity of Φ1, the probability E[δ(x, y,Φ1)]
depends only on the distance x − y and not on the specific

locations of (x, y); so we can define the probability of reception

p|x−y|(λp) = E[δ(x, y,Φ1)] , where λp is the intensity of the

emitters Φ1. Note also that this probability depends on λ and

p only through their product λp and thus it is enough to find

its expression for p = 1. The following result is crucial for the

whole of our network analysis. It is inspired by the analogous

result obtained for 2D networks in [1].

Proposition 3.1: Assume p = 1. The probability of the

successful transmission is equal to

pR(λ) = exp

{

−
2πλRT

1

β

β sin(π/β)

}

ψW (µT/l(R))

where ψW (ξ) = E[e−ξW ] is the Laplace transform of the noise

W .

Proof: The proof goes along the same lines as given for

the 2D case in [1]. Specifically,

pR(λ) = P(FS ≥ T (W + IΦ)/l(R))

=

∫ ∞

0

e−µsT/l(R) d Pr(W + IΦ ≤ s)

= ψIφ
(µT/l(R))ψW (µT/l(R)) ,

where ψIφ
denotes the Laplace transform of the Poisson shot

noise. It is known that (it can be derived from the formula for

the Laplace functional of the Poisson p.p. (see e.g. [4, p. 61])

and was already used in 2D in [1]).

ψIΦ
(ξ) = exp

{

− 2λ

∫ ∞

0

1 − E

[

e−ξSFl(|x|)
]

dx

}

.

Introducing the exponential distribution of the fading and S=1

we obtain:

ψIΦ
(ξ) = exp

{

− 2λ

∫ ∞

0

1 −

∫ ∞

0

µe−ξul(|x|)e−µudu dx

}

= exp

{

−
2πλξ1/β

µ1/ββ sin(π/β)

}

.

Consequently,

ψIΦ
(µT/l(R)) = exp

{

−
2πλRT

1

β

β sin(π/β)

}

.

This concludes the proof.

Note that if W = 0 then ψW (ξ) ≡ 1 and the formula for the

successful reception probability simplifies to

pR(λ) = exp

{

−
2πλRT

1

β

β sin(π/β)

}

.

In the remaining part of this section we will consider a

general medium access probability 0 ≤ p ≤ 1. Recall, in this

case the corresponding reception probability is equal to pR(pλ).

Using Campbell’s formula (see [8]) we can express the mean

total number of successful transmissions per unit length of the

network (the density of successful transmissions) by λppR(λp).
Moreover, the mean progress of the typical transmission is

simply equal to RpR(λp).

In the remaining part of this section we will be mainly

interested in the mean density of progress dprog , defined as

the expected total progress of all the transmissions per unit

length of the network and per time slot. Again, by Campbell’s

formula, it can be expressed by dprog(R, λ, p) = λpRpR(λp).
This metric is interesting because it is directly linked to the

network throughput i.e., number of bit-meters transmitted per

unit length of the network and per unit of time.

In the following result we optimize this metric in p. Let us

denote a critical communication range by

R∗ =
β sin(π/β)

2πT
1

β λ
.

Proposition 3.2: If R ≥ R∗ then the value of p that



maximizes the mean density of progress dprog(R, λ, p) is given

by

p∗ =
β sin(π/β)

2πT
1

β λR
= R∗/R

and the maximum value is equal to

dprog(R, λ, p
∗) =

β sin(π/β)

2πeT
1

β

ψW (µTRβ) . (3.3)

If R ≤ R∗ then p∗ = 1 and

dprog(R, λ, p
∗) = λR exp

{

−
2πλRT

1

β

β sin(π/β)

}

ψW (µTRβ) .

(3.4)

Proof: The result follows from Proposition 3.1 by differ-

entiating the explicit formula for mean density of progress with

respect to p.

We now consider the optimization of the mean density of

progress jointly in p and R.

Proposition 3.3: If W > 0 (with non-null probability) then

the maximum (in p and R) of the mean density of progress

dprog(R, λ, p) is equal to

max
R∈[0,R∗]

{

λR exp

{

−
2πλRT

1

β

β sin(π/β)

}

ψW (µTRβ)

}

(3.5)

and is attained for p∗ = 1 and an R that maximizes the

expression in (3.5). In the absence of noise (W ≡ 0) the

maximal mean density of progress dprog(R, λ, p) is equal to

β sin(π/β)/(2eπT
1

β )

and is attained whenever pR = R∗ with R ≥ R∗.

Proof: The result follows directly from Proposition 3.2. If

W > 0 then ψW (µTRβ) is strictly decreasing function of R
and the maximum of (3.3) with R ≥ R∗ is attained for R = R∗.

Moreover, the value of (3.4) with R = R∗ is equal to the value

of (3.3) with R = R∗. Consequently the maximum is attained

for some R ≤ R∗ and thus p∗ = 1. If we assume now that

W = 0, then ψW ≡ 1. It is then easy to show that the maximum

of (3.4) on the interval R ≤ R∗ is attained for R = R∗ and

is equal to the value of (3.3) with ψW ≡ 1. Consequently the

optimal choice of p and R is R ≥ R∗ and p = R∗/R. This

completes the proof.

We will make a few remarks regarding the result presented in

Proposition 3.3.

Remarks: 1) Our linear VANET model can be optimized

(with respect to the mean density of progress) jointly in the

communication range R and in the medium access probability

p. This is in contrast to the 2D situation considered in [1].

In this latter case the maximum in p of the mean density

of progress is of order O(1/R) and joint optimization in p
and R is attained at R = 0 and p = 1, in which case the

density of progress is equal to ∞. This solution is of course

not acceptable from a practical point of view. The difference

between linear networks and 2D networks comes from the

fact that in the latter, a transmission “consumes” an area of

order O(R2) and the progress is equal to R — a situation that

leads to the optimal network consisting of dense packing of

small-range communications. In linear networks a transmission

“consumes” a length of O(R) and the progress is also R. Thus

the optimization of the density of progress does not degenerate.

2) If the external noise is not negligible (W > 0) then

the best choice of VANET parameters requires some optimal

communication range R ≤ R∗ but nog access control (p∗ = 1).

Note that R∗ ≤ 1/(2T 1/βλ) and thus the optimal choice of R
may be smaller than 1/λ i.e., the mean distance between two

points of Φ, especially when T is not too small as it is the

case in the absence of sophisticated interference cancellation

techniques like spreading or CDMA. (For example, for β = 4
and T = 1, R∗ is 1/4th of the mean inter-point distance.) There

is some concern about the pertinence of such a network model.

In reality the receiver is chosen by the routing scheme among

the neighbors of the emitter and thus a reasonable choice of R
should be at least of order 1/λ. This might suggest a protocol

closer to that of a “delay tolerant network” (that is transmit

only when neighboring vehicles are sufficiently close).

3) If the external noise is negligible (W = 0) then the

VANET network designer is allowed to choose arbitrarily

R ≥ R∗ and tune the medium access parameter p∗ = R∗/R
correspondingly. The numerical examples considered in Sec-

tion IV suggest that the noise of order of W = 10−10 mW and

smaller can be neglected, while W = 10−6 mW cannot. 1

C. Optimal Adaptive Coding

In Section III-B we have assumed that a transmission (of a

given bit-rate) either fails or is successful and this latter holds

true if the SINR is above some given threshold T . In this section

we consider a situation in which for any value of SINR some

communication is feasible with the bit-rate τ that depends on

this value of SINR. This assumption corresponds to an adaptive

coding in the channel: if the SINR is high, the coding can be

’loose’ and thus the bit-rate is high, whereas with a small SINR

the coding must be ’tight’ and thus the throughput is low.

Link adaptations and turbo codes permit us to approach

the well known theoretical maximal-bit rate of the Gaussian

channel (AWGN) B log(1 + SINR) where B is the channel

bandwidth 2. Inspired by Shannon’s law, and assuming for

simplicity that B = 1, we now say in our VANET model that

the vehicle at y receives the signal from the vehicle at x with

the throughput (bit-rate) given by

D(x, y,Φ1) = log(1 + SINR(x,y)) , (3.6)

where SINR(x,y) is given by (3.1). Note again that by station-

arity of Φ1 the mean throughput

τ(R, λp) = E[D(x, y,Φ1)]

depends only on the distance |x − y| = R and not on the

specific locations of (x, y); recall that λp is the intensity of the

emitters Φ1. We can now prove the following basic result for

our VANET model with adaptive coding.

1A recent study [7] of vehicle-to-vehicle wireless channels suggests the noise
order of magnitude 10

−10.27 mW.
2With the loss of a few dB in SINR



Proposition 3.4: Assume p = 1. The mean throughput is

equal to

τ(R, λ) = β

∫ ∞

0

exp

{

−2πλRv

β sin(π/β)

}

vβ−1

1 + vβ
ψW (µRβv)dv .

Proof: The proof goes along the same lines as given for

the 2D case in [2]. First note that

E[log(1 + SINR)] =

∫ ∞

0

P{log(1 + SINR) > t} dt .

Substituting,

P{log(1+ SINR) > t} = P{SINR > et − 1} = pR(λ, et − 1),

where we introduce into the previous notation of pR the explicit

dependence on T = et − 1, and obtain

τ(R, λ) =

∫ ∞

0

pR(λ, et − 1) dt.

Using Proposition 3.1 and substituting (et − 1)1/β = v the

expected result is obtained.

We can now define an important metric; analogous to the

mean density of progress considered in the previous section.

We will call the mean density of transport dtrans the expected

number of bit-meters transported by the unit length of the

network per unit of time. By Campbell’s formula it can be

expressed in our network as

dtrans(R, λ, p) = Rλpτ(R, λp).

Recall that this metric is related to the achievable network

throughput under the second model (based on Shannon’s law).

In what follows, we characterize the choice of the network

parameters R and p that maximize dtrans. Using the result of

Proposition 3.4 it can be shown that Rτ(R, λ) converges to 0
when R→ 0, as well as, when R→ ∞. We conjecture that:

(C) Rτ(R, λ) with W ≡ 0 admits one global maximum for

R = Y ∗ and is strictly increasing for R < Y ∗.

By Proposition 3.4 this critical (in the absence of noise)

communication range Y ∗ can be characterized as the solution

of the following equation
∫ ∞

0

exp

{

−2πλY ∗v

β sin(π/β)

}

vβ−1

1 + vβ
dv

=
2πλY ∗

β sin(π/β)

∫ ∞

0

exp

{

−2πλY ∗v

β sin(π/β)

}

vβ

1 + vβ
dv .

The following result is similar to Proposition 3.3.

Proposition 3.5: Assume that condition (C) is satisfied. In

the absence of noise (W ≡ 0) the maximal mean density of

transport dtrans is attained whenever pR = Y ∗ with R ≥ Y ∗.

If W > 0 (with non-null probability) then the maximum (in p
and R) of the mean density of transport dtrans is equal to

max
R∈[0,Y ∗]

β

∫ ∞

0

exp

{

−2πλRv

β sin(π/β)

}

vβ−1

1 + vβ
ψW (µRβvβ)dv

(3.7)

and is attained for p∗ = 1 and an R that maximizes (3.7).

Proof: Note first by Proposition 3.4 that if W ≡ 0 then

dtrans(R, λ, p) depends on p and R only through the product

pR. This and the definition of Y ∗ proves the first part of the

result. Assume now that W > 0. Then ψW (µRβνβ) is strictly

decreasing in R and thus the maximum of dtrans(R, λ, p) is

attained for some R ≤ Y ∗. By assuming that Rτ(R, λ) with

W ≡ 0 is strictly increasing for R < Y ∗ we conclude that

p∗ = 1.

IV. NUMERICAL EXAMPLES

In this section we give some numerical examples; in partic-

ular showing the impact of noise W on the network design.

Throughout this section we assume that the density of the

network is λ = 0.01 (vehicles per 1 m of the network, i.e.,

10 per 1 km), the exponential fading with mean 1/µ = 1 and

path-loss exponent β = 4.

We use the result of Proposition 3.1 to compute the mean

density of progress dprog for T = 10 and different values of

noise W , transmission range R and function of the transmission

probability p. The results of these computations, carried out

with Maple, are given in Figure 1. We can verify the result

of Proposition 3.3 with W ≡ 0 mW; the optimum density of

progress is reached for pR = R∗ ≈ 25.31. We see that the noise

W = 10−10 mW can be ignored. Indeed, the “true” maximum

of the density of progress 0.093 is attained at p = 1 and R =
25.6. However, for R = 100 and p = 0.25 (yielding pR =
25 ≈ R∗) the value of the density of progress is 0.085 which

is still not far from the optimal value. However, in order to

maximize the network performance with W = 10−6 mW it is

necessary to tune the parameters close to the “true” optimum

obtained for p∗ = 1 and R = 11.31.

Similar observations can be made on Figure 2 that presents

the mean density of transport (in the case of adaptive coding)

evaluated using Proposition 3.4. In particular, in the absence of

the external noise, the optimum density of transport value 0.53

is reached for pR = Y ∗ ≈ 21.7. There is no visible difference

when the noise is equal W = 10−10 mW. The maximum 0.53

is attained for p = 1 and R = 21.7, however for p = 0.26 and

R = 100 the value of the mean density of transport is still 0.5.

So noise of order W = 10−10 mW can be ignored. However,

when W = 10−6 mW, the maximum 0.28 is reached when

p = 1 and R = 8.9. To maximize the network performance

with W = 10−6 mW the parameters must be tuned close to

this “true” optimum.

Similar optimizations of the mean density of progress and

the mean density of transport with other values of p, R, W , β,

µ and S can easily be carried out.

V. CONCLUSION

VANETs are an important type of MANET because they

can help to increase road safety. In this paper we have tried

to further our understanding of them by making a stochastic

analysis of an Aloha-based infinite linear VANET. We propose

two models based on SINR capture condition and Shannon’s

law, respectively. Using these models we show how we can

maximize mean packet progress and mean density of infor-

mation transport by optimizing the transmission probability

and the transmission range. We also take into account random

fading between transmitting and receiving vehicles as well
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Fig. 1. Mean density of progress versus transmission probability p and
transmission range R for three different values of the external noise power W .w

as independent external noise. Our results reveal interesting

dependencies between the performance of the network and its

parameters. These dependencies are intrinsic to 1D scenarios

usually assumed for VANETs. They highlight the difference

between 1D networks used to model VANETs and 2D networks

typically used for MANETs.
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