
HAL Id: inria-00440437
https://hal.inria.fr/inria-00440437

Submitted on 10 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Liability in Software Engineering: Overview of the LISE
Approach and Illustration on a Case Study

Christophe Alleaune, Valérie-Laure Benabou, Denis Beras, Christophe Bidan,
Nicolas Craipeau, Stéphane Frénot, Gregor Goessler, Ronan Hardouin, Julien

Le Clainche, Daniel Le Métayer, et al.

To cite this version:
Christophe Alleaune, Valérie-Laure Benabou, Denis Beras, Christophe Bidan, Nicolas Craipeau, et
al.. Liability in Software Engineering: Overview of the LISE Approach and Illustration on a Case
Study. [Research Report] RR-7148, INRIA. 2009, pp.23. �inria-00440437�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50123944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00440437
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
1

4
8

--
F

R
+

E
N

G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Liability in Software Engineering

Overview of the LISE Approach and Illustration on a Case Study

Christophe Alleaume — Valérie-Laure Benabou — Denis Beras — Christophe Bidan —

Nicolas Craipeau — Stéphane Frénot — Gregor Goessler — Ronan Hardouin —

Julien Le Clainche — Daniel Le Métayer — Manuel Maarek — Eduardo Mazza —

Ludovic Mé — Marie-Laure Potet — Sylvain Steer — Valérie Viet Triem Tong

N° 7148

December 2009

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Liability in Software Engineering

Overview of the LISE Approach and Illustration on a Case Study

Christophe Alleaume, Valérie-Laure Benabou, Denis Beras,

Christophe Bidan, Nicolas Craipeau, Stéphane Frénot,

Gregor Goessler, Ronan Hardouin, Julien Le Clainche,

Daniel Le Métayer, Manuel Maarek, Eduardo Mazza, Ludovic Mé,

Marie-Laure Potet, Sylvain Steer, Valérie Viet Triem Tong

Thème : Représentation et traitement des données et des connaissances
Action Exploratoire LICIT

Rapport de recherche n➦ 7148 — December 2009 — 23 pages

Abstract: LISE is a multidisciplinary project involving lawyers and computer
scientists with the aim to put forward a set of methods and tools to (1) define
software liability in a precise and unambiguous way and (2) establish such liabil-
ity in case of incident. This report provides an overview of the overall approach
taken in the project based on a case study. The case study illustrates a situation
where, in order to reduce legal uncertainties, the parties to a contract wish to
include in the agreement specific clauses to define as precisely as possible the
share of liabilities between them for the main types of failures of the system.

Key-words: Liability, Contract, Formal Methods, Specification, Defects, Le-
gal Aspects, Evidence

LISE (Liability Issues in Software Engineering) is a project funded by ANR
(Agence Nationale de la Recherche) under the SeSur 2007 programme (ANR-07-SESU-007).
http://licit.inrialpes.fr/lise/

http://licit.inrialpes.fr/lise/

Responsabilités en matière de dé logiciels
Démarche générale du projet LISE
et illustration par une étude de cas

Résumé : LISE est un projet interdisciplinaire regroupant juristes et infor-
maticiens dans l’objectif de proposer des méthodes et des outils pour (1) définir
de manière précise et non ambiguë les responsabilités contractuelles en matière
de logiciels et (2) établir ces responsabilités en cas d’incident. Ce rapport décrit
la démarche générale du projet et l’illustre par une étude de cas (système de
payement sur téléphone mobile).

Mots-clés : Responsabilités, Contrat, Méthodes formelles, Spécification, Dys-
fonctionnements, Aspects juridiques, Conventions de preuves

Liability in Software Engineering 3

Liability in Software Engineering

Overview of the LISE Approach and Illustration on a Case Study

Christophe Alleaume4, Valérie-Laure Benabou2, Denis Beras1, Christophe Bidan5,

Nicolas Craipeau4, Stéphane Frénot1, Gregor Goessler3, Ronan Hardouin2,

Julien Le Clainche3, Daniel Le Métayer3, Manuel Maarek3, Eduardo Mazza6,

Ludovic Mé5, Marie-Laure Potet6, Sylvain Steer2, and Valérie Viet Triem Tong5

1AMAZONES, INRIA Grenoble Rhône-Alpes , INSA Lyon
2DANTE, University of Versailles Saint-Quentin-en-Yvelines

3LICIT, INRIA Grenoble Rhône-Alpes
4PrINT, University of Caen Basse-Normandie

5SSIR, Supélec Rennes
6VERIMAG, University of Grenoble

INRIA Research Report n➦ 7148

1 Introduction

Software contracts usually include strong liability limitations or even exemptions
of the providers for damages caused by their products. This situation does not
favour the development of high quality software because software editors don’t
have sufficient economical incentives to apply stringent development and ver-
ification methods. Indeed, experience shows that products tend to be higher
quality and more secure when the actors in position to influence their develop-
ment are also the actors bearing the liability for their defects [2, 5, 27]. The
usual argument to justify this lack of liability is the fact that software products
are too complex and versatile objects whose expected features (and potential
defects) cannot be characterised precisely, and which thus cannot be treated
as traditional (tangible) goods. Admittedly, this argument is not without any
ground: it is well known that defining in an unambiguous, comprehensive and
understandable way the expected behaviour of systems integrating a variety of
components is quite a challenge, not to mention the use of such definition as a
basis for a liability agreement. Taking up this challenge is precisely the objective
of the LISE project: the project studies liability issues both from the legal and
the technical points of view with the aim to put forward a formal framework
to (1) define liability in a precise and unambiguous way and (2) establish such
liability in case of incident.

Obviously, specifying all liabilities in a formal framework is neither possible
nor desirable. Usually, the parties wish to express as precisely as possible certain
aspects which are of prime importance for them and prefer to state other aspects
less precisely (either because it is impossible to foresee at contracting time all
the events that may occur or because they do not want to be bound by too

RR n➦ 7148

4 LISE Project

precise commitments). Taking this requirement into account, LISE provides a
set of tools and methods to be used on a need basis in the contract drafting
process (as opposed to a monolithic, “all or nothing” approach).

The objective of this report is to provide an overview of the overall approach
taken in LISE. The presentation is based on a case study: an electronic signature
application installed on a mobile phone. Needless to say, we do not intend to
illustrate all the aspects of the approach or to describe the general framework
through this case study. Our aim is rather to provide some hints on the notion
of liability considered in LISE and the potential use of the results of the project
in a concrete situation.

The structure of the report reflects the chronological ordering of the actions
in a real case: Section 2 describes the starting point (IT system subject to the
agreement, parties involved, informal agreement between the parties and legal
context); Section 3 presents the formal definition of liabilities ; Section 4 suggests
how the formal definition is used to instrument the system with appropriate
logging facilities and to design a log analyser. Finally, Section 5 provides a
sketch of related work and Section 6 identifies avenues for further research.

2 Starting point

We consider an electronic signature system allowing an e-commerce company
to send a document to be signed by an individual on his mobile phone. The
signature of the document is subject to the individual’s approval (and authenti-
cation) and all communications and signature operations are performed trough
his mobile phone. In a real situation, the activation of the signature system
would be preceded by a request from the individual or by a negotiation with the
e-commerce company, but we do not consider this negotiation phase here.

The mobile phone itself incorporates a smart card (for the verification of the
PIN) and a signature application. We assume that the Mobile Phone Provider,
the Signature Application Provider and the Smart Card Provider want to exe-
cute an agreement to put such a mobile phone signature solution on the market.
In order to reduce legal uncertainties, the parties wish to include in the agree-
ment specific provisions to define as precisely as possible the share of liabilities
between them for the main types of failures of the system1. Their intention is
to use these provisions to settle liability issues in an amicable way by the appli-
cation of well-defined rules. At this stage it may be the case that all the compo-
nents (software and hardware) are already available and the only remaining task
is their integration. It may also be the case that some or all the components
still have to be developed. In general, no assumption can thus be made on the
fact that software components can be designed or modified in a specific way to
make the implementation of liabilities easier. The only assumptions made at
this stage are:

❼ On the technical side: the availability of the functional architecture of
the system (interfaces of the components and informal definition of their
expected behaviour).

1We do not consider infringement or any other liabilities related to intellectual property
rights here.

INRIA

Liability in Software Engineering 5

❼ On the business side: an informal agreement between the parties with
respect to the share of liabilities.

The objective of the infrastructure described in this report is to allow the
parties to translate this informal agreement into a contract which is both valid
in the legal sense and as precise as possible, in particular w.r.t. technical is-
sues, in order to minimise legal uncertainties. In the remainder of this section,
we describe the initial technical and legal situation: the IT system itself (Sec-
tion 2.1), the actors involved (Section 2.2), the informal agreement between the
parties signing the agreement (Section 2.3) and the legal context surrounding
the agreement (Section 2.4).

2.1 IT System

At the start of the the contractual phase, the IT system is usually defined in
an informal way by its architecture: its components, their interfaces, expected
behaviours and interactions. In our case study, we assume that the electronic
signature system is made of the following components:

❼ A Server (Serv).

❼ A Signature Application (SigApp).

❼ A Smart Card (Card).

❼ A Mobile Input/Output (IO) component which gathers the keyboard and
the display of the mobile phone (including their drivers).

❼ An Operating System (OpSys).

All the components except Serv are embedded in the mobile phone. In this
report, we focus on liabilities related to the mobile phone system and do not
consider liabilities related to Serv or the communication network2. The only
functionality of OpSys that we consider here is its role of medium for all com-
munications between the mobile phone components (i.e. between SigApp, Card
and IO).

The architecture of the system and its kinematics are pictured in Figure 1.
The protocol starts with the E-Commerce Company (ECC) requesting a sig-
nature for document D (message 1). The document is forwarded by Serv and
SigApp, and presented to Customer (OWN) by IO (messages 2, 3 and 4). If
OWN refuses to sign, ECC is informed through IO , SigApp and Serv (messages
5-n, 6-n, 7-n and 8-n). If OWN agrees, the document and the PIN code entered
by OWN are forwarded to Card by SigApp (messages 5-y, 6-y and 7-y). Next,
depending on whether Card authenticates the PIN code or not, the document
and the signature produced by Card are sent to ECC via SigApp and Serv
(messages 8-y-r, 9-y-r and 10-y-r), or ECC is informed via SigApp and Serv of
the authentication failure (messages 8-y-w, 9-y-w and 10-y-w).

The implementation of the embedded components of the signature system,
which is further detailed in Section 4.1, is based on OSGi, an interoperable
environment for small devices such as home gateways, car embedded systems
and mobile phones3.

2These liabilities could be handled in the same way by adding the e-commerce company
and telecommunication operator as additional parties.

3http://www.osgi.org/.

RR n➦ 7148

http://www.osgi.org/

6 LISE Project

Figure 1: Communications with and within the system, and the providing party
for each component.

2.2 Actors

We assume that the contract is to be executed by the three parties involved in
the manufacture and distribution of the signature solution:

❼ The Mobile Phone Provider (MPP),

❼ The Signature Application Provider (SAP), and

❼ The Smart Card Provider (SCP).

The customer OWN , who is the owner of the mobile phone, and the E-Commerce
Company ECC are supposed to execute different contracts with MPP which
plays the role of mobile phone operator. We are concerned only with the B2B
contract between MPP , SAP and SCP here. We come back in Section 2.4 to

INRIA

Liability in Software Engineering 7

the legal consequences of including OWN among the parties (specific regula-
tions for consumer protection). In the sequel, we shall use the word “party” for
MPP , SAP and SCP , and the word “user” for the end-users of the system (the
E-Commerce Company ECC and the customer OWN).

Each component in the system is provided by one of the parties. In our case,
we assume that:

❼ The SigApp component is provided by SAP ,

❼ The Card component is provided by SCP , and

❼ The IO and OpSys components are provided by MPP .

2.3 Informal Agreement

The parties wish to define as precisely as possible the share of liabilities between
themselves in case of a claim from the customer OWN 4. In practice, the cus-
tomer will typically address his claims to MPP because MPP is the only party
being in direct contact (and contractual relationship) with him (both as a mo-
bile phone provider and operator). MPP will have to indemnify the customer
if his claim is valid and may in turn be indemnified by one (or several) of the
other parties depending on the type of the claim, the available log files and the
liability share defined in the agreement.

In the following, we assume that each document to be signed is originally
stamped by ECC and this stamp θ is (i) unique, (ii) always included in the
messages of a given session and (iii) never modified. This stamp θ can be seen
as a session number which makes it easier to distinguish messages pertaining to
different signature sessions.

As an illustration, we consider two kinds of claims from the customer, called
DiffDoc and NotSigned, concerning the signature of an alleged document D
stamped θ:

(a) DiffDoc: the plaintiff OWN claims that he has been presented a document
D′ stamped θ different from the alleged document D (stamped θ). In the
case of a purchase order, for example, D and D′ may differ with respect
to the quantity or price of the ordered items.

(b) NotSigned : the plaintiff OWN claims that he has never been presented
any document stamped θ.

We assume that the parties agree on the following informal share of liabilities
for these two types of claims :

(a) If OWN claims that he has been presented a document D′ stamped θ
different from the alleged document D (stamped θ), then

a. SAP shall be liable if SigApp has forwarded to OWN a document
(stamped θ) different from the document received from ECC .

b. Otherwise MPP shall be liable.

4In this report we assume that the claims related to the use of the signature solution come
from the customer. Claims from other users such as ECC would be handled in the same way.

RR n➦ 7148

8 LISE Project

(b) If OWN claims that he has never been presented any document stamped
θ, then

a. If the smart card has wrongly validated a PIN for document D
stamped θ then SCP shall be liable.

b. Otherwise MPP shall be liable5.

We do not discuss the value or justifications for this informal agreement here
and just take it as an example of a possible share of liabilities. It should be clear
that this share of liabilities is the result of a negotiation between the parties,
based on a combination of technical as well as business and legal arguments,
and it does not have to (and usually cannot) be justified formally. The point is
that the formal framework should not impose any undue constraint on the share
of liabilities but should provide means for the parties to express their wishes as
precisely as possible.

2.4 Legal Context

Even though the intention of the parties is to settle liability issues in an ami-
cable way, according to well-defined rules, it is obvioulsy necessary to take into
account the legal context pursuant to computer systems. Any misconception or
overlooking of the legal constraints might lead to contractual clauses that could
be invalidated in court, thus increasing rather than reducing legal risks. The two
main categories of legal constraints to be considered here concern the two main
phases of the process: (1) the formal definition of the share of liabilities among
the parties and (2) the analysis of the log files to establish these liabilities after
the facts. In the following, we examine these two categories of legal constraints
in turn.

2.4.1 Liability Limitations

The first criterion to be taken into account to assess the validity of contractual
liability limitations and exemptions is the qualification of the parties: specific
protections are provided by law to consumers6. We first consider contracts
involving only professionals. Several cases of invalidity of liability limitation7

clauses are defined by law. The first obvious cases where the liability limitation
would be considered null and void are when the party claiming the benefit of the
clause has committed acts of intentional fault, wilful misrepresentation or gross
negligence. Another case is the situation where the limitation would undermine
an essential obligation of a party and would thus introduce an unacceptable
imbalance in the contract. This situation is more difficult to assess though, and
left to the appraisal of the judge who may either accept the limitation, consider
it null, or even impose a different liability cap8.

5Because MPP plays the role of mobile phone operator, he takes the risk in connection
with the customer.

6In French law, a party is considered as a consumer if he does not execute the agreement
in the context of a professional activity, irrespective of the fact that he may have technical
skills in computers.

7In the sequel, we use the expression « liability limitation » as a shorthand for « liability
limitation or exemption ».

8The « Faurecia case » illustrates the different interpretations of the notion of « essential
contractual obligation”. The final decision of the “Cour de renvoi de la Cour de cassation”

INRIA

Liability in Software Engineering 9

As far as consumers are concerned, the law offers a number of protections
which severely restrict the applicability of liability limitation clauses. The phi-
losophy of these rules is that the consumer is in a weak position in the contractual
relationship and legal guarantees should be provided to maintain some form of
balance in the contract. For example, professionals must provide to their con-
sumers “non conformance” and “hidden defects” warranties in French law and
“implied warranty” (including “merchantability” and “fitness”) in the American
Uniform Commercial Code. Any clause which would introduce a significant im-
balance at the prejudice of the consumer would be considered unconscionable.

Let us note that we have focused on contractual liability here (liability which
is defined in the contract itself): of course, strict liability (when a defect in a
product causes personal or property damages) will always apply with respect
to third parties (actors who are not parties to the contract). It is still possible
though for professionals to define contractual rules specifying their respective
share of indemnities due to a victim (third party) by one of the parties9.

To conclude this subsection, let us mention other criteria that need to be
taken into account to refine the legal analysis [13], in particular : the qualifica-
tion of the contract itself (product or service agreement), in case of a product
agreement, whether it is qualified as a purchase agreement or a license agree-
ment, the nature of the software (dedicated or on-the-shelf software), the be-
haviour of the actors, etc.

2.4.2 Log files as evidence

The first observation concerning the contractual use of log files is that digital
evidence is now put on par with traditional written evidence. In addition, as
far as legal facts are concerned (as opposed to legal acts, such as contracts),
the general rule is that no constraint is imposed on the means that can be used
to provide evidence. As far as legal acts are concerned, the rules depend on
the amount of the transaction: for example no constraint is put on the means
to establish evidence for contracts of value less than one thousand and five
hundred Euros in France. The logs to be used in the context of LISE concern
the behaviour of software components, which can be qualified as legal facts.
Even though they would also be used to establish the existence and content of
electronic contracts (as in our case study), we can consider at this stage that
their value would be under the threshold imposed by law to require “written
evidence” or that the evidence provided by the log files would be accepted as
“written evidence” under the aforementioned equivalence principle.

A potential obstacle to the use of log files in court could be the principle
according to which “no one can form for himself his own evidence” 10. It seems
more and more admitted however, that this general principle allows exceptions
for evidence produced by computers [8]. As an illustration, the printed list of an
airline company showing the late arrival of a traveller at the boarding desk was

(November, 26th, 2008) has invalidated the decision of the “Cour de cassation” (February 13th

2007) which had itself declared the liability limitation clause invalid. The“Cour de renvoi”has
declared that the limitation of liability was not in contradiction with the essential obligation
of the software provider (Oracle) because the customer (Faurecia) could get a reasonable
compensation.

9In European laws, the victim of a defect caused by a product can sue any of the actors
involved in the manufacturing or distribution of the product.

10Nul ne peut se constituer de preuve à soi-même in French.

RR n➦ 7148

10 LISE Project

accepted as evidence by the French “Cour de cassation”11. Another condition
for the validity of log files as evidence is their fairness and legality. For example,
a letter or message recorded without the sender or receiver knowing it cannot
be used against them12. As far as the LISE project is concerned, attention
should be paid to the risk of recording personal data in log files: in certain
cases, such recording might be judged unfair and make it impossible to use the
log as evidence in court.

Generally speaking, to ensure the strength of the log based evidence provi-
sions in the agreement, it is recommended to define precisely all the technical
steps for the production of the log files, their storage and the means used to
ensure their authenticity and integrity. Last but not least, as in the previous
section, the cases where consumers are involved deserve specific attention with
respect to evidence: any contractual clause limiting the possibilities of the con-
sumer to defend his case by providing useful evidence is likely to be considered
unconscionable in court.

2.4.3 International Law

To conclude this section, let us mention the issue of applicable law. Needless to
say, the information technology business is by essence international and, even
though we have focused on European laws in a first stage, more attention will
be paid in the future to broaden the scope of the legal study and understand in
which respect differences in laws and jurisdictions should be taken into account
in the design of the LISE framework. For example, liability limitation clauses
are more likely to be considered as valid by American courts which put greater
emphasis on contractual freedom [17].

3 Formal Specification of Liabilities

The share of liabilities between the parties was expressed in Section 2.3 in a
traditional, informal way. Texts in natural language, even in simple “legal lan-
guage”, often conceal ambiguities and misleading representations. The situation
is even worse when such statements refer to mechanisms which are as complex as
software. Such ambiguities are sources of legal uncertainties for the parties ex-
ecuting the contract. The use of formal (mathematical) methods has long been
studied and put into practice in the computer science community to define the
specification of software systems (their expected behaviour) and to prove their
correctness or to detect errors in their implementations. For various reasons
however (both technical and economical), it remains difficult to apply formal
methods at a large scale to prove the correctness of a complete system.

In contrast with previous work on formal methods, our goal here is not to
apply them to the verification of the system itself (the mobile phone solution in
our case study) but to define liabilities in case of malfunction and to build an
analysis tool to establish these liabilities from the log files of the system.

It should be clear however, as stated in Section 1, that our goal is not to pro-
vide a monolithic framework in which all liabilities would have to be expressed.
The method proposed in the LISE project can be used at the discretion of the

11Cass. civ. 1re, July 13th. 2004 : Bull. civ. 2004, I, n➦ 207.
12Similarly for phone conversation recordings.

INRIA

Liability in Software Engineering 11

parties involved and as much as necessary to express the liabilities concerning
the features or potential failures deemed to represent the highest sources of risks
for them.

In this section, we present successively the parameters which are used to es-
tablish liabilities (Sections 3.1 and 3.2) before introducing the liability function
in Section 3.3. Let us note that, in order to make the mathematical definitions
and the reasoning simpler, the notions used in this section represent an abstrac-
tion of the real system. The link between this abstract view and the real system
is described in Section 4.

3.1 Trace Model

Following the informal description in Section 2, the sets of components, parties
and users are defined as follows:

Components = {Serv ,SigApp,Card , IO ,OpSys}

Parties = {MPP ,SAP ,SCP}

Users = {OWN ,ECC}

Θ is the set of stamps and C the set of communicating entities (components and
users). O and M denote respectively the set of communication operations and
message contents. The distinction between send and receive events allows us to
capture communication errors 13.

C = Components ∪ Users

O = {Send,Receive}
M = List

Documents ∪
{Yes,No} ∪
PINCodes ∪
Signatures

We assume that signature sessions in traces are complete and the type (docu-
ment, response, PIN code, signature) of each element composing a message is
implicitly associated with the element itself in order to avoid any ambiguity. I

We denote by Traces the set of all traces, a trace T being defined as as a
function associating a stamp with a list of items. Each item is defined by the
communication operation (Send or Receive), the sender, the receiver and the
content of the message:

T : Θ → List(O × C × C ×M)

A first comment on the above definition is the fact that we use a functional
type (from stamps to lists of items) to represent traces. This choice makes the
manipulation of traces easier in the sequel because we are always interested in
the items corresponding to a given session. Other representations could have
been chosen as well, such as lists of items including the stamp information.

Note that we use the term “trace” here and keep the word “log” to denote
the actual information recorded by the system. The correspondance between
traces and logs is presented in Section 4.

13This feature is not illustrated in this report.

RR n➦ 7148

12 LISE Project

3.2 Trace Properties

In this Section, we present successively the two types of trace properties used
in this report: error properties and claim properties.

3.2.1 Error properties

The most important parameter to determine the allocation of liabilities is the
nature of the errors which can be detected in the log files of the system. Ideally,
the framework should be general enough to reflect the wishes of the parties and
to make it possible to explore the combinations of errors in a systematic way.
One possible way to realize this exploration is to start with a specification of
the key properties to be satisfied by the system and derive the cases which can
lead to the negation of these properties.

The ultimate goal being to analyse log files, we characterise the expected
properties of the system directly in terms of traces (which are abstractions of
logs). For example, the fact that SigApp should send to IO the document D
received from Serv (and only this document) can be expressed as follows14:

∀D ∈ Documents,

(Receive,Serv ,SigApp, [D]) ∈ T (θ) ⇔

(Send,SigApp, IO , [D]) ∈ T (θ)

Note that all properties are implicitly parametrised by a trace T and a stamp
θ. In the sequel these parameters are left implicit for the sake of readability.

In the scenario considered here, the systematic study15 of the cases of viola-
tion of this property leads to the following errors:

SigApp-Diff ≡

∃D,D′ ∈ Documents, D 6= D′ ∧

(Receive,Serv ,SigApp, [D]) ∈ T (θ) ∧

(Send,SigApp, IO , [D′]) ∈ T (θ)

SigApp-Not ≡

∃D ∈ Documents,

(Receive,Serv ,SigApp, [D]) ∈ T (θ) ∧

∀D′ ∈ Documents,

(Send,SigApp, IO , [D′]) /∈ T (θ)

SigApp-Un ≡

∃D ∈ Documents,

(Send,SigApp, IO , [D]) ∈ T (θ) ∧

∀D′ ∈ Documents,

(Receive,Serv ,SigApp, [D′]) /∈ T (θ)

14Note that we do not consider the ordering of Send and Receive trace items for the sake
of conciseness. This ordering is not necessary to express the liabilities presented in Section 2.

15Space considerations prevent us from presenting this systematic derivation here. It relies
on a decomposition of the negation of the properties into disjunctive normal form and selective
application of additional decomposition transformations for “non existence ” properties.

INRIA

Liability in Software Engineering 13

The terms of this disjunction correspond to three typical types of errors:

1. The first term defines a case where a message is sent with content different
from expected.

2. The second term is a case of expected message which is not sent.

3. The third term is a case where an unexpected message is sent.

Similarly, the negation of the property that Card returns a signature only
when it has received OWN ’s PIN code POWN leads to several errors of the
three aforementioned types, from which we assume that only two are deemed
relevant by the parties. The first one, Card-WrongVal describes a case where
an approval and a signature are sent by Card even though it has not received a
right PIN code:

Card-WrongVal ≡

∃D ∈ Documents,∃S ∈ Signatures,

(Send,Card ,SigApp, [Yes; D;S]) ∈ T (θ) ∧

(Receive,SigApp,Card , [D;POWN]) /∈ T (θ)

The second one, Card-WrongInval, defines a case where Card refuses to sign a
document even though it has received the correct PIN code POWN :

Card-WrongInval ≡

∃D ∈ Documents,

(Send,Card ,SigApp, [No;D]) ∈ T (θ) ∧

(Receive,SigApp,Card , [D;POWN]) ∈ T (θ)

Needless to say, errors can also be defined directly based on the parties’
understanding of the potential sources of failure of the system and their desire
to handle specific cases. The derivation method suggested here can be used
when the parties wish to take a more systematic approach to minimise the risk
of missing relevant errors.

Last but not least, the language used to express properties for this case
study is relatively simple as it does not account for the ordering of items in
traces. In general, richer logics may be needed, for example to express temporal
properties. The choice of the language of properties does not have any impact
on the overall process but it may make some of the technical steps, such as the
log analysis (Section 4), more or less difficult.

3.2.2 Claim properties

Claim properties represent the « grounds for claims » of the users: they corre-
spond to failures of the system as experienced by the users. In practice, such
failures should cause damages to the user for them to give rise to liabilities but
damages are left out the formal model. Claims can thus be expressed, like er-
rors, as properties on traces. We consider two claim properties here, DiffDoc and

RR n➦ 7148

14 LISE Project

NotSigned, which define the grounds for the claims introduced in Section 2.316:

DiffDoc ≡

∃D,D′ ∈ Documents,∃S ∈ Signatures, D 6= D′ ∧

(Send,SigApp,Serv , [Yes; D;S]) ∈ T (θ) ∧

(Receive,SigApp, IO , [D′]) ∈ T (θ)

NotSigned ≡

∃D ∈ Documents,∃S ∈ Signatures,

(Send,SigApp,Serv , [Yes; D;S]) ∈ T (θ) ∧

∀D′ ∈ Documents, (Receive,SigApp, IO , [D′]) 6∈ T (θ)

The first definition (DiffDoc) defines a claim corresponding to a case where
OWN has been presented a document D′ with stamp θ (as indicated by
(Receive,SigApp, IO , [D′]) different from the document D sent by the signa-
ture application to the server (message [Yes; D;S]). The second definition (Not-
Signed) defines a claim corresponding to a case where the signature application
has sent to the server a message [Yes; D;S] indicating that OWN has signed
a document stamped θ when OWN has never been presented any document
stamped θ.

3.3 Liability Function

The formal specification of liabilities can be defined as a function mapping a
claim, a trace and a stamp onto a set of parties17:

Liability : Claims × Traces × Θ → P(Parties)

We use an intermediate function to define Liability: the Check-Properties func-
tion which returns the subset of properties (errors and claims) holding for a
session identified by a trace and a stamp:

Check-Properties : Traces × Θ → P(Properties)

where Properties is the set of relevant trace properties, which, in our case study,
includes the sets Errors defined in Section 3.2.1 and Claims defined in Sec-
tion 3.2.2. Obviously, other error and claim properties could be useful to define
other shares of liabilities.

Errors =

{

SigApp-Diff,SigApp-Un,SigApp-Not,
Card-WrongVal,Card-WrongInval

}

Claims = {DiffDoc,NotSigned}

Properties = Errors ∪ Claims

The actual implementation of Check-Properties (Section 4) is based on the
definitions of errors and claims presented in Section 3.2.1 and Section 3.2.2.

16Note that, just as error properties, claim properties are implicitly parametrised by a trace
T and a stamp θ.

17
P(S) denotes the powerset of S.

INRIA

Liability in Software Engineering 15

Finally, the following function captures the share of liabilities introduced in
Section 2.3:

Liability(C, T, θ) =
If C = DiffDoc then

If DiffDoc ∈ Check-Properties(T, θ)
Then If SigApp-Diff ∈ Check-Properties(T, θ)

Then {SAP}
Else {MPP}

Else ∅
If C = NotSigned then

If NotSigned ∈ Check-Properties(T, θ)
Then If Card-WrongVal ∈ Check-Properties(T, θ)

Then {SCP}
Else {MPP}

Else ∅

The two cases in Liability correspond to the two types of claims considered in
Section 2.3. For each type of claim, the goal of the first test is to check the
validity of the claim raised by OWN . If OWN raises a claim which is not
confirmed by the trace then the result of Liability is the empty set because no
party has to be made liable for an unjustified claim. If OWN claims to have
been presented a document D′ different from the alleged document D and this
claim is confirmed by the trace (DiffDoc ∈ Check-Properties(T, θ)) then SAP
is liable if SigApp has forwarded to OWN a document (stamped θ) different
from the document received from ECC (SigApp-Diff ∈ Check-Properties(T, θ));
otherwise MPP is liable. Similarly, if OWN ’s claim is that he has never been
presented any document stamped θ and this claim is confirmed by the trace
(NotSigned ∈ Check-Properties(T, θ)) then SCP is liable if the smart card has
wrongly validated a PIN in session θ (Card-WrongVal ∈ Check-Properties(T, θ));
otherwise MPP is liable.

4 Log Architecture and Analyser

The formal liability framework presented in the previous section is useful in
itself, because it makes it possible to define liabilities in a very precise way. Its
role can be enhanced however, if the actual system can be supported by facilities
to record the required log files (so that experts can be sure to find all useful
information after the facts) and if these log files can be analysed automatically
based on the liability specifications. In this section, we sketch successively the
log infrastructure and analyser for our case study.

4.1 Log Architecture

The formal setting proposed in Section 3 defines traces as lists of items corre-
sponding to individual message exchanges between components. This choice is
motivated by its generality and the possibility to model a variety of concrete
implementations. As mentioned in Section 2.1, the implementation of our case
study is based on OSGi, a Java based environment for the design of applications
made of dynamically loadable collections of classes called bundles. Our OSGi
implementation consists of three bundles implementing the following interfaces:

RR n➦ 7148

16 LISE Project

public interface SigAppIfc {
public String submitDocToUser(String doc);

}

public interface CardIfc {
public String sign(String doc , int pin);

}

public interface IOIfc {
public String askToUser(String doc);

}

Listing 1: Open Services Gateway initiative (OSGi) interfaces of the system

Each bundle provides one service (through a Java public method) which cor-
responds to a pair of request/answer messages in Figure 1. For example, the
method submitDocToUser corresponds to the pair of messages 2 and 7-n, 9-y-r
or 9-y-w, depending on the outcome of the transaction. The parameter of the
method corresponds to the value Doc passed in message 2 and the string re-
turned as a result is used to encode the different types of answers 7-n, 9-y-r and
9-y-w. Similarly, the method sign corresponds to the pair of messages 7-y and
8-y-r or 8-y-w, and the method askToUser to the pair 3 and 6-y or 6-n.

We present in Table 1 the correspondence between the messages of Figure 1
(which are equivalent to pairs of trace items defined in Section 3) and the OSGi
method calls and returns.

We have designed and developed an extension to the OSGi framework, that
we call LogOS (Log Over Services), which records every service use. For each
access to a service implementation, the framework generates on the fly a proxy
that intercepts the call, logs the query of the call and forwards it to the imple-
mentation.

LogOS has been developed on top of Felix18, an open-source implementation
of the OSGi specifications. The source code of LogOS, the LogOS patch for
Felix, and the implementation of the components presented in this document
are available on the INRIA forge19.

4.2 Analyser

The Liability function was expressed in terms of traces in Section 3. Traces
were defined in Subsection 3.1 as functions mapping stamps to sequences of
items, thus at a more abstract level than the logs effectively recorded by LogOS.
The goal of the analyser is to implement the Liability function specification of
Section 3.3 based on the effective LogOS log file format and the correspondence
between traces and log files. The four main phases of the analysis are the
following:

1. The first phase is the identification of the part of the log files which is
relevant for the analysis. This part obviously depends on the claim. In
our case study, the stamp θ can be used to identify the relevant signa-
ture session and thus to extract the useful parts of the log. This phase of
the analyser is made simpler here because of the assumptions of stamps
uniqueness and integrity. Identifying a given session can be a more com-
plex task in general.

18http://felix.apache.org/
19http://gforge.inria.fr/frs/?group_id=2014

INRIA

http://felix.apache.org/
http://gforge.inria.fr/frs/?group_id=2014

L
ia

bility
in

S
o
ftw

a
re

E
n
gin

eerin
g

17

Generic trace items Message number Corresponding method
Components

(sender → receiver)
Message type

exchanged
according to

Figure 1
(call or return)

Serv → SigApp [Doc] 2 call to submitDocToUser

SigApp → Serv [No; Doc] 7-n return from submitDocToUser

SigApp → Serv [Yes; Doc; Signature] 9-y-r return from submitDocToUser

SigApp → Serv [No; Doc] 9-y-w return from submitDocToUser

SigApp → IO [Doc] 3 call to askToUser

IO → SigApp [Yes; Doc; PIN] 6-y return from askToUser

IO → SigApp [No; Doc] 6-n return from askToUser

SigApp → Card [Doc; PIN] 7-y call to sign

Card → SigApp [Yes; Doc; Signature] 8-y-r return from sign

Card → SigApp [No; Doc] 8-y-w return from sign

Table 1: Relation between trace items, messages and methods

R
R

n
➦
7
1
4
8

18 LISE Project

2. The second phase consists in transforming the relevant parts of the logs
into a trace. Table 1 describes this transformation stage for our case study.

For example, let us consider a LogOS log file item recording the call by the
SigApp bundle to the askToUser service of the IO bundle for a document
doc1 and stamp 48003120:

480031;2009 -05 -05;08:34:12; SigApp;IO;IOImpl;IOIfc;askToUser;doc1
;2009 -05 -05;08:34:23;"1234"

Following Table 1, this log item can be transformed into the following
trace items for stamp 48003121:

(Send,SigApp, IO , [doc1]);
(Receive,SigApp, IO , [doc1])
(Send, IO ,SigApp, [Yes; doc1; 1234]);
(Receive, IO ,SigApp, [Yes; doc1; 1234])

3. The third phase is the application of Check-Properties to check the validity
of the claim and find the errors occurring in the trace. Again, this phase
is made easier by the fact that the properties needed to express the share
of liabilities considered here are fairly simple. All these properties (Errors
in Section 3.2.1 and Claims in Section 3.2.2) are expressed as the presence
or absence of certain items in the trace, which can be implemented by
systematic searches in the trace constructed from the log files22.

4. The fourth phase is the exploitation of the result of the Check-Properties
function to compute Liability. This phase is straightforward since it
amounts to the implementation of the simple tests specified in the def-
inition of Liability in Section 3.3.

The simple four phases structure sketched here obviously needs to be opti-
mized in order to avoid the search for all properties (claims and errors) in the
trace: only the claim raised by OWN and the errors useful for this claim23 need
to be searched in the trace. Check-Properties is thus not implemented as such,
but split into specific functions searching for specific properties.

5 Related Work

The significance of liability, warranty and accountability and their potential im-
pact on software quality have already been emphasized by computer scientists as
well as lawyers ([2, 5, 27, 28]). However we are not aware of previous work on the
application of formal methods to the definition of software liability. Earlier work

20Note that LogOS log file items include more information than traces, such as the times
and dates.

21As stated above, the duplication of send and receive events is useful in general to detect
communication errors. This feature is not illustrated here though, because communication
errors have not been used to define the share of liabilities.

22Note that, in contrast with the use of formal modals for program verification, we only
need to check these properties on a given trace here, rather than for all possible execution
traces, and this trace is obviously finite.

23For example, only the error SigApp − Diff is useful to compute Liability for the claim
DiffDoc.

INRIA

Liability in Software Engineering 19

on the specification of contracts mostly deal with obligations in a general sense
([9, 11, 19, 25]), with specific types of contracts such as commercial contracts
or privacy rules ([2, 16, 23]) or with the responsibility of agents in multi-agent
systems ([12]) but do not address liabilities related to software errors. It should
be clear however that several connected areas share part of our objectives and
provide useful hints and results:

❼ Software dependability [4, 18, 24] is also concerned with failure analysis
(using, for example, fault trees or FMECA analysis processes) but focuses
on fault prevention, tolerance and removal rather than on the specification
of liabilities.

❼ Model based diagnosis ([7, 20, 24, 33]) provides techniques for fault anal-
ysis and diagnosability based on observability properties. Diagnosis can
be carried out either off-line or on-line24 with different cost and time con-
straints. Faults are either represented as single events or as logical prop-
erties as in our approach. Again, the objective of model based diagnosis
is to detect faults and analyze them in order to take appropriate measures
rather than to determine the liable parties after a failure has occurred and
damages have been caused.

❼ Intrusion detection ([14]) systems also aim at detecting unexpected be-
haviours but they are targeted towards security attacks rather than faults.
They are generally classified into two categories: the anomaly detection
and the misuse detection approaches, the first one being based on a model
of the correct behaviour of the system and the second one on typical attack
patterns. As stated in the next section, our framework can accomodate
both negative properties (as shown in this report) and positive proper-
ties (correct behaviours). In contrast with intrusion detection however,
we do not have any “real time” constraint here and accuracy is far more
significant than efficiency for liability analysis.

❼ Forensics ([3, 22, 26]) and digital evidence ([10, 30, 31, 32]) share with LISE
the objective to analyse digital information in a legal setting. However
the contributions in these areas are generally targeted towards security
attacks or computer crime investigations rather than the identification of
liable parties in a software contract. Technically speaking, a significant
impact is the fact that, in our setting, the search in the logs is driven by
pre-defined properties (errors and claims).

Needless to say, each of the above areas are useful sources of inspiration for
the LISE project, but we believe that none of them, because of their different
objectives, provides the answer to the key problem addressed in this report,
namely the formal specification and instrumentation of liability.

6 Conclusion

First, we should stress that the set of methods and tools provided by the LISE
framework can be used in an incremental way, depending on the wishes of the

24“Off-board”or “on-board” for embedded systems.

RR n➦ 7148

20 LISE Project

parties, the economic stakes and the timing constraints for the drafting of the
contract:

1. The first level is a systematic (but informal) definition of liabilities in the
style of Section 2.3.

2. The second level is the formal definition of liabilities as presented in Sec-
tion 3.3. This formal definition itself can be more or less detailed and
encompass only a part of the liability rules defined informally. In addi-
tion, it does not require a complete specification of the software but only
the properties relevant for the targeted liability rules.

3. The third level is the implementation of a log infrastructure (as shown
in Section 4.1) or the enhancement of existing logging facilities to ensure
that all the information required to establish liabilities will be available if
a claim is raised. Another option is to check that it will be possible to
extract the required information from regular files if needed.

4. The fourth level is the implementation of a log analyser (as shown in
Section 4.2) to assist human experts in the otherwise tedious and error-
prone log inspection task.

5. A fifth level, not presented here, would be the verification of the correct-
ness of the log analyser with respect to the formal definition of liabilities
(considering the correspondence between log files and traces). This level
would bring an additional guarantee about the validity of the results pro-
duced by the system.

Each of these levels contributes to reducing further the uncertainties with
respect to liabilities and the parties can decide to choose the level commensurate
with the risks involved with potential failures of the system.

The notions of trace and property have been presented in a somewhat simpli-
fied way in this report. It may be the case that not all the relevant information
is included in the log files of the system. For example, in our case study, the fact
that the customer OWN has declared the theft of his mobile phone or has signed
an acknowledgement receipt for a product sent by the E-Commerce Company
can be useful information to analyse the situation (depending on the liability
rules decided by the parties). Traces can thus be more than abstract versions
of the log files and include other types of actions from all the actors involved.
Also, we have defined Properties as Errors ∪ Claims here. In general, it can be
useful to use other types of properties to define liabilities (for example the fact
that OWN has answered “yes” to the signature request sent by SigApp here).
These properties can be included into Properties without any impact on the rest
of the process.

As far as the methodology is concerned, we are working on an iterative
process for the elaboration of the formal specification of liabilities involving in-
teractions with the parties to discover oversights or missing errors and to take
into account logging constraints. Logging constraints are typically related to
implementation issues (e.g. performance penalties or log distribution), security
requirements or privacy issues ([1]). For example, in our case study, logging
critical data such as PIN codes outside the smart card would not be acceptable,

INRIA

Liability in Software Engineering 21

thus requiring an iteration step to define an equivalent (or approximated) defini-
tion of liability that could be reflected in the logs. In addition it is necessary to
take into account observability issues: previous work on model based diagnosis
and diagnosability ([7, 20, 24, 33]) will prove useful to this respect.

In general, liabilities will be expressed by a combination of informal and
formal means, both of which being integrated in the legal agreement. We are
working on a framework allowing the parties to feed their contract with clauses
automatically generated from the formal specifications of liability with seamless
integration with the rest of the contract. The final objective is to allow contract
drafters to manipulate statements either in natural language or in formal lan-
guage while maintaining the links between the two parts and the consistency of
the whole document. This extension is based on our previous work on the links
between mathematical texts and natural language explanations ([15]).

In terms of implementation of the log infrastructure, one distinguishing fea-
ture of the case study considered here is the possibility to manage the log in
a centralised way. Obviously, this may not be the case in many situations,
which will add the extra difficulty to define correspondences (or causality rela-
tionships) between items in different logs ([6, 33]). Last but not least, we are
currently working on two other key issues related to log files which have not been
discussed here: their optimisation in terms of storage (compaction, retention de-
lay, etc.) using an index-based factorization method and techniques to ensure
their authenticity and integrity ([1, 21, 29]) including trusted serialization of log
items.

References

[1] R. Accorsi. On the relationship of privacy and secure remote logging in
dynamic systems. In S. Fischer-Hübner, K. Rannenberg, L. Yngström, and
S. Lindskog, editors, SEC, volume 201 of IFIP, pages 329–339. Springer,
2006.

[2] R. Anderson and T. Moore. Information security economics — and be-
yond. Information Security Summit (IS2), Prague, Czech Republic, May
2009. Available at http://www.cl.cam.ac.uk/~rja14/Papers/econ_

czech.pdf.

[3] A. R. Arasteh, M. Debbabi, A. Sakha, and M. Saleh. Analyzing multiple
logs for forensic evidence. Digital Investigation, 4:82–91, 2007.

[4] A. Avizienis, J.-C. Laprie, and B. Randell. Fundamental concepts of com-
puter system dependability. In IARP/IEEE-RAS Workshop on Robot De-
pendability: Technological Challenge of Dependable Robots in Human En-
vironments, Seoul, Korea, 2001.

[5] D. M. Berry. Abstract appliances and software: The impor-
tance of the buyer’s warranty and the developer’s liability in pro-
moting the use of systematic quality assurance and formal methods.
CiteSeerX - Scientific Literature Digital Library and Search Engine,
http://www.scientificcommons.org/42749418.

RR n➦ 7148

http://www.cl.cam.ac.uk/~rja14/Papers/econ_czech.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/econ_czech.pdf

22 LISE Project

[6] D. Biswas, T. Gazagnaire, and B. Genest. Small logs for transactional ser-
vices: Distinction is much more accurate than (positive) discrimination. In
High Assurance Systems Engineering Symposium. HASE 2008. 11th IEEE,
2008.

[7] L. Brandan-Briones, A. Lazovik, and P. Dague. Optimal observability for
diagnosability. In International Workshop on Principles of Diagnosis, 2008.

[8] N. Craipeau. La preuve électronique. Technical report, Livrable LISE D1.3,
July 2009.

[9] A. D. H. Farrell, M. J. Sergot, M. Sallé, and C. Bartolini. Using the event
calculus for tracking the normative state of contracts. International Journal
of Cooperative Information Systems (IJCIS), 14(2-3):99–129, 2005.

[10] P. Gladyshev and A. Enbacka. Rigorous development of automated in-
consistency checks for digital evidence using the B method. International
Journal of Digital Evidence, 6(2):1–21, 2007.

[11] G. Governatori, Z. Milosevic, and S. W. Sadiq. Compliance checking be-
tween business processes and business contracts. In EDOC, pages 221–232.
IEEE Computer Society, 2006.

[12] D. Grossi, L. Royakkers, and F. Dignum. Organizational structure and
responsibility. Artificial Intelligence and Law, 15:223–249, 2007.

[13] R. Hardouin. Le sens des responsabilitiés en matière de contrats informa-
tiques. Technical report, Livrable LISE D1.1, July 2009.

[14] A. K. Jones and R. S. Sielken. Computer system intrusion detection: a
survey. Technical report, University of Virginia Computer Science Depart-
ment, 1999.

[15] F. Kamareddine, M. Maarek, and J. B. Wells. Flexible encoding of mathe-
matics on the computer. In Mathematical Knowledge Management, 3rd Int’l
Conf., Proceedings, volume 3119 of LNCS, pages 160–174. Springer-Verlag,
2004.

[16] D. Le Métayer. A formal privacy management framework. In P. Degano,
J. D. Guttman, and F. Martinelli, editors, Formal Aspects in Security and
Trust (FAST), volume 5491 of Lecture Notes in Computer Science, pages
162–176. Springer, 2009.

[17] S. Lipovetsky. Les clauses limitatives de responsabilité et de garantie

dans les contrats informatiques. Approche comparative France/États-Unis.
Quelles limitations. Expertises des systèmes d’information, 237:143–148,
May 2000.

[18] B. Littlewood and L. Strigini. Software reliability and dependability: a
roadmap. In ICSE - Future of SE Track, pages 175–188, 2000.

[19] G. J. Pace and G. Schneider. Challenges in the specification of full con-
tracts. In M. Leuschel and H. Wehrheim, editors, IFM, volume 5423 of
Lecture Notes in Computer Science, pages 292–306. Springer, 2009.

INRIA

Liability in Software Engineering 23

[20] Y. Papadopoulos. Model-based system monitoring and diagnosis of failures
using statecharts and fault trees. Reliability Engineering and System Safety,
81:325–341, 2003.

[21] P. Parrend and S. Frénot. Security benchmarks of OSGi platforms: toward
hardened OSGi. Software - Practice and Experience (SPE), 39(5):471–499,
2009.

[22] S. Peisert, S. Karin, M. Bishop, and K. Marzullo. Principles-driven forensic
analysis. In NSPW ’05: Proceedings of the 2005 workshop on New security
paradigms, pages 85–93, 2005.

[23] S. L. Peyton Jones and J.-M. Eber. How to write a financial contract. In
J. Gibbons and O. de Moor, editors, The Fun of Programming, Corner-
stones of Computing, chapter 6. Palgrave Macmillan, 2003.

[24] C. Picardi, R. Bray, F. Cascio, L. Console, P. Dague, D. Millet, B. Rehfus,
P. Struss, and C. Vallée. Idd: Integrating diagnosis in the design of au-
tomotive systems. In F. van Harmelen, editor, ECAI, pages 628–632. IOS
Press, 2002.

[25] C. Prisacariu and G. Schneider. A formal language for electronic contracts.
In M. M. Bonsangue and E. B. Johnsen, editors, FMOODS, volume 4468
of Lecture Notes in Computer Science, pages 174–189. Springer, 2007.

[26] S. Rekhis and N. Boudriga. A temporal logic-based model for forensic
investigation in networked system security. Computer Network Security,
3685:325–338, 2005.

[27] D. J. Ryan. Two views on security software liability: Let the legal system
decide. IEEE Security & Privacy, 1(1):70–72, 2003.

[28] F. B. Schneider. Accountability for perfection. Security & Privacy, IEEE,
7(2):3–4, March-April 2009.

[29] B. Schneier and J. Kelsey. Secure audit logs to support computer foren-
sics. ACM Transactions on Information and System Security (TISSEC),
2(2):159–176, 1999.

[30] M. Solon and P. Harper. Preparing evidence for court. Digital Investigation,
1:279–283, 2004.

[31] P. Stephenson. Modeling of post-incident root cause analysis. International
Journal of Digital Evidence, 2(2), 2003.

[32] R. E. K. Stirewalt, L. K. Dillon, and E. Kraemer. The inference validity
problem in legal discovery. In ICSE Companion, pages 303–306. IEEE,
2009.

[33] S. Yang, L. Hélouët, and T. Gazagnaire. Logic-based diagnosis for dis-
tributed systems. In K. Lodaya and M. Mukund, editors, Perspectives
in Concurrency Theory: A Festschrift for P. S. Thiagarajan. CRC Press,
2009.

RR n➦ 7148

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Starting point
	2.1 IT System
	2.2 Actors
	2.3 Informal Agreement
	2.4 Legal Context
	2.4.1 Liability Limitations
	2.4.2 Log files as evidence
	2.4.3 International Law

	3 Formal Specification of Liabilities
	3.1 Trace Model
	3.2 Trace Properties
	3.2.1 Error properties
	3.2.2 Claim properties

	3.3 Liability Function

	4 Log Architecture and Analyser
	4.1 Log Architecture
	4.2 Analyser

	5 Related Work
	6 Conclusion

