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Estimation of Cache Related Migration Delays for Multi-Core Processors with
Shared Instruction Caches

Damien Hardy Isabelle Puaut
Université Européenne de Bretagne / IRISA, Rennes, France

Abstract

Multi-core architectures, which have multiple processors
on a single chip, have been adopted by most chip manu-
facturers. In most such architectures, the different cores
have private caches and also shared on-chip caches. For
real-time systems to exploit multi-core architectures, itis
required to obtain both tight and safe estimations of a num-
ber of metrics required to validate the system temporal be-
haviour in all situations, including the worst-case: tasks
worst-case execution times (WCET), preemption delays and
migration delays. Estimating such metrics is very challeng-
ing because of the possible interferences between cores due
to shared hardware resources such as shared caches, mem-
ory bus, etc.

In this paper, we propose a new method to estimate
worst-case cache reload cost due to a task migration be-
tween cores. Safe estimations of the so-called Cache-
Related Migration Delay (CRMD) are obtained through
static code analysis. Experimental results demonstrate the
practicality of our approach by comparing predicted worst-
case CRMDs with those obtained by a naive approach. To
the best of our knowledge, our method is the first one to pro-
vide safe upper bounds of cache-related migration delays in
multi-core architectures with shared instruction caches.

1 Introduction

Most chip manufacturers have adopted multi-core tech-
nologies to both continue performance improvements and
control heat and thermal issues. In most multi-core architec-
tures, the different cores have private caches and also shared
on-chip caches.

For real-time systems to exploit multi-core architectures,
it is required to obtain both tight and safe estimations of a
number of metrics required to validate the system temporal
behaviour in all situations, including the worst-case:

• tasks worst-case execution times (WCET), for each
task considered in isolation,

• worst-case preemption delays, including the time re-
quired to refill the architecture caches after a preemp-
tion,

• worst-case migration delays, including the time to
reload the missing information into the caches after a
migration.

Estimating such metrics is very challenging because of
the possible interferences between cores due to shared hard-
ware resources such as shared caches, memory bus, etc.

In this paper, we propose a new method to estimate the
worst-case cache reload cost due to the migration of a task
between cores. Such a delay is called hereafter CRMD
for Cache Related Migration Delay. CRMD is due to the
cache refill activity occurring after a migration, and is il-
lustrated below in Figure 1. Figure 1 depicts the impact of
task migration on the contents of private and shared caches
in a multi-core platform. The depicted platform is made of
C cores, each having a private L1 instruction cache and a
shared L2 instruction cache.
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Figure 1. Impact of task migration on cache
contents

Consider a task, initially running onCore 1, which mi-
grates onCore C. At the migration point (see Fig. 1), both
the private and the shared instruction caches contain some
program blocks. Some program blocks, termedreused
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blocks, will be used after the task migration, whereas some
other blocks, termednon-reused blocks, will not be reused
after the task migration. After the migration, all reused
cache blocks will be reloaded in all levels of the cache hier-
archy.

Task migration thus results in additional cache misses
compared to a migration-free execution. Such cache misses
occur in the private cache, to load reused blocks. They may
also occur in the shared cache in case a reused block has
been evicted after first loaded, which can occur when using
non inclusive cache hierarchies.

Since exact migration points are not statically known, a
task migration may result in additional cache accesses in
the shared caches compared to a migration-free execution.
We chose to account for these accesses when estimating the
WCET of a task. Such a WCET, calledmigration-aware
WCET assumes that the task may migrate and thus may
cause additional accesses to the shared caches, but does not
include the cache reload cost itself. Additional cache misses
(in the private L1 cache and shared cache levels) are here-
after calledCache Related Migration Delay (CRMD).

We propose in this paper methods to compute safe esti-
mations of themigration-aware WCETand theCache Re-
lated Migration Delay (CRMD), using static analysis of the
code of the task subject to migration. Experimental results
demonstrate that estimated CRMDs are much lower than
when using a naive approach assuming that all useful blocks
must be reloaded in all cache levels after a migration.

Contributions. The paper contains two tightly-coupled
contributions:

• The first contribution is the proposal of amigration-
aware cache analysis method. The method estimates
the worst-case number of cache hits/misses of an iso-
lated task running on a multi-core platform and subject
to migrations, regardless of the number of migrations it
will suffer at run-time. The proposed migration-aware
cache analysis method accounts for every possible mi-
gration point on the shared cache, but does not inte-
grate the impact of the cache-related migration cost it-
self.

• The second contribution is a method to compute a
tight upper bound of the cache-related migration de-
lay (CRMD)an isolated task will suffer after each mi-
gration to reload the reused cache blocks. The pro-
vided CRMD is tight because the CRMD does not con-
sider as misses the accesses that are already detected as
misses by the migration-aware cache analysis method.
This metric, together with the migration-aware WCET
estimate, provides a safe bound of cache-related mi-
gration costs in a multi-core system. It can be used
in any real-time multi-processor schedulability test for

global and semi-partitioned scheduling [3, 2, 14] to the
extent that the worst-case number migrations is known.

To the best of our knowledge, our method is the first one
to provide safe upper bounds of cache refill costs in case of
migrations for multi-core architectures with shared instruc-
tion caches. This approach focuses on the computation of
the CRMD of a task in isolation and has to be used in com-
bination with a cache-related preemption delays estimation
method [20, 25].

Related work. Many static WCET estimation methods
have been designed in the last two decades (see [28] for
a survey). Static WCET estimation methods need a low-
level analysis phase to determine the worst-case timing be-
havior of the micro-architectural components (pipelines and
out-of-order execution, branch predictors, caches, etc.). Re-
garding cache memories on mono-core architectures, two
main classes of approaches have been proposed:static
cache simulation[18, 19], based on dataflow analysis, and
the methods described in [9, 26, 10], based on abstract in-
terpretation. Both classes of methods provide for every
memory reference a classification of the outcome of the ref-
erence in the worst-case execution scenario (e.g.always-
hit, always-miss, first-miss, etc.). These methods, orig-
inally designed for code only, and for direct-mapped or
set-associative caches with a Least Recently Used (LRU)
replacement policy, have been later extended to other re-
placement policies [13], data and unified caches [27], and
caches hierarchies [12]. Cache-aware WCET estimation
methods have recently been extended to multi-core plat-
forms [29, 11]; the cited methods take into account the in-
terferences caused by shared caches. The proposed method
for evaluating migration-aware WCETs is based on [12],
itself based on abstract interpretation for static cache analy-
sis [9, 26, 10].

The presence of caches not only impacts the execution
time of tasks considered in isolation but also results in
an indirect cost required to refill the caches after a pre-
emption. Static analysis techniques, close to those de-
signed for cache-aware WCET estimation, aim at producing
safe upper bound of CRPDs (cache-related preemption de-
lays) [20, 25]. Such techniques statically analyze the code
of the preempted and preempting tasks to determine which
blocks from the preempted task may be reused after the
preemption and will have to be reloaded. The method we
propose to evaluate CRMDs uses similar analyses and data
structures as the ones used to estimate CRPDs.

Extensive empirical evaluations of the impact of real-
world overheads (including cache-related preemption and
migration overheads) on multiprocessor scheduling algo-
rithms have been presented in [5, 4]. In contrast to our
work, these studies focus on giving average-case and worst-
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measured overheads and do not aim at providing safe upper
bounds of cache-related overheads.

Cache-aware multi-core scheduling have been presented
in [6, 7] for soft real-time applications; the idea of this di-
rection of work is to improve task scheduling in multi-core
platforms based on the cache behaviour of real-time tasks.
In this paper, we focus on the estimation of cache-related
overheads, and consider their exploitation by multiproces-
sor scheduling algorithms as outside the scope of the paper.

Finally, [24] which is the work closest to ours, assumes a
multi-core architecture with a private cache hierarchy. They
introduce new hardware support to move the cache contents
from one private cache to another to reduce the migration
cost. Our approach do not require any hardware modifica-
tion and the cache hierarchy can be shared between cores
except the first cache level.

Paper outline. The rest of the paper is organized as fol-
lows. Section 2 presents the assumptions our analysis is
based on, regarding the target architecture and task schedul-
ing. Section 3 presents the migration-aware cache analy-
sis method. Section 4 focuses on the estimation of cache-
related migration delays. Experimental results are given and
discussed in Section 5. Finally, Section 6 gives some con-
clusions and direction for future work.

2 Assumptions

A multi-core architecture is assumed. Each core has a
private first-level (L1) instruction cache, followed by shared
instruction cache levels. Each shared cache is shared be-
tween all the cores of the architecture. The caches are set-
associative and each level of the cache hierarchy is non-
inclusive:

− A piece of information is searched for in the cache
of level ℓ if and only if a cache miss occurred when
searching it in the cache of levelℓ−1. Cache of level1
is always accessed.

− Every time a cache miss occurs at cache levelℓ, the
entire cache block containing the missing piece of in-
formation is always loaded into the cache of levelℓ.

− There are no actions on the cache contents (i.e. in-
validations, lookups/modifications) other than the ones
mentioned above.

Our study concentrates on instruction caches; it is as-
sumed that the shared caches do not contain data. This
study can be seen as a first step towards a general solution
for shared caches. It can also push to the use of separate
shared instruction and data caches instead of unified ones1.

1Unified caches could be partitioned at boot time for instancein a A-
way instruction cache and a B-way data cache.

Our method assumes a LRU (Least Recently Used)
cache replacement policy. Furthermore, an architecture
without timing anomalies as defined in [16] is assumed.
The access time variability to main memory and shared
caches, due to bus contention, is supposed to be bounded
and known, by using for instanceTime Division Multiple
Access (TDMA)like in [23] or other predictable bus arbi-
tration policies [21]. Figure 2 illustrates two different sup-
ported architectures.

core C. . .

. . .
. . .

. . .

shared L2

shared L2

shared L3

core 2

core 1 core 2

core 1

private L1 private L1 private L1

private L1 private L1 private L1 private L1

core C

core C−1

Figure 2. Two examples of supported archi-
tectures

The focus in this paper is to estimate the worst-case
cache related migration delay (CRMD)suffered from a hard
real-time task after a migration from one core to another in
a multi-core platform. The migrated task is considered in
isolation from the tasks running at the same time on the
multi-core platform. The computation of interferences due
to intra-core or inter-core of other tasks is considered out
of the scope of this paper; for related studies tackling these
issues, the reader is referred to [20, 25] regarding intra-core
interferences or [29, 11] regarding inter-core interferences.

3 Migration-aware multi-level cache analysis

As a first step to present themigration-aware cache anal-
ysismethod, paragraph 3.1 focuses on the analysis of the
worst-case behaviour of the memory hierarchy when com-
pletely ignoring task migrations, what we callmigration-
ignorant cache analysis. The impact of task migration on
shared caches is considered in paragraph 3.2.

3.1 Migration-ignorant cache analysis

The cache analysis, originally presented in [12] and
briefly described is applied successively on each level of the
cache hierarchy, from the first cache level to the main mem-
ory. The analysis is contextual in the sense that it is applied
for every call context of functions (functions are virtually
inlined). The references considered by the analysis of cache
levelℓ depend on the outcome of the analysis of cache level
ℓ − 1 to consider the filtering of memory accesses between
cache levels, as depicted in Figure 3 and detailed below.

The outcome of the static cache analysis for every cache
level ℓ is aCache Hit/Miss Classification (CHMC)for each
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Cache analysis

Cache access
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Memory
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Cache hit/miss
classification
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Cache hit/miss
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Cache access
classification

Levelℓ

Levelℓ

Levelℓ

Levelℓ-1

Levelℓ-1

Levelℓ-1

Levelℓ+1

Figure 3. Multi-level cache analysis without
task migration

reference, determining the worst-case behavior of the refer-
ence with respect to cache levelℓ:

− always-miss(AM): the reference will always result in
a cache miss,

− always-hit(AH): the reference will always result in a
cache hit,

− first-miss(FM): the reference could neither be classi-
fied as hit nor as miss the first time it occurs but will
result in cache hit afterwards,

− not-classified(NC): in all other cases.

Moreover, at every levelℓ, aCache Access Classification
(CAC)specifies if an access may occur or not at levelℓ, and
thus should be considered by the static cache analysis of that
level. There is aCAC, notedCACr,ℓ,c for every reference
r, cache levelℓ, and call contextc2. The CAC defines three
categories for each reference, cache level, and call context:

− A (Always): the access always occurs at cache levelℓ.
− N (Never): the access never occurs at cache levelℓ.
− U (Uncertain) when the access cannot be classified in

the two above categories.

The cache analysis at every cache level is based on a
state-of-the-art single-level cache analysis [26], basedon
abstract interpretation. The method is based on three sepa-
rate fixpoint analyses applied on the program control flow
graph, for every call context:

2The call contextc will be omitted from the formulas when the concept
of call context is not relevant.

− a Must analysis determines if a memory block is al-
ways present in the cache at a given point: if so, the
block is classifiedalways-hit (AH);

− a Persistenceanalysis determines if a memory block
will not be evicted after it has been first loaded; the
classification of such blocks isfirst-miss (FM).

− a May analysis determines if a memory block may be
in the cache at a given point: if not, the block is classi-
fied always-miss (AM). Otherwise, if neither detected
as always present by theMust analysis nor as persis-
tent by thePersistenceanalysis, the block is classified
not classified (NC);

Abstract cache states (ACS) are computed for every
basic block according to the semantics of the analysis
(Must/May/Persistence) and the cache replacement policy
by using functions (Update andJoin) in the abstract do-
main. Update models the impact on the ACS of every ref-
erence inside a basic block;Join merges two ACS at con-
vergence points in the control flow graph (e.g. at the end of
conditional constructs).

Figure 4 gives an example of an ACS of a 2-way set-
associative cache with LRU replacement policy on aMust
analysis (only one cache set is depicted). Anage is asso-
ciated to every cache block of a set. The smaller the block
age the more recent the access to the block. For theMust
analysis, each memory block is represented only once in the
ACS, with its maximum age. It means that its actual age at
run-time will always be lower than or equal to its age in the
ACS.

At every cache levelℓ, the three analyses (Must, May,
Persistence) consider all referencesr guaranteed to occur at
level ℓ (CACr,ℓ = A). References withCACr,ℓ = N are
not analysed. Regarding uncertain references (CACr,ℓ =
U ), for the sake of safety, the ACS is obtained by exploring
the two possibilities (CACr,ℓ = A andCACr,ℓ = N ) and
merging the results using theJoin function (see Figure 5).
For all referencesr, CACr,1 = A, meaning that the L1
cache is always accessed.

Since task migrations are not considered in this para-
graph, the CAC of a referencer for a cache levelℓ only de-
pends on CHMC ofr at levelℓ−1 and the CAC ofr at level
ℓ − 1 to model the filtering of accesses in the cache hierar-
chy (see Figure 3). Table 1 shows all the possible cases of
computation ofCACr,ℓ fromCHMCr,ℓ−1 andCACr,ℓ−1.

h
h

h
h

h
h

h
h

h
h

hh

CACr,ℓ−1

CHMCr,ℓ−1 AM AH FM NC

A A N U U
N N N N N
U U N U U

Table 1. Cache access classification for
level ℓ (CACr,ℓ)
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of 2 ways{a}{c}

+age

{a} {b}

intersection
+ maximal age

{a}{c}

[c]

{} {a}

+age

{a} {b}

a. Join function of Must analysis b. Update function of Must analysis

abstract cache set abstract cache set
of 2 ways

Figure 4. Join and Update functions for the Must analysis with LRU replacement

The CHMC of referencer is used to compute the cache
contribution to the WCET of that reference (i.e. the sum
of the cache level latencies where the access tor may oc-
cur plus the memory latency if the access may occur in
the memory), which can be included in well-known WCET
computation methods [17, 22].

U
in

ACS inUpdate(ACS  ,r)inJoin( ),

ACSout

inACS

A access to r N access to r

Join function

inUpdate(ACS  ,r)access
to r

ACS

Figure 5. Function for U access

3.2 Migration-aware cache analysis

As previously depicted in Figure 1, migrating a task re-
sults in additional accesses to the shared caches after the
migration. Since the exact migration points are not known
off-line, some accesses to the shared cache levels that would
not occur in a migration-free execution may occur after the
migration. Thus, our migration-aware cache analysis ac-
count for every possible migration point without integrating
the cache-related migration cost itself.

As it was previously demonstrated in [12], considering
these additional accesses to the shared caches as always oc-
curring might not be safe, because this can lead to an un-
derestimation of the reuse distance of blocks in the shared
caches. As a consequence, the migration-aware cache anal-
ysis considers all accesses to the first shared cache level
(usually L2 cache) asUncertain(CACr,ℓ = U with ℓ the
first shared cache level). This ensures a safe cache analy-
sis of the shared cache levels in the presence of unknown
migration points. Apart from the introduction ofU ac-
cesses in the first shared cache level, the cache analysis

and computation of migration-aware WCETs, noted here-
afterWCETMA are achieved as described in§ 3.1.

Note that WCETMA is more pessimistic than
its migration-ignorant counterpart. This is because
WCETMA accounts for the impact of migrations on
the shared cache(s), which are not accounted for when
estimating the migration-ignorant WCET. The additional
pessimism due to the consideration of possible task
migrations is evaluated in Section 5.

4 Computing Cache-Related Migration De-
lay (CRMD)

This section focuses on the computation of the Cache-
Related Migration Delay (CRMD) suffered by a taskτ ev-
ery time it migrates from one core to another. Whenτ mi-
gratesn times, its WCET is then:

WCETMA + n ∗ (CRMD + δ)

with δ the migration cost excluding cache reloads. The
maximum number of migrations suffered by a task at run-
time depends on the scheduling policy3.

Due to the use of the migration-aware cache analysis, the
CRMD only depends on the additional accesses to the mem-
ory hierarchy after the migration. As explained before, and
previously illustrated in Figure 1, extra accessed concern
blocks reused after the migration ofτ , and may introduce
additional misses in the L1 cache as well as in the shared
cache levels.

Useful cache blocks. To bound the number of reused
blocks of the L1 cache at each program point, we use the no-
tion of useful cache blockspreviously defined in [15] for the
computation of Cache-Related Preemption Delay (CRPD).
A useful cache block is defined as follows:a useful cache
block at an execution point is defined as a memory block
that may be re-referenced before being replaced. In other

3This estimation is independent from any scheduling policies. It can
be reduced by considering then highest values of the CRMD instead of
n times the maximal value with some extra restrictions on the migration
points.
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words, the set of useful cache blocks at a given program
point p is a safe over-approximation of the set of reused
blocks at program pointp.

The technique used to determine the useful cache blocks
is based on the traditionalreaching definitionsandlive vari-
ablesdata flow analyses [1]:

• Similarly to the reaching definitions analysis, the
reaching memory blocks(RMB) analysis determines
all the memory blocks that may be in the cache at a
program pointp whenp is reached via any incoming
program path.

• As in the live variables analysis, thelive memory
blocks (LMB) analysis determines all the memory
blocks that may be referenced before their eviction via
any outgoing path fromp.

The useful cache blocks at program pointp (noted
useful(p)) are the memory blocks that are present in the
result of both the RMB analysis (notedRMB(p)) and the
LMB analysis (notedLMB(p)).

useful(p) = RMB(p) ∩ LMB(p)

Suppose that taskτ migrates at program pointp. In-
stead of considering a miss inall cache levels for each use-
ful cache block at pointp, our computation produces tighter
results by integrating in the CRMD only misses which are
not already integrated in the migration-aware WCET esti-
mate.

Notations. Before detailing the computation of the
CRMD, let us introduce some formulae obtained from the
results of the migration-aware cache analysis. First, we in-
troduce the notion ofalways-persistentblock to determine
if a cache blockcb is ensured to hit after a migration in a
given shared cache levelℓ (i.e. its cache hit/miss classifica-
tion isalways-hitor first-missin all execution contexts):

always persistentℓ(cb) =















true if ∀ctx, ∀instr ∈ cb,

CHMCℓ,ctx(instr) = AH

∨ CHMCℓ,ctx(instr) = FM

false otherwise

We also define the notion ofalways-filteredblock by a
previous shared cache level(s) ofℓ if the cache blockcb is
always-persistent in at least one previous shared cache level:

always filteredℓ(cb) =

{

false if ℓ = 2
∨ℓ−1

pℓ=2
always persistentpℓ(cb) otherwise

Similarly, we introduceat least once persistentℓ(cb)
to detect the case where a cache blockcb produces a hit in
shared cache levelℓ in at least one execution context:

at least once persistentℓ(cb) =















true if ∃ctx, ∃instr ∈ cb,

CHMCℓ,ctx(instr) = AH

∨ CHMCℓ,ctx(instr) = FM

false otherwise

and at least once filteredℓ(cb) by a previous shared
level(s) ofℓ if the cache blockcb is at-least-once-persistent
in at least one previous shared level:

at least once filteredℓ(cb) =







false if ℓ = 2
∨ℓ−1

pℓ=2
at least once persistentpℓ(cb)

otherwise

Finally, we defineprivate-filteredto determine if a cache
block is completely filtered by the private L1 cache in
at least one execution context during the computation of
WCETMA:

private filtered(cb) =
∃ctx,∀instr ∈ cb, CHMCL1,ctx(instr) = AH

Computing CRMD. A miss that could occur for the first
reference in the case of afirst-missis already counted by
the cache-aware migration analysis and there is no need
to count it twice except in the case the access is private-
filtered.

The L1 cache is always accessed, thus the latency of the
L1 cache is already included inWCETMA and do not need
to be counted in the CRMD. For a given shared cache level
ℓ, an access to a useful cache blockucb after a migration
has to be counted if the access is private-filtered because in
this case, the access could be not have been counted dur-
ing WCETMA computation. Moreover, if the access is not
private-filtered but this access is not filtered by a previous
shared cache level (i.e.¬always filteredℓ(ucb)) and is
at-least-once-persistent, the access has to be counted. Re-
mark that if the access is ensured to never produce a hit (i.e.
¬at least once persistentℓ(ucb)), the latency of this ac-
cess in shared cache levelℓ is already inWCETMA. More
formally, we define the cost added to the CRMD of a shared
cache levelℓ at a given program pointp as follows:
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cost share level
p
ℓ =| {ucb ∈ useful(p),

(¬always filteredℓ(ucb)
∧ at least once persistentℓ(ucb))

∨private filtered(ucb)} |
∗ latencyℓ

The accesses to the main memory which have to be in-
cluded in the CRMD are similar. If the access is private-
filtered, this access could be not counted duringWCETMA

computation. Moreover, if the access is not private-filtered
but this access is not filtered by any previous shared cache
levels (i.e. ¬always filteredhℓ+1(ucb) wherehℓ repre-
sents the level of the highest cache level andhℓ+1 represent
the level of the main memory) and is at-least-once-filtered
by a shared cache level, the main memory latency of the ac-
cess have to be counted. More formally, we define the cost
added to the CRMD of the main memory at a given program
pointp as follows:

cost memoryp =| {ucb ∈ useful(p),
(¬always filteredhℓ+1(ucb)

∧ at least once filteredhℓ+1(ucb))
∨private filtered(ucb)} |

∗ latencymemory

Thus the CRMD at program pointp, notedCRMDp is
the sum of the cost of each shared cache level plus the mem-
ory cost.

CRMDp = cost memoryp +
hℓ
∑

ℓ=2

cost share level
p
ℓ

Finally, the CRMD of one single migration is equal to
the biggest value ofCRMDp computed for all the program
points:

CRMD = max(CRMDp, ∀p ∈ program)

5 Experimental results

5.1 Experimental setup

Cache analysis and WCET estimation. The experi-
ments were conducted on MIPS R2000/R3000 binary code
compiled with gcc 4.1 with no optimization and with the
default linker memory layout. The WCETs of tasks are
computed by the Heptane timing analyzer [8], more pre-
cisely its Implicit Path Enumeration Technique (IPET). The

analysis is context sensitive (functions are analysed in each
different calling context). To separate the effect of the
caches from those of the other parts of the processor micro-
architecture, WCET estimation only takes into account the
contribution of instruction caches to the WCET. The effects
of other architectural features are not considered. In par-
ticular, timing anomalies caused by interactions between
caches and pipelines, as defined in [16] are disregarded.
The cache classificationnot-classifiedis thus assumed to
have the same worst-case behavior asalways-missduring
the WCET computation in our experiments. For space con-
sideration, WCET computation is not detailed here, inter-
ested readers are referred to [12].

The migration points considered in the experiments are
the ends of basic blocks of the analyzed task.

Name Description Code size
(bytes)

crc Cyclic redundancy check computation 1432
fft Fast Fourier Transform 3536
jfdctint Integer implementation of the forward

DCT (Discrete Cosine Transform)
3040

matmult Multiplication of two 50x50 integer
matrices

1200

minver Inversion of floating point 3x3 matrix 4408
adpcm Adaptive pulse code modulation algo-

rithm
7740

statemate Automatically generated code by
STARC (STAtechart Real-time-Code
generator)

8900

Table 2. Benchmark characteristics

Benchmarks. The experiments were conducted on seven
benchmarks (see Table 2 for the applications characteris-
tics). All benchmarks are maintained by Mälardalen WCET
research group4.

Cache hierarchy. The results are obtained on a 2-level
cache hierarchy composed of a private 4-way L1 cache of
1KB with a cache block size of 32B and a shared 8-way
L2 cache of 2KB (or 4KB for the two biggest benchmarks
adpcmandstatemate) configured with a cache block size
of 32B or 64B. Cache sizes are small compared to usual
cache sizes in multi-core architectures. However, there are
no large-enough public real-time benchmarks available to
experiment our proposal. As a consequence, we have se-
lected quite small commonly used real-time benchmarks
and adjusted cache sizes such that the benchmarks do not fit
entirely in the caches. All caches are implementing a LRU
replacement policy. Latencies of 1 cycle (respectively 10
and 100 cycles) are assumed for the L1 cache (respectively
the L2 cache and the main memory).

4http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
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5.2 Results

First, the overestimation resulting from accounting for
possible migration points when estimating the WCET of
tasks is estimated. Then, the CRMD estimated using
our method is compared to a baseline CRMD estimation
method considering that all useful blocks are reloaded in all
cache levels after a task migration. Finally, the execution
time of CRMD estimation is evaluated.

Impact of migrations on task WCET for a non-
migrating task. In this paragraph, we focus on the
comparison of the estimated migration-ignorant WCET
(notedWCETMI ) and the migration-aware WCET (noted
WCETMA) when the task does not migrate. The results are
mainly given in Table 3, which shows the WCET overesti-
mation in cycles resulting from considering every possible
migration point. More details regarding the results of cache
analysis are given in Table 4.

Benchmarks WCETMI WCETMA delta ratio
(cycles) (cycles) (cycles)

crc (2KB-32B) 152753 152753 0 0%
crc (2KB-64B) 151953 152753 800 0.53%
fft (2KB-32B) 188655 188655 0 0%
fft (2KB-64B) 187555 188655 1100 0.59%

jfdctint (2KB-32B) 25389 25389 0 0%
jfdctint (2KB-64B) 20689 25389 4700 22.72%
matmult (2KB-32B) 16704 16704 0 0%
matmult (2KB-64B) 16504 16704 200 1.21%
minver (2KB-32B) 20646 20646 0 0%
minver (2KB-64B) 16446 20646 4200 25.54%
adpcm (4KB-32B) 310391 316391 6000 1.93%
adpcm (4KB-64B) 322125 383439 61314 19.03%

statemate (4KB-32B) 141303 142603 1300 0.92%
statemate (4KB-64B) 115903 152325 36422 31.42%

Table 3. Migration-ignorant WCET vs
migration-aware WCET

We observe from Table 4 three different situations,
which allows to explain the results given in Table 3.

• The first situation is when the migration-ignorant
cache analysis does not detect any hit in the L2 cache,
or detects very few hits in the L2 cache (in Table 4
number of L1 misses≈ number of L2 misses). This
situation occurs when the migration-ignorant cache
analysis does not detect spatial and temporal locality
in the L2 cache. In this situation, the migration-aware
WCET is very close to the migration-ignorant WCET.

• The second situation occurs when the migration-
ignorant cache analysis detects temporal locality but
no spatial locality in the L2 cache (in Table 4 number
of L1 misses≫ number of L2 misses, with L2 cache
lines of 32B). In this situation, the migration-aware

Benchmarks Metrics Migration- Migration-
ignorant aware

crc (2KB-32B) nb of L1 accesses 141643 141643
nb of L1 misses 101 101
nb of L2 misses 101 101

crc (2KB-64B) nb of L1 accesses 141643 141643
nb of L1 misses 101 101
nb of L2 misses 93 101

fft (2KB-32B) nb of L1 accesses 80305 80305
nb of L1 misses 7575 7575
nb of L2 misses 326 326

fft (2KB-64B) nb of L1 accesses 80305 80305
nb of L1 misses 7575 7575
nb of L2 misses 315 326

jfdctint (2KB-32B) nb of L1 accesses 8039 8039
nb of L1 misses 725 725
nb of L2 misses 101 101

jfdctint (2KB-64B) nb of L1 accesses 8039 8039
nb of L1 misses 725 725
nb of L2 misses 54 101

matmult (2KB-32B) nb of L1 accesses 11204 11204
nb of L1 misses 50 50
nb of L2 misses 50 50

matmult (2KB-64B) nb of L1 accesses 11204 11204
nb of L1 misses 50 50
nb of L2 misses 48 50

minver (2KB-32B) nb of L1 accesses 4146 4146
nb of L1 misses 150 150
nb of L2 misses 150 150

minver (2KB-64B) nb of L1 accesses 4146 4146
nb of L1 misses 150 150
nb of L2 misses 108 150

adpcm (4KB-32B) nb of L1 accesses 186301 186301
nb of L1 misses 3759 3759
nb of L2 misses 865 925

adpcm (4KB-64B) nb of L1 accesses 186435 186569
nb of L1 misses 3779 3797
nb of L2 misses 976 1589

statemate (4KB-32B) nb of L1 accesses 10933 10933
nb of L1 misses 1797 1797
nb of L2 misses 1124 1137

statemate (4KB-64B) nb of L1 accesses 10673 10945
nb of L1 misses 1763 1798
nb of L2 misses 876 1239

Table 4. Migration-ignorant vs migration-
aware cache analysis (estimated number of
accesses)
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WCET is still close to the migration-ignorant WCET.
The good result comes from the presence of the persis-
tence analysis, which detects blocks as persistent even
though accesses to the L2 cache are considered asUn-
certain(U ).

• Finally, the third and last situation occurs when the
migration-ignorant cache analysis detects both tempo-
ral and spatial locality in the L2 cache (in Table 4 num-
ber of L1 misses≫ number of L2 misses, with L2
cache lines of 64B). In this situation, the migration-
aware WCET might be significantly larger than is
migration-ignorant counterpart. This is because the in-
troduction ofU accesses in the migration-aware cache
analysis prevents the cache analysis from detecting
spatial locality in the L2 cache.

It can be remarked that there are for some benchmarks
(adpcmandstatemate) a variation of worst-case execution
path between the migration-aware and migration-ignorant
cases (different numbers of accesses along the worst-case
execution path for the L1 cache).

Benchmarks # useful CRMD baseline CRMD
cache block in cycles in cycles

crc (2KB-32B) 31 3410 510
crc (2KB-64B) 31 3410 400
fft (2KB-32B) 32 3520 1050
fft (2KB-64B) 32 3520 610

jfdctint (2KB-32B) 20 2200 460
jfdctint (2KB-64B) 20 2200 360
matmult (2KB-32B) 17 1870 190
matmult (2KB-64B) 17 1870 140
minver (2KB-32B) 14 1540 280
minver (2KB-64B) 14 1540 240
adpcm (4KB-32B) 24 2640 970
adpcm (4KB-64B) 24 2640 690

statemate (4KB-32B) 5 550 20
statemate (4KB-64B) 5 550 110

Table 5. Estimated Cache-Related Migration
Delay (CRMD)

Evaluation of CRMD. Table 5 compares for every
benchmark and cache configuration the CRMD obtained by
our proposed method (column 4) to a simple baseline, al-
beit safe method considering that all useful blocks have to
be reloaded in all cache levels after a task migration (col-
umn 3). Column 2 gives the number of useful cache blocks
per benchmark and cache configuration.

The numbers given in the table show that the estimated
CRMD, obtained by the proposed approach, is much lower
than when using the simple baseline approach. Compar-
ing estimated CRMD with measured ones is left for future
work.

5.2.1 Analysis time.

The longest measured time to estimate the migration-aware
WCET plus to estimate the CRMD was 5 minutes for the
biggest benchmarks. This shows empirically that the com-
plexity of CRMD estimation is similar to the one of cache
analyses used when estimating WCETs.

6 Conclusions and future work

We have proposed in this paper a new method, based
on static analysis, to estimate the worst-case cache reload
cost due to the migration of a task between cores (CRMD,
for Cache Related Migration Delay). To the best of our
knowledge, our method is the first one to providesafeup-
per bounds of cache-related migration delays in multi-core
architectures with shared caches. Experimental results have
shown that the estimated CRMDs are much less pessimistic
than the simple baseline safe approach except when the
cache block sizes in the different cache levels are not the
same.

As future work, we plan to compare the estimated CR-
MDs with measured ones in order to evaluate the tightness
of our approach. Other research directions will be to extend
the approach to data or unified caches. Finally, selecting
task scheduling based on CRMD information would be of
interest.
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