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Abstract: In this paper, we introduce a novel approach based on higher order
energy functions which have the ability to encode global structural dependencies
to infer articulated 3D spine models to CT volume data. A personalized geomet-
rical model is reconstructed from biplanar X-rays before spinal surgery in order
to create a spinal column representation which is modeled by a series of interver-
tebral transformations based on rotation and translation parameters. The shape
transformation between the standing and lying poses is then achieved through a
Markov Random Field optimization graph, where the unknown variables are the
deformations applied to the intervertebral transformations. Singleton and pair-
wise potentials measure the support from the data and geometrical dependencies
between neighboring vertebrae respectively, while higher order cliques are in-
troduced to integrate consistency in regional curves. Optimization of model
parameters in a multi-modal context is achieved using efficient linear program-
ming and duality. A qualitative evaluation of the vertebra model alignment
obtained from the proposed method gave promising results while the quantita-
tive comparison to expert identification yields an accuracy of 1.8±0.7mm based
on the localization of surgical landmarks.

Key-words: Registration, physical modeling, image segmentation, articulated
3D spine model, Higher-order MRFs
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Inférence de Modèles 3D Préopératoire de la
Colonne Vertébrale aux Données Volumétriques

par des MRFs de Haut-Niveau

Résumé : Ce papier présente une méthode d’inférence d’un modèle personnalisé
de la colonne vertébrale en 3D à partir de données tomodensitométriques en
exploitant des fonctions d’énergie de haut niveau incorporant des dépendances
géométriques. Une reconstruction 3D précise à partir d’images radiographiques
standards est exploitée afin d’obtenir une représentation du rachis modélisée
par une série de transformations intervertébrale. Ces transformations sont
basées sur les paramtres de rotation et de translation. La transformation de
la forme du rachis entre les positions couchées et debout est atteinte grâce a
une optimisation un Markov Random Field (MRF), où les variables inconnues
sont les déformations appliquées aux transformations intervertébrales. Des
valeurs potentiels unitaires et binômes mesurent le lien entre les images et
les contraintes géométriques entre les vertèbres, alors que des fonctions de
haut niveau introduisent des contraintes d’alignement des régions anatomiques.
L’optimisation des paramètres dans un contexte multi-modale est effectuée par
une approche de programmation linéaire et par dualité. Nous présentons des
résultats prometteurs pour le recalage d’images à partir d’une comparaison avec
une identification manuelle d’un expert qui offre une précision de 1.8 ± 0.7mm
basée sur la localisation de repères chirurgicaux.

Mots-clés : Recalage d’images, modélisation physique, segmentation, modèle
3D articulé de la colonne vertébrale, MRF haut-niveau
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4 Kadoury & Paragios

1 Introduction

Deformable anatomical models are powerful tools for recovering the shape of a
patient’s anatomy when only partial information or sparse image data is avail-
able. For example in orthopedic surgery, 3D computer-generated models have
assisted specialists in surgical planning and instrument navigation during the
intervention [1]. It offers a unique advantage to visualize the anatomy during
surgery and localize anatomical regions without segmenting operative images.
By fusing these images such as CT, C-arm CT, MR or ultrasound with an ac-
curate preoperative model, the surgeon can see the position and orientation of
the instrumentation tools on precise anatomical models. While these emerging
technologies were successful for knee or hip replacement applications [2], correc-
tive spinal surgery is particularly challenging due the complex three-dimensional
(3D) deformations of the spine combined with asymmetric deformation of the
vertebrae, high variability of the articulated structure and required precision for
pedicle screw insertion [3, 4].

Registration of intraoperative fluoroscopic images and preoperative CT/MR
images has been proposed to aid interventional and surgical orthopedic pro-
cedures [5]. In some cases, 3D models were registered to 2D X-ray and fluo-
roscopic images using gradient amplitudes for optimizing the correspondence
of single bone structures [6]. Objective functions using surface normals from
statistical PDMs were applied for the femur [7] or pelvis [8]. In spine regis-
tration however, one important drawback is that each vertebra of the spine is
treated individually instead of as a global shape which hinders surgeons to ex-
ploit virtual fluoroscopy imaging. Hence while the morphology of each vertebra
remains identical between initial exam and surgery, intervertebral orientation
and translation vary substantially.

To tackle this issue, articulated models allow to account for the global geo-
metrical representation [9] by incorporating knowledge-based intervertebral con-
straints. These 3D intervertebral transformations were transposed in [10] to ac-
complish the segmentation of the spinal cord from CT images, but multi-modal
registration has yet to be solved. Optimization is also based on gradient-descent,
prone to non-linearity and local minimums. These methods require segmenta-
tion of 3D data or fluoroscopic image, which itself is a challenging problem
and has a direct impact on registration accuracy. In [11], we propose a dis-
crete optimization method for articulated spine models, that effectively infers a
preoperative model to intraoperative data using only singleton data terms and
pairwise constraints. Although intervertebral orientations and translations are
nicely captured, the method fails to encode high level geometrical representation
of spine changes between the initial exam and during surgery.

In this work, we propose a novel framework which incorporates statistics of
regional spinal curves represented by higher order cliques for registering preoper-
ative 3D articulated spine models in a standing position to lying intraoperative
3D CT images. We use a personalized 3D spine reconstructed from biplanar
X-rays to derive an articulated model represented with intervertebral transfor-
mations. Inference is achieved through a Markov Random Field (MRF) graph
which incorporates three optimality components: modular image data-terms
which avoids image segmentation, dual potentials to constrain the adjustment
of intervertebral links between neighboring objects and global priors of the re-
gional spine components encoded as higher order functionals which are solved

INRIA
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with a primal-dual discrete optimization scheme. We therefore infer a new
annotated spine representation from data gathered during surgery based on a
high-resolution personalized 3D model.

RT n° 0374



6 Kadoury & Paragios

2 Personalized 3D Reconstruction of Articulated
Spines

2.1 Preoperative Spine 3D Reconstruction

From calibrated coronal and sagittal X-ray images Ii={1,2} of the patient’s spine,
the personalized 3D model is achieved by means of a reconstruction method
merging statistical and image-based models based on the works of [12], and
summarized in Fig. 1. The 3D spine centerline Ci(u), obtained from quadratic
curves extracted from the images is first embedded onto a non-linear manifold
containing 732 scoliotic spines (M) to predict an initial spine, modeled by 17
vertebrae (12 thoracic, 5 lumbar), 6 points per vertebra (4 pedicle tips and 2
endplate midpoints). This manifold establishes the patterns of legal variations
of spine shape changes in a low-dimensional sub-space based on locally linear
embeddings as illustrated in Fig 2. To map the high-dimensional 3D curve
assumed to lie on a non-linear manifold into a low-dimensional subspace, we
first determine the manifold reconstruction weights W to reconstruct point i
from it’s K neighbors, and then determine the global internal coordinates of Y
by solving:

Φ(Y ) =
M∑
i=1

∥∥∥∥Yi − K∑
j=1

WijYj

∥∥∥∥2

. (1)

The projection point Ynew is used to generate an appropriately scaled model
from an analytical method based on nonlinear regression using a Radial Ba-
sis Function kernel function f to perform the inverse mapping such that S =
[f1(Ynew), ..., fD(Ynew)] with S = (s1, s2, . . . , s17), where si is a vertebra model
defined by si = (p1, p2, ..., p6), and pi ∈ <3 is a 3D vertebral landmark.

This crude statistical 3D model is refined with an individual scoliotic verte-
bra segmentation approach by extending 2D geodesic active regions in 3D, in
order to evolve prior deformable 3D surfaces by level sets optimization. An atlas
of vertebral meshes Si = {xi1, ..., xiN} with triangles xj are initially positioned
and oriented from their respective 6 precise landmarks si composing S. The
surface evolution is then regulated by the gradient map and image intensity dis-
tributions [13], where ERAG = αECAG(S)+(1−α)ER(S) is the energy function
with the edge and region-based components controlled by α are defined as:

ECAG =
2∑
i=1

∮
Si

1
1 + |∇Ii(ui)|α

dui (2)

ER = −
2∑
i=1

∫∫
Πi(Si)

log(pR(Ii(ui)))dui (3)

with Πi as the perspective projection parameters, and pR is a Gaussian dis-
tribution. The projected silhouettes of the morphed 3D models would therefore
match the 2D information on the biplanar X-rays in the image domain u, repli-
cating the specifics of a particular scoliotic deformity. At the end of process, the
3D landmark coordinates si and corresponding polygonal vertebral meshes Si
are optimal with regards to statistical distribution and image correspondences.

INRIA
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Figure 1: Personalized spine 3D reconstruction from preoperative X-rays.

Figure 2: Illustration of spine distribution embedded onto on a low-dimensional
manifold.

2.2 Articulated Spine Model

The 3D landmarks si are used to rigidly register each vertebra to its upper
neighbor, and the resulting rigid transforms are optimized in the registration
problem. Hence, the spine is represented by a vector of local intervertebral rigid
transformations A = [T1, T2, . . . , TN ]. To perform global anatomical modeling
of the spine, we convert A into an absolute representation:

Aabs = [T1, T1 ◦ T2, . . . , T1 ◦ T2 ◦ . . . ◦ TN ] (4)

using recursive compositions. The transformations are expressed in the local
coordinate system of the lower vertebra, defined by vectors vx, vz and vy =
vx× vz, where vx and vz are the vectors linking pedicle and endplate midpoints
respectively. Center of transformation is located at the midpoint of all 4 pedicle
tips. The rigid transformations described in this paper are the combination
of a rotation matrix R and a translation vector t. We formulate the rigid
transformation T = {R, t} of a vertebral mesh triangle as y = Rx + t where
x, y, t ∈ <3. Composition is given by T1◦T2 = {R1R2, R1t2+t1}, while inversion
as T−1 = {RT ,−RT t}.

RT n° 0374
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3 Intraoperative Spine Inference from Images
with MRFs

A successful inference between the spine model S controlled by the articulations
(denoted as Aabs) and the image I must be accomplished by establishing sim-
ilarity criterions which will drive the model deformation towards the optimal
solution. We search the optimal displacement points ~D = (~d1, ..., ~dn) of the
articulation vectors T that give a good compromise between the encoded prior
constraints established by manifold statistics and the fidelity to the image in-
formation. Formally, the inference of the model Aabs to the image I is given
by:

(~d1, . . . , ~dn) = argmin
~di

E(S0, I, (~d1, . . . , ~dn)). (5)

The energy E of inferring the spine model S in the image I is a function of the
displacement vectors ~D = (~d1, . . . , ~dn) in the transformation space applied to the
articulation vector Aabs. This influences the data-related term V (A0

abs + ~D, I)
expressing the image cost, a local prior term V (N, ~D) measuring deformation
between neighboring vertebrae and a global higher order term V (H, ~D) which
models the global deformation of a regional curve. The energy function E is
therefore:

E
(
S0, I, ~D

)
= V

(
A0

abs + ~D, I
)

+ V
(
N, ~D

)
+ V

(
H, ~D

)
=
∑
i∈G

Vi(T 0
i + ~di, I)

+ λij
∑
i∈G

∑
j∈N (i)

Vij(T 0
i + ~di, T

0
j + ~dj) (6)

+ αc
∑
c∈C

Vc(T0
c + ~dc)

where A0
abs + ~D = {T 0

1 + ~d1, . . . , T
0
n + ~dn} are the equivalence for articulated

components. The data term in the image domain seeks to minimize the distance
between model and I:∑

i∈G
Vi(T 0

i + ~di, I) =
∫

Ω

ηX(I, Si(T 0
i + ~di))dT (7)

with ηX =
∑

vij∈Si
(γ2 + γ‖∇I(vij)‖)/(γ2 + ‖∇I(vij)‖2) attracts mesh tri-

angles to target high-intensity voxels in the gradient CT volume without seg-
mentation. The term γ is defined as a dampening factor. The second term
of Eq.(6) is a local prior term which are pairwise potentials representing the
smoothness term between two consecutive vertebrae and help to constrain the
vertebrae main direction in the optimization step (Fig. 3(a)) by assigning a
binary clique value Vij = {0, 1} such as:

Vij =

{
|(T 0

i + ~di)− (T 0
j + ~dj)| ≤ ε1 for <(i) ≡ <(j)

||~di|| − ||~dj || ≤ ε2 for <(i) 6= <(j).
(8)

INRIA
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(a) (b) (c)

Figure 3: (a) Pairwise link between neighboring vertebrae; (b) Regional higher
order cliques based on (c) vertebral triplets.

The final term in the energy function represents the higher order potentials.
We parameterize the potentials with clique variables Tc taking on correspond-
ing costs θq if the cliques are assigned to the displacement vectors ~dc. To encode
anatomical coherence of the spine, three cliques representing each of the spine’s
regions are composed of three vertebrae, linking the inflexion (change of curva-
ture) and the apical (most deviated) vertebrae as illustrated in Fig. 3(b)-(c).
The potential functions are defined as:

Vc(T0
c) = min{ min

q∈{1,2,...,t}
θq + ∆q(T0

c), θmax} (9)

where θq = ||ψ(Tc)−Πφ(M)(ψ(Tc))|| is a geodesic distance calculated from
the low-dimensional mapping of the clique variable onto the manifold using
ψ : < → M to the projection point Π on the prior distribution φ(M), and
∆q(T0

c) =
∑
i∈c w

q
ilδ(Ti = l) is a deviation function. The Kronecker delta

function δ generates binary variables, while the weights are assigned such that:

wqil =

{
0 if Tq = l

θmax otherwise
(10)

depending on wether the clique variable is given the appropriate label (see
sec. 2.3). We develop an optimization procedure which minimizes Eq.(6) by
means of an efficient discrete optimization algorithm using an MRF which is
explained in the next section.

RT n° 0374
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4 Energy Minimization

The optimization strategy for Eq.(6) of the resulting MRF is based on a discrete
labeling principle where we seek to assign the optimal labels L = {l1, . . . , li},
defined in the quantized space Θ = {~d1, ..., ~di} of displacements, to the vertebral
transformations represented by nodes Ti so that the total energy of the graph is
minimum. If we consider that displacing an intervertebral transformation vector
by ~dn is equivalent to assigning label l and that the current solution is given
by T ti = T 0

i +
∑
t
~dlit, which adopts the pyramidal coarse-to-fine quantization

approach in a temporal minimization, the energy Eq.(6) can be re-written as a
labeling problem:

Et(l1, . . . , ln) =
∑
i∈G

Vi(T t−1
i , li)

+ λij
∑
i∈G

∑
j∈N (i)

Vij(T t−1
i , T t−1

j , li, lj) (11)

+ αc
∑
Tc∈C

Vc(Tt−1
c , lc).

We solve the minimization of the higher order cliques in Eq.(11) by trans-
forming them into quadratic functions [14] using a (t+1)-state switching variable
which finds the deviation function which assigns the lowest cost to the labeling:

minVc(T0
c) = min

T0
c,z∈{1,2,...,t+1}

f(z) +
∑
i∈c

g(z, Ti) (12)

where f(z) = {θq, θmax} is a cost assigning function depending on the state
variable z and g(z, Ti) = wqil when z = q and Ti = l ∈ L, while g(z, Ti) = 0
when z = t + 1. We apply a Primal-Dual algorithm called FastPD [15] which
can efficiently solve the registration problem in a discrete domain by formulating
the duality theory in linear programming. The advantage of such an approach
lies in its generality, efficient computational speed, and guarantees the global
optimum without the condition of linearity.

INRIA
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5 Experimental Validation

We experimented the articulated inferences of preoperative spine models to
intraoperative data by confronting the obtained registered landmark accuracy
to expert identification. A dataset of 12 separate CT volumes of the lumbar
and main thoracic regions were obtained from different patients (512 × 512 ×
251, resolution: 0.8 × 0.8 mm, thickness: 1 − 2 mm), acquired for operative
planing purposes. Preoperative X-rays of patients were obtained for initial 3D
reconstruction. The CT data was manually annotated with 3D landmarks,
corresponding to left and right pedicle tips as well as midpoints of the vertebral
body. The smoothness term was set at λij = 0.4, while the clique variable was
αc = 0.3. Tests were performed in C++ on a 2.8 GHz Intel P4 processor and 4
GB memory.

We first experimented the manifold-based higher order energy functions
based on the search of the label space. Since the functional potentials are di-
rectly linked to the costs assigned by the geodesic distances to the manifold, we
can therefore assess the performance of this metric as an efficient parametriza-
tion of the higher order cliques. Fig. 4 displays the obtained embedding for a
dataset of 711 spine models in M, as well as selected energy potential distri-
butions. Results show the search for the minimum energy is a able to obtain
cliques that fall near the manifold, thus corresponding anatomically coherent
configurations.

Then for each case of the CT dataset, registration is performed to automat-
ically align the CT volume with γ = 0.05 to the given preoperative model S
and quantitative assessment consisted of measuring the RMS distance with the
manually segmented landmarks. Table 1 presents the results from this exper-
iment with 3D landmark RMS differences and surface errors based on DICE
scores, comparing the proposed method with cost functions excluding pairwise
and higher order energy terms. Results for overall vertebral landmark errors
have improved by 0.38 mm compared to the previous approach [11], which is
significant for the required guidance accuracy. These results seem to confirm
that exploiting higher order geometrical constraints on the whole shape prior
does help to converge towards a global minimum. Visual registration results of
the 3D model with CT is shown in Fig. 5, demonstrating the multi-modal align-
ment where one could observe accurate superposition of geometrical models on
selected multi-planar views.

RT n° 0374
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(a) (b)

(c)

Figure 4: (a) Low-dimensional manifold of the spine dataset used to deter-
mine costs for clique variables. (b) High order energy potential distributions.
(c) Parametrization of manifold clique variables in the label search space corre-
sponding to the original energy function.

Image-term Image + pairwise terms
RMS (mm) DICE (%) RMS (mm) DICE (%)

Thoracic vertebrae 11.4 82 2.2 91
Lumbar vertebrae 5.2 80 1.9 94
Total vertebrae 9.6 81 2.1 92

Higher order method
RMS (mm) DICE (%)

Thoracic vertebrae 1.7 94
Lumbar vertebrae 2.0 93
Total vertebrae 1.8 94

Table 1: Comparison between optimization schemes with cost functions inte-
grating only image related terms, singleton-pairwise potentials, and the pro-
posed method with additional higher order functions. Evaluation is made on
root-mean-square (RMS) differences (inferred vs. annotated landmarks) and
with DICE scores from segmented vertebrae.

6 Conclusion

Statistical deformable model methods are often dedicated to single anatomical
structures. Shape analysis of articulated models on the other hand has been
sparsely investigated due to the difficulty in constraining the higher number of
transformation variables. The method we propose not only allows to infer shape

INRIA
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Figure 5: Qualitative assessment of multimodal registration results of spine
model S with CT images I.

deformations of object constellations using discrete optimization techniques, but
offers the possibility to learn the variations of spinal shape in complex correc-
tive procedures. Hence we progress to whole body deformation by introducing
novel high order cliques in the optimization to impose global shape constraints.
Increased accuracy of pedicle landmark localization was achieved by comparing
the method with standard image-based methods.

Future work will look at adapting local shape variations using mesh relax-
ation techniques based on bone density fields which may increase the accuracy
of the geometrical alignment. Furthermore, a real-time feasibility evaluation of
the approach during corrective surgery is planned for clinical use.

RT n° 0374
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