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Abstract: Today, only a small fraction of Internet repositories of geometric data is
accessible through text search. Fast growth of these repositories makes content-based
retrieval one of the next grand challenges in search and organization of such infor-
mation. Particularly difficult is the problem of shape retrieval, as geometric shapes
manifest a vast variability due to different scale, orientation, non-rigid deformations,
missing data, and also appear in a variety of different formats and representations. One
of the biggest challenges in non-rigid shape retrieval and comparison is the design of a
shape descriptor that would maintain invariance under a wide class of transformations
the shape can undergo. Recently, heat kernel signature was introduced as an intrinsic
local shape descriptor based on diffusion scale-space analysis. In this paper, we de-
velop a scale-invariant version of the heat kernel descriptor. Our construction is based
on a logarithmically sampled scale-space in which shape scaling corresponds, up to a
multiplicative constant, to a translation. This translation is undone using the magnitude
of the Fourier transform. The proposed scale-invariant local descriptors can be used in
the bag-of-features framework for shape retrieval in the presence of transformations
such as isometric deformations, missing data, topological noise, and global and local
scaling. We get significant performance improvement over state-of-the-art algorithms
on recently established non-rigid shape retrieval benchmarks.

Key-words: shape retrieval, non-rigid shape similarity, intrinsic feature descriptor,
heat diffusion, heat kernel signature, scale invariance
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Invariance d’échelle dans les descripteur locaux du
noyau de la chaleur sans sélection et normalisation

d’échelle
Résumé : A ce jour, seulement une fraction des répertoires de données géométriques
sur internet est accessible à la recherche contextuelle. Du fait de la rapide croissance de
ces répertoires, les requêtes basées sur le contenu ont fait apparaître certains des grands
défis à venir tels que la recherche et l’organisation de ces informations. Le problème
de reconnaissance de forme est particulièrement difficile : les formes géométriques
manifestent une vaste variabilité due à des différences d’échelle, à des différences
d’orientation, à des déformations non-rigides ou à des données manquantes; elles
apparaissent de plus dans une grande variété de formats et de représentations. L’un des
plus grands défis dans la reconnaissance de formes non-rigides et leur comparaison, est
la conception d’un descripteur de formes qui resterait invariant sous une large classe
de transformations qu’une forme peut subir. Récemment, la signature du noyau de
la chaleur a été introduite en tant que descripteur intrinsèque local de forme basé sur
l’analyse de la diffusion dans l’espace d’échelle. Dans ce papier, nous développons une
version du descripteur par noyau de la chaleur invariant par échelle. Notre construction
est basée sur un espace d’échelle échantillonné logarithmiquement dans lequel les
échelles de formes correspondent, à une constante multiplicative près, à une translation.
Cette translation est annulée en utilisant le module de la transformée de Fourier. Les
descripteurs invariants par échelle proposés peuvent être utilisés dans le cadre des “sacs
de descripteurs” (“bags of features”) pour la reconnaissance de formes dans la présence
de transformations comme des déformations isométriques, de données manquantes,
de bruit topologique, et de changement d’échelle global et local. Nous obtenons des
améliorations de performance significatives, au dessus des algorithmes de l’état de l’art,
sur des benchmarks récemment établis pour la reconnaissance de formes non-rigide.

Mots-clés : reconaissance de forme, similarité des formes déformables, descripteur
intrinsèque, diffusion de la chaleur, signature du noyau de la chaleur, invariance par
échelle
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1 Introduction
Today, only a small fraction of Internet repositories of visual and geometric data is
tagged and accessible through simple text search. Fast growth of these repositories
makes content-based retrieval one of the next grand challenges in search and organi-
zation of such information. Particularly difficult is the problem of shape retrieval, as
geometric shapes manifest a vast variability due to different scale, orientation, non-
rigid deformations, missing data, and also appear in a variety of different formats and
representations.

In principle, the common denominator of shape retrieval approaches is the creation
of a shape descriptor or signature which captures the unique properties of the shape
that distinguish it from shapes belonging to other classes on the one hand, and is in-
variant to a certain class of transformations a shape can undergo on the other [38, 39].
In rigid shape analysis, different types of invariance were addressed. Rotation and
translation invariance can be achieved using volume and area descriptors [44], spher-
ical harmonics [15], geometric moments [37], and distribution of pair-wise Euclidean
distances [28].

Dealing with non-rigid shapes requires compensating for the degrees of freedom
resulting from deformations. Elad and Kimmel [11] and follow-up works [25, 5] pro-
posed modeling shapes as metric spaces with intrinsic (e.g. geodesic) distances, which
are invariant to inelastic deformations. Ling and Jacobs [21] and Bronstein et al.[4]
used this framework with a metric defined by internal distances in 2D shapes. Reuter
et al.[32, 31] used the Laplacian spectra as intrinsic shape descriptors.

A particular type of intrinsic geometry is generated by heat diffusion processes
on the shape. Coifman and Lafon [10] popularized the notion of diffusion geometry,
which is closely related to scale-space methods in image processing [35]. Rustamov
[33] was one of the first to use such distances in shape analysis, applying the method of
Osada et al.[28] to commute time distances (this method is similar to the recent work of
Mahmoudi and Sapiro [23] who used diffusion distances instead). In [7], shapes were
analyzed as metric spaces equipped with diffusion metrics.

In image analysis, bottom-up approaches have become popular, notably due to the
works of Zisserman et al.[34, 9] and Schmid et al.[26]. Using these approaches, an
image is described as a collection of local features (“visual words”) from a given vo-
cabulary, resulting in a representation referred to as a bag of features. In shape analysis,
such approaches have been introduced more recently by Ovsjanikov et al.[6] and Toldo
et al.[41] (see [27, 19] for earlier similar ideas).

The bag of features paradigm relies heavily on the choice of the local feature de-
scriptor that is used to create the visual words. In image analysis and 2D shape re-
trieval, typical features are blobs [24] and corners [26], and the default choice for a
local descriptor is the scale-invariant feature transform (SIFT) [22] or one of its vari-
eties [1, 40]. Scale-invariant local descriptors can be constructed in two ways. First
way is to use scale-space analysis of the image to locally estimate the scale [20, 22].
Descriptors are then extracted from appropriately scaled image patches. Second way is
to use a combination of logarithmic sampling with Fourier analysis to compensate for
the scaling effects [16] (such an approach is also commonly used to compute a global
image rotation and scaling in the context of registration [8, 45]).

In shape analysis, on the other hand, there is no commonly agreed upon feature
descriptor similar to SIFT. In non-rigid shape retrieval applications, an ideal feature de-
scriptor should be first of all intrinsic and thus deformation-invariant. Second, it should
cope with missing parts, and also be insensitive to topological noise and connectivity
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4 Bronstein & Kokkinos

changes. Third, it should work across different shape representations and formats (e.g.
point clouds and meshes) and be insensitive to sampling. Finally, the descriptor should
be scale-invariant. The last two properties are especially important when dealing with
shapes coming from Internet repositories such as Google 3D Warehouse, where shapes
appear in a variety of representations and with arbitrary scales.

Different approaches such as contour and edge features [29, 17], spin images [13],
local patches [27, 41], conformal factor [3], differential operators [43], and local vol-
ume properties [12] were used as feature descriptors in shape retrieval literature. Un-
fortunately, none of them satisfy all of the above desired properties (for example, vol-
umetric and patch-based methods are not intrinsic, and conformal factor is sensitive to
topology).

Recently, a local feature descriptor based on multiscale heat kernels was proposed
[36]. This descriptor satisfies all of the above properties except for scale invariance.
Scale invariance poses an additional challenge, for a few reasons. Compared to im-
ages, shapes typically contain less features that would be roughly analogous to blobs
or corners, and there is no clear generalization of such structures to 3D surfaces. Fea-
ture detection based on intrinsic scale-space analysis such as [36] would find a few
reliable points (usually with high curvature), at which scale estimation can be done.
In flat regions, no scale estimation is possible. For this reason, Ovsjanikov et al.[6]
avoided feature detection and used a dense feature descriptor computed at every point
of the shape in combination with statistical weighting to reduce the influence of trivial
points.

In this paper, we develop a scale-invariant version of the heat kernel signature by
combining this descriptor with the recent approach of [16] to scale invariance in im-
ages. Our construction is based on a logarithmically sampled scale-space in which
shape scaling corresponds, up to a multiplicative constant, to a translation. This trans-
lation is then undone using the magnitude of the Fourier transform. Since our descriptor
does not rely on local scale estimation, it is computable at every point including flat
regions, and can be thus used in the shape retrieval framework of [6], as well as for
other applications such as dense correspondence between shapes.

2 Background
In the following discussion, we model shapes as Riemannian manifolds (possibly with
boundary) and use the heat conduction properties as shape descriptors. Heat propaga-
tion on non-Euclidean domains is governed by the heat diffusion equation,(

∆X +
∂

∂t

)
u = 0, (1)

where, ∆X denotes the positive semi-definite Laplace-Beltrami operator, a Rieman-
nian equivalent of the the Laplacian. The solution u(x, t) of the heat equation with
the initial conditions u(x, 0) = u0(x) (and respective boundary conditions if X has a
boundary) describes the amount of heat on the surface at point x in time t. The solution
of (1) with point heat distribution u0(x) = δ(x − z) as initial conditions is called the
heat kernel and denoted by KX,t(x, z).

On compact manifolds, the heat kernel can be presented as [14]

KX,t(x, z) =
∞∑
i=0

e−λitφi(x)φi(z). (2)

INRIA



Scale-invariance in local heat kernel descriptors 5

Figure 1: Construction of a bag of features shape descriptor. Left: dense HKS local
descriptor (shown three components as RGB colors); middle: local descriptor quan-
tized in a geometric vocabulary of size 48 (each color represents a geometric word);
right: bag of features counting the frequency of appearance of each geometric word.

where λ0, λ1, ... ≥ 0 are eigenvalues and φ0, φ1, ... are the corresponding eigenfunc-
tions of the Laplace-Beltrami operator, satisfying ∆Xφi = λiφi.

Sun et al.[36] proposed using the heat kernel signature (HKS)

h(x, t) = KX,t(x, x) =
∞∑
i=0

e−λitφ2
i (x) (3)

as local shape descriptors. The HKS is intrinsic and thus isometry-invariant (two iso-
metric shapes have equal HKS), multi-scale and thus capture both local features and
global shape structure, and also informative: under mild conditions, if two shapes have
equal heat kernel signatures, they are isometric [36].

Ovsjanikov et al.[6] used the HKS to construct global shape descriptors following
the bag of features paradigm used in image retrieval applications [34, 9]. First, the
HKS descriptor is computed at every point of the shape (Figure 1, left). Next, using
vector quantization, for each point on the shape, the HKS is replaced by the index of the
most similar entry in a geometric vocabulary consisting of representative heat kernel
signatures or “geometric words” (Figure 1, middle). The vocabulary is constructed of-
fline by performing clustering in the HKS space. Finally, the distribution of geometric
words on the shape is computed, resulting in a bag of features representation (Figure 1,
right).

A notable disadvantage of the heat kernel signatures is their sensitivity to scale.
Given a shape X and its scaled version X ′ = αX , the new eigenvalues and eigenfunc-
tions will satisfy λ′ = α2λ and φ′ = αφ. We therefore have the following equation:

h′(x, t) =
∞∑
i=0

e−λiα
2tφ2

i (x)α2 = α2h(x, α2t), (4)

relating the signature h′ at time t for X ′ with the signature h at time α2t for X .
In some cases, the scaling effect can be undone using some global pre-normalization

of the shape. Possible ways are normalizing the bounding box of the shape or its co-
variance (geometric moments), normalize the intrinsic diameter of the shape, i.e. the
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6 Bronstein & Kokkinos

longest geodesic distance, or normalize the Laplace-Beltrami eigenvalues. The first ap-
proach will work only in rigid shapes, as non-rigid deformations change the bounding
box. The second and the third approaches are insensitive to deformations, but would
fail if the shape has missing parts. In the following, we describe an approach for local
normalization of the heat kernel signature, which does not suffer from this problem.

3 Scale-invariant heat kernel signatures
In order to achieve scale invariance, we need to remove the dependence of h from α.
This is possible through the following series of transformations applied to h. First, at
each shape point x we sample the heat signature logarithmically in time and form the
discrete function

hτ = h(x, ατ ). (5)

Based on Eq. 4, scaling the shape by αs/2 will result in a time-shift by s and amplitude-
scaling by αs (Figure 2, first row):

h′τ = αshτ+s. (6)

Second, we remove the multiplicative constant αs by taking the logarithm of h, and
then the discrete derivative w.r.t. to τ (Figure 2, second row). The first step turns the
multiplicative factor into an additive constant, s logα, which then vanishes in differen-
tiation:

ḣ′τ = ḣτ+s, (7)

(here, ḣτ = log hτ+1 − log hτ ).
Finally, taking the discrete-time Fourier transform of ḣτ turns this shift in time into

a complex phase;

H ′(ω) = H(ω)e2πωs, (8)

whereH andH ′ denote the Fourier transform of ḣ and ḣ′, respectively, and ω ∈ [0, 2π].
The phase is in turn eliminated by taking the Fourier transform modulus (FTM):

|H ′(ω)| = |H(ω)|. (9)

We thus have constructed the scale-invariant quantity |H(ω)| (denoted as SI-HKS
and shown in Figure 2, third row) from the HKS at each point x, without performing
scale selection. This allows us to compute descriptors at any point of our shape, where
scale selection based on maxima detection could be impossible. Moreover, most of the
signal information is contained in the low-frequency components of the FT, so we can
build a compact descriptor by sampling |H(ω)| at a small number of low frequencies.

One caveat of our approach could be that scaling the shape and then resampling
the function ḣτ makes the samples at the boundaries of the range of τ change. This
can have dramatic effects if the signal information is concentrated at the boundaries of
the scale-space. Fortunately, the HKS is typically smooth at low- and high- scales and
therefore its derivative is equal to zero for a broad range of τs at the beginning and end
of ḣ.

INRIA



Scale-invariance in local heat kernel descriptors 7

Figure 2: Construction of the scale-invariant heat kernel signature. First row: heat
kernel signatures h (red) and h′ (blue) computed at a corresponding point on a shape
and its version scaled by the factor of 11, plotted on a logarithmic scale. h and h′ differ
by scale and shift in τ . Second row: ḣτ and ḣ′τ , where the multiplicative constant is
undone and the change in scale corresponds to a shift in τ only. Third row: first 10
frequencies of |H(ω)| and |H(ω)| used as scale-invariant HKS; the two descriptors
computed at the two different scales are virtually identical.

4 Numerical computation
Numerical computation of the HKS and the SI-HKS is done using formula (2), in
which a finite number of terms is taken and the continuous eigenfunctions and eigen-
values of the Laplace-Beltrami operator are replaced by the discrete counterparts. The
discretization of the Laplace-Beltrami operator depends on the representation on the
shape. For shapes represented as point clouds, the Laplace-Beltrami operator can be
approximated using [2]. For triangular meshes, one of the most common discretiza-
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8 Bronstein & Kokkinos

tions is the cotangent weight scheme [30], defined for any function f on the mesh
vertices as

(∆X̂f)i =
1
ai

∑
j

wij(fi − fj), (10)

wherewij = cotαij+cotβij for j in the 1-ring neighborhood of vertex i and zero oth-
erwise (αij and βij are the two angles opposite to the edge between vertices i and j in
the two triangles sharing the edge), and ai are normalization coefficients proportional
to the area of triangles sharing the vertex xi. This discretization preserves many im-
portant properties of the continuous Laplace-Beltrami operator, such as positive semi-
definiteness, symmetry, and locality, and in addition it is numerically consistent [42].
In matrix notation, Eq. (10) can be written as

∆X̂f = A−1Lf, (11)

where A = diag(ai) and L = diag
(∑

l 6=i wil

)
− (wij).

The eigenvalues and eigenfunctions of the Laplace-Beltrami operator discretized
according to 11 are computed by solving the generalized eigendecomposition problem
[18]

AΦ = ΛLΦ, (12)

where Λ is the (k+ 1)× (k+ 1) diagonal matrix of the smallest eigenvalues λ0, ..., λk,
and Φ is an N × (k + 1) matrix of corresponding eigenfunctions φ0, ..., φk such that
φil is the value of the lth eigenfunction at the point xi. Another way of approximating
Laplace-Beltrami eigenfunctions on triangular meshes is using finite element methods
(FEM) [31].

The discrete heat kernel signature is approximated by

h(xl, τ) ≈
k∑
l=0

e−λlα
τ

φ2
il = Ψe−TΛ, (13)

where T = diag(ατ ) and Ψ = (φ2
il). Since the heat kernel depends only on the

eigenfunctions and eigenvalues of the Laplace-Beltrami operator, at least in theory, one
can compare shapes in different representations (e.g., point clouds to meshes). This
property of heat kernel signatures is especially appealing in Internet shape retrieval
applications, where the variety of shape representations and formats is enormous.

5 Results
We used the ShapeGoogle database [6], consisting of 1061 shapes with simulated trans-
formations. As of today, this is the largest non-rigid shape retrieval benchmark avail-
able. The database contained shapes from 469 different classes. For thirteen shape
classes, the following transformations were simulated: 208 isometry, 208 global scale
(varying approximately between 0.7 and 1.35), 128 local scale (local “swelling” of the
shape), and 48 partiality+scale (missing parts in shapes with different global scaling).
Examples of transformations are shown in Figure 4.

Heat kernel signatures (HKS) and the proposed scale-invariant heat kernel signa-
tures (SI-HKS), respectively, were used as local shape descriptors. For the discrete
computation of the heat kernels, we used the cotangent weight approximation of the

INRIA
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Figure 3: Comparison of HKS (left) and the proposed scale-invariant HKS (right).
First and third rows: three components of HKS and SI-HKS, represented as RGB color
and shown for shapes differing by global (first row) and local (third row) transforma-
tions. Second and fourth rows: HKS and SI-HKS at three point on the head (blue),
hand (green), and foot (red) of the human shape.
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10 Bronstein & Kokkinos

Laplace-Beltrami operator and k = 200. For HKS, we used the parameters as in [6]
(six scales 1024, 1351, 1783, 2353, 3104 and 4096), which were experimentally found
to give optimal performance on the ShapeGoogle database. In order to construct the
SI-HKS, we used a logarithmic scale-space with base α = 2 and τ ranging from 1
to 25 with increments of 1/16. After applying the logarithm, derivative, and Fourier
transform, the first 6 discrete lowest frequencies were used as the local descriptor.

Shape descriptors were constructed using bags of geometric words proposed in [6].
For HKS and SI-HKS, a geometric vocabulary of size 48 was built using clustering
in the signature space (six-dimensional in both cases). The HKS and SI-HKS at each
point of the shape were replaced by the closest geometric word from the vocabulary
using soft vector quantization. The distribution of geometric words (48-dimensional
bag of features) was used as the shape descriptor. L1 distance was used to compare the
bags of features.

For comparison, we show the results of the ShapeDNA approach [32], describing
shapes by the vector of the first eigenvalues of the Laplace-Beltrami operator. We used
first 15 eigenvalues to construct the ShapeDNA descriptors (this parameter was empir-
ically selected to achieve optimal performance on the ShapeGoogle database). Eigen-
values were computed using the same cotangent weight discretization. L2 distance was
used to compare the ShapeDNA descriptors.

Shape retrieval performance was quantified using the precision-recall (PR) curve
(Figure 5), plotting the tradeoff between precision (ratio of the number of relevant
shapes retrieved and the total number of shapes retrieved) and recall (ratio of the num-
ber of relevant shapes retrieved and the total number of existing relevant shapes that
could be ideally retrieved). We used the mean average precision (mAP) as a single
number to quantify the retrieval quality (average precision is computed as the area be-
low the precision-recall curve for each query, and the mAP is the average of AP over
all queries).

Table 1 shows the performance of shape retrieval using bags of features built of
HKS and SI-HKS. Our approach shows a dramatic improvement in the presence of
varying scale (99.5% mAP compared to 61.32% with HKS) and also better perfor-
mance for local scaling transformations (92.60% mAP compared to 85.83%). HKS-
based bags of features produce negligibly (by 0.01%) worse results that SI-HKS on
the class of isometric deformations. ShapeDNA shows similar nearly perfect perfor-
mance on the class of isometries, but performs very poorly on scale and local scale
transformations (36.72% and 72.17% mAP, respectively)

Figure 6 shows examples of first five matches retrieved using HKS and SI-HKS.
With HKS, a scaled down centaur is confused with a dog (row a) and a scaled up horse
is confused with an elephant (row c); while SI-HKS produces correct matches (rows b
and d). In the presence of local scaling, because of the local nature of the descriptor, it
remains unchanged far from the deformed parts. The SI-HKS shows better robustness
to such scaling compared to HKS (e.g., in Figure 6 (g) local scaling transformations
make HKS confuse between male and female shapes).

6 Conclusions
We presented an extension of the heat kernel signature allowing to deal with global
and local scaling transformations. The use of Fourier transform magnitude to extract a
scale-invariant quantity out of the heat kernel signature is advantageous over attempts
to perform scale localization, which works only at prominent feature points. Our ap-

INRIA



Scale-invariance in local heat kernel descriptors 11

Figure 4: Example of transformations used in our shape retrieval experiment (left to
right): null, scale down, scale up, two examples of local scale, partiality+scale.

Table 1: Shape retrieval performance (mAP in percents) using HKS and SI-HKS based bags of
features and ShapeDNA [32]. Best result is shown in bold.

Transformation Queries HKS SI-HKS ShapeDNA
Isometry 208 99.96% 99.97% 99.52%
Scale 208 61.32% 99.95% 36.72%
Local scale 128 85.83% 92.60% 72.17%
Partiality+scale 48 54.67% 89.95% 27.42%
All 1061 85.30% 97.25% 74.47%
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12 Bronstein & Kokkinos

Figure 5: Shape retrieval performance using HKS (first row), SI-HKS (second row)
and Shape DNA (third row).

INRIA



Scale-invariance in local heat kernel descriptors 13

Figure 6: Shape retrieval results. Left: queries, right: first matches using HKS (a,c,e,g)
and SI-HKS (b,d,f,h).

RR n° 7161



14 Bronstein & Kokkinos

proach allows to create a dense scale-invariant feature descriptor defined at every point
of the shape. Besides invariance to global scaling, the scale-invariant HKS shows better
resilience to local scaling transformations. Such transformations can arise, for exam-
ple, due to locally-elastic deformations that stretch or shrink the shape surface. In
future work, we intend to explore the proposed method in the context of part-based ap-
proaches in which the local descriptor is confined to a part of a shape and not computed
across parts, and a separate descriptor is computed for each part. This way, inelastic
deformations could be addressed.

INRIA
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