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LINEARIZATION OF A COUPLED SYSTEM OF

NONLINEAR ELASTICITY AND FLUID

LORENA BOCIU AND JEAN-PAUL ZOLÉSIO

Abstract. We model the coupled system formed by an incompressible,
irrotational fluid and a nonlinear elastic body. We work with large dis-
placement, small deformation elasticity (or St Venant elasticity), which
makes the problem very interesting from the physical point of view. The
elastic body is three-dimensional Ω ∈ R

3, and thus it can not be reduced
to its boundary Γ (like in the case of a membrane or a shell). In this
paper, we study the static problem, which contrary to common belief,
it is more subtle than the dynamical one (since in real life, evolution is
more plausible than equilibrium).

1. Introduction

1.1. The model and the problem. We consider a model of fluid-structure
interaction on a bounded domain D ∈ R

3. We assume that D is comprised
of two open domains D = Ω∪ΩC , and has smooth boundary ∂D = Γ′∪Γin∪
Γout. The elastic body occupies domain Ω with sufficiently smooth boundary
Γ ∪ Γ′, and is described by a nonlinear elastic equation in terms of the
displacement u. The fluid occupies domain ΩC with boundary Γ∪Γin∪Γout,
and is described by a Navier-Stokes equation in terms of the velocity of the
fluid v and the pressure p. The interaction takes place on the common
boundary Γ and is realized via suitable transmission boundary conditions.

We assume that there is a flux ~f coming into D through Γin, that will
determine the velocity of the fluid v (see Figure 1).

One specific example of the above mentioned model is a 3D tube with
elastic walls through which a fluid is flowing. From the physical point of view,
this is a very important model with a lot of applications in mathematical
biology, more precisely, the study of arterial diseases (the tube represents the
artery, the elastic body is the wall of the artery and the fluid is the blood).
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We begin the description of our model by introducing the notation and
the basic assumptions on the two equations present in the system.

• Nonlinear, 3D elasticity: We work with large displacement, small
deformation elasticity (or St Venant elasticity [11]), which makes the problem
difficult from the mathematical point of view, and very interesting from the
physical point of view. The elastic body is three-dimensional Ω ∈ R

3, and
thus it can not be reduced to its boundary Γ (like in the case of a membrane
or a shell).

At rest, the elastic body occupies a reference configuration O ∈ R
3, where

O is a bounded, open, connected set in R
3 with sufficiently smooth bound-

ary S ∪ Γ′. When subjected to applied forces, the elastic body occupies a
deformed configuration Ω = ϕ(O), with smooth boundary Γ ∪ Γ′ (where Γ′

is fixed). The deformation of the reference configurations is given by the
map ϕ : O → R

3, that is smooth enough, injective (except possibly on the
boundary of the set O), and orientation-preserving (i.e. det∇ϕ(x) > 0, for
all x ∈ O).

Together with the deformation ϕ, we introduce the displacement u : O →
R

3, defined as usual as ϕ = I +u, where I denotes identity map I : O → R
3.

It is well known that a body occupying a deformed configuration Ω, and
subjected to zero applied body forces in its interior Ω and to applied surface
forces on the boundary Γ, is in static equilibrium if the fundamental stress
principle of Euler and Cauchy is satisfied:

{

−divT = 0 in Ω

T nϕ = gϕ on Γ
(1.1)

where ĝ represents the density of the applied surface force, nϕ is the unit
outer normal vector along Γ, and the tensor T is the Cauchy stress tensor.
The above equilibrium equations over Ω are equivalent to the equilibrium
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equations over the reference configuration O:
{

−divP = 0 in O

Pn = g on S
(1.2)

where n denotes the unit outer normal vector along S, gda = ĝdaϕ, and
P : O → M

3 is the Piola transform of the Cauchy stress tensor field, defined
by

P(x) = T (xϕ)Cof∇T (x) = det(∇ϕ(x))T (xϕ)(∇ϕ)−∗ (1.3)

From the constitutive equations, we have that P(x) = ∇ϕ(x)Σ(u(x)),
where Σ defines the second Piola-Kirchhoff stress tensor. In terms of the
displacement u, Σ is given by

Σ(σ(u)) = λ(trσ(u))I + 2µσ(u) (1.4)

where λ and µ are the Lame constants of the material, and the Green-St
Venant strain tensor σ(u) is given by

σ(u) =
1

2
(Du∗ + Du + Du∗Du) (1.5)

Therefore equations (1.2) can be rewritten as
{

−div[(I + ∇u)Σ(σ(u))] = 0 in O

(I + ∇u)Σ(σ(u))n = g on S
(1.6)

The advantage of the equilibrium equations over the reference configura-
tion (1.2) or (1.6) over (1.1) is the fact that they are written in terms of the
Lagrange variable x that is attached to the reference configuration, instead
of the Euler variable xϕ = ϕ(x), which is precisely one of the unknowns.

Nevertheless, we want to stress the fact that equations (1.1) play a critical
role when dealing with elastic body - fluid systems, where the coupling is
taking place on the boundary interface between the two media. This interface
is precisely the boundary Γ of the deformed configuration of the elastic body
Ω and thus the coupling requires the continuity of the velocities and the
normal stress tensors across Γ. Therefore, we need a relationship between
the Cauchy stress tensor T and the strain tensor σ(u), that will provide us
with the correct matching of the two dynamics on the common interface.

Recalling the relations between P, T , and Σ(u) we obtain that

T =
( 1

det(∇ϕ)
∇ϕ · Σ(σ(u)) · (∇ϕ)∗

)

◦ ϕ−1 (1.7)

• Potential fluid: We assume that the fluid present in the system is
incompressible and irrotational. This means that the fluid is a potential fluid
v = ∇φ, where v is the velocity of the fluid and φ (the velocity potential of
the fluid) satisfies the Laplace equation ∆φ = 0 (due to the incompressibility
condition which translates into ∇ · u = 0).



4 L. BOCIU AND J.-P. ZOLÉSIO

Now if p represents the pressure of the fluid and η the viscosity, then the
flow is described by the following Navier-Stokes equation

v · ∇v − η∆v + ∇p = ρ~g (1.8)

where ρ is the density, and ~g is the gravitational acceleration. Due to the
fluid being irrotational (vorticity curl v = 0), the convective acceleration

reduces to v · ∇v = ∇
(‖v‖2

2

)

and thus (1.8) becomes

∇(
1

2
‖∇φ‖2 + p − ρgz) = 0

This provides us with the formula for the pressure p of the fluid:

p = c +
1

2
‖∇φ‖2 − ρgz (1.9)

1.2. Fluid-structure interaction: the mathematical model. Now we
couple the two dynamics described above and we require continuity of both
the velocities and the normal stress tensors across the common boundary Γ.
Recall that D = Ω ∪ ΩC , with boundary ∂D = Γ′ ∪ Γin ∪ Γout, the elastic
body occupies domain Ω, and the fluid occupies ΩC (see Figure 1).

We obtain the following PDE model in variables (φ, u):






























∆φ = 0 ,ΩC

−div(T ) = 0 ,Ω

∇φ · n = 0 ,Γ

T · n = (c + 1
2‖∇φ‖2 − ρgz)n ,Γ

u = 0 ,Γ′

(1.10)

where n is the unit outer normal vector along Γ, and f is the flux coming in
D through Γin. Recall that T is the Cauchy stress tensor, given by

T =
( 1

det(∇ϕ)
∇ϕ · Σ(σ(u)) · (∇ϕ)∗

)

◦ ϕ−1

Thus the two equations on Γ present in (1.10) are equivalent to
{

∇φ · n = 0 , on Γ
1

det(∇ϕ)∇ϕ · Σ(σ(u)) · (∇ϕ)∗ · n ◦ ϕ = [(c + 1
2‖∇φ‖2 − ρgz)n] ◦ ϕ , on Γ

(1.11)

1.2.1. Boundary conditions on Γin. Now we describe the flow (which so far
we called f) coming into the domain through Γin. Let c(x) be a given,
smooth function defined on Γin such that

{

c(x) = 0 on ∂Γin,
∂
∂nφ = c(x) on Γin

(1.12)
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Then it follows that

0 =

∫

Ωc

div(∇φ)dx =

∫

Γin

∂φ

∂nin
dΓin +

∫

Γout

∂φ

∂nout
dΓout (1.13)

At this point, we choose α ∈ R verifying











α = ∂φ
∂nout

on Γout,

∫

Γout
α dΓout = −

∫

Γin

c(x) dΓin

(1.14)

2. Description of the Static Problem

2.1. Parameter of Perturbation s. As previously mentioned, in this pa-
per we are interested in the static problem associated with system (1.10).
In a subsequent paper, we will consider the dynamical case. Contrary to
common belief, the steady problem is more subtle than the dynamical one,
since in real life, evolution is more plausible than equilibrium.

We assume that the flux entering the domain D is dependent on a param-
eter of perturbation s, i.e. c(x) is a given, smooth function defined on Γin

such that
{

c(x) = 0 on ∂Γin,
∂
∂nφs = (1 + s)c(x) on Γin

(2.1)

Then it follows that

0 =

∫

Ωc
s

div(∇φs)dx =

∫

Γin

∂φs

∂nin
dΓin +

∫

Γout

∂φs

∂nout
dΓout (2.2)

For any s ≥ 0, we choose αs ∈ R verifying











αs = ∂φs

∂nout
on Γout,

∫

Γout
α dΓout = −(1 + s)

∫

Γin

c(x) dΓin, for all s ≥ 0

(2.3)

If the elastic body occupies a reference configuration O ∈ R
3 with smooth

boundary S ∪ Γ′, then, when subjected to applied forces, it occupies a de-
formed configuration Ωs = ϕs(O), with smooth boundary Γs ∪ Γ′ (where Γ′

is fixed). The deformation map in this case is dependant on the parameter s:
ϕs : O → R

3, but nevertheless is smooth enough, injective, and orientation-
preserving. The displacement us : O → R

3 becomes us = ϕs − I, where I is
the identity map I : O → R

3.
Similarly, for the fluid present in the system, its velocity and pressure are

now functions of s: vs = ∇φs, and ps = cs + 1
2‖∇φs‖

2 − ρgz.
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Therefore we are interested in the following PDE model:






































∆φs = 0 ,ΩC
s

−div(Ts) = 0 ,Ωs

∇φs · ns = 0 ,Γs

Ts · ns = (cs + 1
2‖∇φs‖

2 − ρgz)n ,Γs

u = 0 ,Γ′

∫

Γout
α dΓout = −(1 + s)

∫

Γin

c(x) dΓin, for all s ≥ 0

(2.4)

where ns is the unit outer normal vector along Γs, Ts is the Cauchy stress
tensor (associated to s), given by

T =
( 1

det(∇ϕs)
∇ϕs · Σ(σ(us)) · (∇ϕs)

∗

)

◦ ϕ−1
s (2.5)

and the boundary conditions are equivalent to
{

∇φs · ns = 0 , on Γs
1

det(∇ϕs)
∇ϕs · Σ(σ(us)) · (∇ϕs)

∗ · ns ◦ ϕs = [(cs + 1
2‖∇φs‖

2 − ρgz)ns] ◦ ϕs , on Γs

(2.6)
Our goal is to study, for any given value of s, the equilibrium problem

associated with the coupled system (2.4).

2.2. The moving boundary Γs. Recall that the deformation map ϕ maps
the reference boundary S to Γ. Similarly, the deformation ϕs associated
with f̂ = f + s maps S to Γs.

At this point it is convenient to introduce the map Ts : Γ → Γs that builds
the moving boundary Γs:

Ts = ϕs ◦ ϕ−1 (2.7)

and the speed V (s, ·) associated with the flow mapping Ts:

V (s, ·) =
( ∂

∂s
Ts

)

◦ T−1
s =

∂

∂s
ϕs ◦ ϕ−1

s (2.8)

This means that Ts(V ) : X → x(s), where x(s) satisfies the following
differential equation

{

∂
∂s

x = V (s, x(s))

x(0) = X
(2.9)

which is equivalent to x(s) = X +

∫ s

0
V (t, x(t))dt.

2.2.1. Transport of scalar operators. Let D be a bounded domain in RN

and T be a one-to-one transformation from D onto D and from D̄ onto
D̄. Let S = T−1 be the inverse mapping. As T ◦ S = I, we obtain that
DT ◦ S.DS = I, and therefore

DS = (DT )−1 ◦ S,

and
(DS) ◦ T = (DT )−1.
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For any φ ∈ H1(D) we have

(∇φ) ◦ T = (DT )−∗.∇(φ ◦ T )

We also have:

d

ds
Ts = V (s) ◦ Ts ⇒

d

ds
Ts

∣

∣

∣

s=0
= V (0).

d

ds
DTs(X) = DV (s, Ts(X))DTs(X), DT0(X) = I

⇒
d

ds
DTs

∣

∣

∣

s=0
= DV (0) and

d

ds
(DTs)

−1
∣

∣

∣

s=0
= −DV (0).

d

ds
detDTs(X) = trDV (s, TS(X))detDTs(X) = divV (s, Ts(X))detDTs(X),

⇒
d

ds
det(DTS)

∣

∣

∣

s=0
= divV (0).

Now let ~E be a C1 vector field defined over D. Then we have the following
property:

Property 2.1.

(divE) ◦ T = det(DT )−1 div( det(DT ) (DT )−1.(E ◦ T ) )

Proof. Let φ ∈ C∞
comp(D). Using the change of variable y = T (x) (or x =

S(y)), we obtain:

∫

D
(divE) ◦ T (x)φ(x) dx =

∫

D
divE(y)φ ◦ S(y) det(DS)(y) dy

= −

∫

D
< E(y), ∇(φ ◦ S(y) det(DS)(y) ) > dy

= −

∫

D
< E(y), ∇(φ ◦S(y) ) det(DS)(y) ) + φ ◦S(y)∇( det(DS)(y) ) > dy

[Using the identity ∇(φ ◦ S) = (DS)∗.(∇φ) ◦ S, we obtain:]

= −

∫

D
< E(y), (DS)∗.(∇φ)◦S det(DS)(y) )+ φ◦S(y)∇( det(DS)(y) ) > dy

[Transposing of the matrix DS∗, we can rewrite as follows:]

= −

∫

D
{< det(DS)(y) )DS.E(y), (∇φ)◦S > + < ∇( det(DS)(y) )E(y), φ◦S(y) > }dy

[Performing the change of variable y = T (x), we obtain:]

= −

∫

D
{< det(DT )det(DS)◦TDS◦T.E◦T,∇φ > + < det(DT )(∇det(DS))◦T E◦T, φ >}dx

[As (DS)◦T = (DT )−1 ⇒ det(DS)◦T = det( (DS)◦T ) = det( (DT )−1 ) =
( detDT )−1, then we have:]
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= −

∫

D
{< (DT )−1.E ◦ T,∇φ > + < det(DT )(∇det(DS)) ◦ T E ◦ T, φ >}dx

[Using the fact that (∇det(DS))◦T = (DT )−∗.∇(det(DS)◦T ) = (DT )−∗.∇(
1

detDT
)

= −
1

(detDT )2
(DT )−∗.∇(detDT ), we obtain:]

= −

∫

D
{< (DT )−1.E◦T,∇φ > − < det(DT )−1 (DT )−∗.∇(detDT ).E◦T, φ >}dx

=

∫

D
{div((DT )−1.E ◦ T ) + det(DT )−1 < (DT )−∗.∇(detDT ), E ◦ T >}φdx

=

∫

D
{div((DT )−1.E ◦ T ) + det(DT )−1 < ∇(detDT ), (DT )−1.E ◦ T >}φdx

=

∫

D
det(DT )−1{det(DT ) div((DT )−1.E◦T )+ < ∇(detDT ), (DT )−1.E◦T >}φdx

[For any scalar function a and any vector function ~A we have div(a ~A) =

a div ~A+ < ∇a, ~A >R3 . Therefore we have that det(DT ) div((DT )−1.E ◦
T )+ < ∇(detDT ), (DT )−1.E ◦ T > = div(det(DT ) (DT )−1.E ◦ T ), which
gives us the desired conclusion:]

=

∫

D
det(DT )−1 div(det(DT ) (DT )−1.E ◦ T ) φdx

�

Similarly, we can prove the following proposition:

Property 2.2. For any φ ∈ H1(D), we have the following identity:

∆φ ◦ T = det(DT )−1div(det(DT )(DT )−1(DT )−∗∇(φ ◦ T )) (2.10)

2.2.2. Transport of Vector Operators. Let T be a N × N matrix function

defined on D . We consider the vector Divergence operator Div~T being
defined as the vector whose ith component is the (scalar) divergence of the
vector composed of the ith line of the matrix T :

(Div~T )i = div(Ti,.) = Σj=1,...,N
∂

∂xj
Ti,j

From the previous section we obtain that

( (Div~T ) ◦T )i = (Div~T )i ◦T = det(DT )−1 div( det(DT ) (DT )−1.(Ti,.) ◦T )

It turns out that (Ti,.) ◦ T is the ith column vector of the matrix T ∗ ◦ T so

that (DT )−1.(Ti,.) ◦ T is the ith column of the matrix (DT )−1.T ∗ ◦ T , and

thus the ith line of the matrix (DT )−1.T ◦T . Therefore we have the following
identity:
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Property 2.3.

(Div~T ) ◦ T = det(DT )−1 Div( det(DT ) (DT )−1.(T ◦ T ) )

2.2.3. Boundary change of variable. Let Γ = ∂Ω be a C1 manifold: there
exists a covering Γ ⊂ ∪i=1,...,MOi, open subsets and charts ci : Oi → B where
B is the unit ball of RN such that ci(Γ ∩Oi) ⊂ B0 = {x = (x′, 0) ∈ B} and
ci(Ω ∩ Oi) ⊂ B + 0 = {x = (x′, z) ∈ B s.t.z > 0 }. Let ri ∈ C∞(D) ith
compact support in Oi such that 0 ≤ ri ≤ 1, Σri = 1 in a neibourhood of
the boundary Γ. For any f ∈ L1(Γ) we have

∫

Γ
f dΓ = Σ

∫

Γ∩Oi

rif dΓ

= Σ

∫

B0

rioc
−1foc−1 ||cof(D(c−1

i )).n0|| dx′

Where for any square matrix A, the cofactor’s matrix is

cof(A) = detA A−∗, cof(A−1) =
1

detA
A∗

We get D(c−1
i ) = (Dci)

−1 ◦ c−1
i then

cof(D(c−1
i )) = cof((Dci)

−1) ◦ c−1
i = (

1

detDci
(Dci)

∗ ) ◦ c−1
i

It can be easily verified that if T is a smooth enough transformation we have,
with Σ = T (Γ),

∫

T (Γ)
f dΣ =

∫

Γ
f ◦ T ω dΓ

Where, n being the unitary normal field on Γ,

ω = ||cof(DT ).n|| = |det(DT )| ||(DT )−∗.n||

Also, we have the following lemma ([15]):

Lemma 2.1. If the mapping s → Ts(V ) is in C1([0, τ ];Ck(D, Rn)), then

s → ns ◦ Ts =
DT−∗

s n

‖DT−∗
s n‖

is in C1([0, τ ];Ck(Γ))

where n and ns are the outward normal fields respectively to Ω and Ωs, on

Γ and Γs. Moreover, its derivative is given by:

d

ds
(ns ◦ Ts) =< DV · ns, ns > ◦Tsns ◦ Ts − DV ∗ ◦ Tsns ◦ Ts
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2.2.4. Shape derivatives. Assume that the transformation under considera-
tion Ts(V ) is the flow mapping of a Lipschitz-continuous vector field V (s, x).
Then we get

∀x ∈ Γ, ω(s, x) = det(DTs(V )) ||(DTs(V ))−∗.n||

and

∀x ∈ Γ,
∂

∂s
ω(s, x)|s=0 = H(x) < V (0, x), n(x) >

Where H is the mean curvature of Γ, H = Trace(D2bΩ)|Γ = (∆bΩ)|Γ and
v =< V (0, x), n(x) > is the so-called normal speed of the moving boundary
Γs.

3. Material Derivatives

3.1. Existence results for the derivative. Recall that O is the reference
domain whose boundary is S and let Oc be its complementary. The mapping
I + us is invertible from O onto Ωs as soon as det(I + Dus) > 0 over O. We
transport the harmonic problem whose solution is φs ∈ H1(Ωs). Let

φs := φs ◦ (I + us) ∈ H1(Ω̂)

From the Transport Lemma we know that

div(A(s).∇φs ) = 0 in Oc (3.1)

where
A(s) = det(I + Dus) (I + Dus)

−1.(I + Dus)
−∗

Moreover, we have the following boundary condition

< n̂, A(s).∇φs > = 0 on S (3.2)

Concerning the elastic boundary condition on Γs, we have:

Ts.ns =
1

2
|∇Γs

φs|
2 + f on Γs (3.3)

where the forcing term f , may be due to the gravity acceleration and can
take the form f(x) = ρgx3 in R3. The change of variable leads to

Ts◦(I+us).ns◦(I+us) =
1

2det(I + Dus)
< A(s).∇φs,∇φs > + f ◦(I+us) on Γs

(3.4)
The stress tensor is the matrix

Ts ◦ (I + us) = (
1

det(I + Dus)
(I + Dus).Σ(σ(us)).(I + D∗us) ) (3.5)

Where

Σ(σ(us)) = Cλ,µ..(Dus + D∗us +
1

2
Dus.D

∗us) (3.6)

ns ◦ (I + us) = (I + Dus)
−∗.∇(bΩs

◦ (I + us) )

Equation (3.1), (3.2), (3.3), (3.4), and (3.5) above form a system that we
can rewrite as

F(s, (us, φ
s) ) = 0,
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where the mapping

F : [0, s1[× (H1(Ω̂, RN ) × H1(Ω̂) → H−1(Ω̂, RN ) × H−1(Ω̂)

verifies the Implicit Function theorem assumptions so that the derivative
u′ := ∂

∂sus|s=0 exists in H1(Ω̂, RN ) and also φ̇ := ∂
∂sφ

s|s=0 exists in H1(Ω̂, R).

4. Weak Formulation of the Problem

Now we write the variational form associated with system (2.4). ∀Ψ ∈
H1(D), ∀R ∈ H1(D,RN ), we have

∫

Ωs

Tr(Ts.DR)dx +

∫

Ωc
s

< ∇φs,∇Ψ > dx

=

∫

Γs

{
1

2
|∇φs|

2 + ρg x3 } < ns, R > dΓs

Our goal is to compute the s derivatives (at s = 0). Let T ′ = [ ∂
∂sTs]s=0,

v =< V (0), n > on Γ, and n′ = d
ds(∇bΩs

)s=0. Recall that ns = ∇bΩs
is the

unit normal vector field on Γs out going to the (elastic) set Ωs, and H = ∆bΩ

is the mean curvature of Γ. We obtain:
∫

Ω
Tr(T ′.DR)dx +

∫

Γ
Tr(T.DR) v dΓ

+

∫

Ωc

< ∇φ′,∇Ψ > dx +

∫

Γ
< ∇φ,∇Ψ > v dΓ

=

∫

Γ
{< ∇φ′,∇φ > < n,R > dΓ

+

∫

Γ
{

1

2
|∇φ|2 + ρg x3 } < n′, R > dΓ

+

∫

Γ

∂

∂n
{ (

1

2
|∇φ|2 + ρg x3 ) < ∇bΩ, R > } v dΓ

+

∫

Γ
H (

1

2
|∇φ|2 + ρg x3 ) < ∇bΩ, R > v dΓ

We recall the by part integration formula:
∫

Ω
Tr(T ′.DR)dx = −

∫

Ω
< ~Div(T ′), R > dx +

∫

Γ
< T ′.n,R > dΓ

Then, taking Ψ (repectively R) with compact support in Ωc (respectively
in Ω) we get the following equations:

−∆φ′ = 0 in Ωc

− ~Div(T ′) = 0 in Ω

But
∂

∂n
{ (

1

2
|∇φ|2 + ρg x3 ) < ∇bΩ, R > }

=< n, ∇{ (
1

2
|∇φ|2 + ρg x3 ) < ∇bΩ, R > } >
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= (< n, D2φ.∇φ > + ρg n3 ) < n,R > + (
1

2
|∇φ|2+ρg x3 ) < n ,D2bΩ.R+D∗R.n >

Notice that

< n,D2bΩ.R >=< D2bΩ.n,R >= 0, as D2bΩ.n = 0

Therefore, concerning the boundary conditions, and taking Ψ ∈ H1(D)
and R = 0, we obtain:

∂

∂n
φ′ = divΓ( v∇Γφ )

In addition, taking Ψ = 0 and R ∈ H1(D,RN ) with DR.n = 0 on Γ, we
have:

< n , D∗R.n >=< DR.n, n >= 0.

Hence we have the following identity:

∂

∂n
{ (

1

2
|∇φ|2 + ρg x3 ) < ∇bΩ, R > }

= (< n, D2φ.∇φ > + ρg n3 ) < n,R >

Finally, we obtain the following variational problem at the boundary:

∀R ∈ H1(Γ, RN )
∫

Γ
< T ′.n,R > dΓ +

∫

Γ
Tr(T.DR) v dΓ

=

∫

Γ
< ∇φ′,∇φ > < n,R > dΓ

+

∫

Γ
{

1

2
|∇φ|2 + ρg x3 } < n′, R > dΓ

+

∫

Γ
(< n, D2φ.∇φ > + ρg n3 ) < n,R > v dΓ

+

∫

Γ
H (

1

2
|∇φ|2 + ρg x3 ) < ∇bΩ, R > v dΓ

We have to perform a tangential by part integration in the term
∫

Γ
Tr(T.DR) v dΓ =

∫

Γ
Ti,j

∂

∂xj
Ri v dΓ =

∫

Γ
< Ti,.,∇Ri > v dΓ

But as for all i we have ∂
∂nRi = 0,

∇Ri = ∇ΓRi +
∂

∂n
Ri ~n = ∇ΓRi,

and
∫

Γ
Tr(T.DR) v dΓ =

∫

Γ
< Ti,.,∇ΓRi > v dΓ = −

∫

Γ
div(v Ti,.) Ri dΓ

= −

∫

Γ
< ~Div(v T ), R > dΓ,

then we get the following boundary condition for the stress function :
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∀R ∈ H1(Γ, RN )
∫

Γ
< T ′.n,R > dΓ = +

∫

Γ
< ~Div(v T ), R > dΓ

+

∫

Γ
< ∇φ′,∇φ > < n,R > dΓ

+

∫

Γ
{

1

2
|∇φ|2 + ρg x3 } < n′, R > dΓ

+

∫

Γ
(< n, D2φ.∇φ > + ρg n3 ) < n,R > v dΓ

+

∫

Γ
H (

1

2
|∇φ|2 + ρg x3 ) < ∇bΩ, R > v dΓ

Therefore, we obtain

T ′.n = ~Div(v T ) + < ∇φ′,∇φ > ~n + {
1

2
|∇φ|2 + ρg x3 }~n′

+ (< n, D2φ.∇φ > + ρg n3 ) v ~n + H (
1

2
|∇φ|2 + ρg x3 ) v ~n

4.1. Calculus of the tangent vector n′. From [?], [?], [?], we know that
in some neighborhood U of Σ = ∪0<s<s1

{s} × ∂Ωs the oriented distance
function solves the convection equation

∂

∂s
bΩs

+ ∇bΩs
.V (s)opΓs

= 0

where pΓs
= Id− bΩs

∇bΩs
is the projection mapping onto Γs.

Then we get

n′ :=
∂

∂s
(∇bΩs

)s=0 = ∇(
∂

∂s
bΩs

)s=0 = ( ∇(−∇bΩs
.V (s)opΓs

) )s=0

= −(D2bΩs
.V (s)opΓs

)s=0 − ( D∗(V (s)opΓs
).∇bΩs

)s=0

s = 0, x ∈ Γ, n′(x) = −D2bΩ(x).V (0, x) − D∗
ΓV (0, x).n(x)

= −∇Γv(x)

where again v(x) =< V (0, x), n(x) > on Γ is the normal speed of the bound-
ary.

As we have
~Div(T ) = 0 in Ω,

assuming the boundary Γ smooth we get that this equation holds true up to

the boundary, so that the term ~Div(vT ) simplifies and we get

~Div(vT ) = v ~Div(T ) + T .∇v.

Thus we have the following new expression:

T ′.n = T .∇v + < ∇Γφ′,∇Γφ > ~n − {
1

2
|∇Γφ|2 + ρg x3 }∇Γv

+ (< n, D2φ.∇Γφ > +
1

2
H |∇Γφ|2 + (1 + H )ρg n3 ) v ~n (4.1)
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Regarding the term ∇v on Γ, we have:

∇v = ∇(< V (0),∇bΩ >) = D2bΩ.V (0) + D∗V (0).∇bΩ

Therefore it follows that

< ∇v, n >=< DV (0).n, n >

and

∇v = ∇Γv + < DV (0).n, n > ~n

Now using T .n = p~n = (
1

2
|∇Γφ|2 + ρg x3)~n, equation (4.1) simplifies to:

T ′.n = [ T − {
1

2
|∇Γφ|2 + ρg x3 } ].∇Γv + < ∇Γφ′,∇Γφ > ~n

+ (< n, D2φ.∇Γφ > +
1

2
H |∇Γφ|2 + (1 + H )ρg n3 ) v ~n

+ < DV (0).n, n > (
1

2
|∇Γφ|2 + ρg x3)~n (4.2)

4.2. The stress tensor Ts◦Ts. Recall that Ts = ϕs◦ϕ
−1, where ϕs = I+us,

and that V (s) = ∂
∂sTs ◦ T−1

s = ∂
∂sϕs ◦ ϕ−1

s .
Then we get

V (s) =
∂

∂s
uso(I + us)

−1.

If we let

u′ := (
∂

∂s
us )s=0

then we obtain

V (0) = u′ ◦ (I + u)−1

On the boundary Γ we have

v =< u′ ◦ (I + u)−1, n >

so that

∇Γv = ∇Γ(< (u′◦(I+u)−1), n >) = D∗
Γ(u′◦(I+u)−1).n + D2bΩ.(u′◦(I+u)−1)Γ

Remark 4.1. We design by K ∈ L(H1/2(Γ),H−1/2(Γ)) the self adjoint

Dirichlet to Neuman operator at the boundary associated with harmoniques

functions in Ω. Then we get

φ′|Γ = K.(divΓ(v∇Γφ))

The stress tensor is the matrix

TsoTs = (
1

det(I + Dus)
(I + Dus).Σ(σ(us)).(I + D∗us) )o(I + u)−1 (4.3)

where

Σ(σ(us)) = Cλ,µ..(Dus + D∗us +
1

2
Dus.D

∗us) (4.4)

In (4.4) we assumed the four entries elasticity tensor to be governed by the
Lamé coefficients.
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Taking derivative w.r.t s in (4.3), we obtain:

( [
∂

∂s
TsoTs ]s=0 )o(I +u) = −

div(u′)

det(I + Du)
(I +Du).Cλ,µ..(σ(u)).(I +D∗u)

+(
1

det(I + Du)
D(u′).Cλ,µ..(σ(u)).(I + D∗u) )

+(
1

det(I + Du)
(I + Du).Cλ,µ..(σ′).(I + D∗u) )

+(
1

det(I + Du)
(I + Du).Cλ,µ..(σ(u)).D∗(u′) )

where

σ′ = D(u′) + D∗(u′) +
1

2
(D(u′).D∗u + Du.D∗(u′) )

Now we let

Ṫ = [
∂

∂s
TsoTs ]s=0

= T ′ + DT .(u′ ◦ (I + u)−1)

where D is a “new coming“: it is a three entries tensor, representing the
gradient of the matrix T . Its contraction with the vector (u′ ◦ (I + u)−1)
gives the matrix DT .(u′ ◦ (I + u)−1). Then we have

T ′ = {−
div(u′)

det(I + Du)
(I + Du).Cλ,µ..(σ(u)).(I + D∗u) }o(I + u)−1

+{ (
1

det(I + Du)
D(u′).Cλ,µ..(σ(u)).(I + D∗u) ) }o(I + u)−1

+{ (
1

det(I + Du)
(I + Du).Cλ,µ..(σ′).(I + D∗u) ) }o(I + u)−1

+{ (
1

det(I + Du)
(I + Du).Cλ,µ..(σ(u)).D∗(u′) ) }o(I + u)−1

− DT .(u′ ◦ (I + u)−1)

5. Linearization around “rest”

The most “popular” framework (among mathematicians) consists in con-
sidering u = 0. With this assumption, we have the following simplification:

T ′ = Cλ,µ..(σ′) − DT .(u′ ◦ (I + u)−1)

Since u = 0, we have that T = 0 and thus DT = 0. Moreover,

σ′ = D(u′ ◦ (I + u)−1) + D∗(u′ ◦ (I + u)−1)

Therefore

T ′ = Cλ,µ..(D(u′ ◦ (I + u)−1) + D∗(u′ ◦ (I + u)−1))

T ′ = λdet(D(u′ ◦ (I + u)−1)) I + µ (D(u′ ◦ (I + u)−1)+ D∗(u′ ◦ (I + u)−1))
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So now we are in the classical linear elasticity framework: U := (u′ ◦ (I +
u)−1) is the linearized displacement, while T̄ = T ′ = λdet(DU) I + µ (DU +
D∗U) = is the associated stress function.

5.1. The linearization of the coupled fluid-structure problem around

stress less steady structure. We assume small variations around the rest
state u = 0, T = 0 for the elastic body occupying the volume Ω in D ⊂ R3.
The fluid speed v is steady, but not zero. We assume this flow to be irrota-
tional so that v derives from an harmonic potential in Ωc = D \ Ω̄, that is
vs = ∇φs. From (4.2), with the following notation

Φ = φ′,

we obtain the following system for the fluid-structure coupling (with T̄ =
λdet(DU) I + µ (DU + D∗U)):

∆Φ = 0 in Ωc,

~Div(T̄ ) = 0 in Ω,

∂

∂n
Φ = − + divΓ(U.n∇Γφ ) on Γ,

T̄ .n = −{
1

2
|∇Γφ|2 + ρg x3 } .∇Γ(U.n) + < ∇ΓΦ,∇Γφ > ~n

+ (< n, D2φ.∇Γφ > +
1

2
H |∇Γφ|2 + (1 + H )ρg n3 )U.n ~n

+ < DU.n, n > (
1

2
|∇Γφ|2 + ρg x3)~n (5.1)

Note that the coupling on the boundary interface Γ takes into account the
mean curvature of the boundary H. This is an important point.
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