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Abstract: An adaptive finite element algorithm is presented for the wave equa-
tion in two space dimensions. The goal of the adaptive algorithm is to control the
error in the same norm as for parabolic problems, namely the L?(0,7; H(Q))
norm, where T' denotes the final time and Q the computational domain. The
mesh aspect ratio can be large whenever needed, thus allowing a given level of
accuracy to be reached with fewer vertices than with classical isotropic meshes.
The refinement and coarsening criteria are based on anisotropic, a posteriori
error estimates and on an elliptic reconstruction.

A numerical study of the effectivity index on non-adapted meshes confirms
the sharpness of the error estimator. Numerical results on adapted meshes
indicate that the error indicator slightly underestimates the true error. We
conjecture that the missing information corresponds to the interpolation error
between successive meshes. It is observed that the error indicator becomes
sharp again when considering the damped wave equation with a large damping
coefficient, thus when the parabolic character of the PDE becomes predominant.
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Un algorithme de maillage adaptatif pour
I’équation des ondes basé sur des estimations

d’erreur a posteriori anisotropes dans la norme
L*(HY).

Résumé : Un algorithme d’éléments finis adaptatifs est présenté pour I’équation
des ondes & deux dimensions d’espace. Le but de ’algorithme est de controler
I’erreur dans la norme naturelle des problémes paraboliques, & savoir la norme
L?(0,T; HY(Q)). Le rapport d’aspect des triangles peut étre grand si néces-
saire, ce qui permet d’obtenir un niveau de précision donné avec relativement
peu de sommets. Les critéres de raffinement et déraffinement sont basés sur un
estimateur d’erreur a posteriori anisotrope.

Les résultats numériques sur des maillages non-adaptés montrent que I’estimateur
d’erreur est précis. Les résultats numériques sur des maillages adaptés mon-
trent que l’estimateur d’erreur sous-estime légérement ’erreur. Nous pensons
que cette discrépance provient de ’erreur d’interpolation entre maillages qui
n’est pas contenue dans l'estimateur. Les résultats montrent que cette erreur
d’interpolation entre maillages dimunue lorsqu’un terme d’amortissement est
ajouté dans I’équation des ondes, c’est-a-dire lorsque le caractére parabolique
de ’équation augmente.

Mots-clés : Equation des ondes, Eléments finis adaptatifs, Estimations
d’erreur a posteriori anisotropes



Adaptive finite elements for the wave equation 3

1 Introduction

A posteriori error estimates and adaptive finite elements have already been
widely considered for solving elliptic, parabolic and first order hyperbolic prob-
lems. However, hyperbolic problems of second order have been much less stud-
ied, see for instance [15} [, 6], [T, 2, §].

Recently, adaptive finite elements with large aspect ratio have been intro-
duced in order to reduce the number of vertices required for a given level of
accuracy [3, [[]. Elliptic problems were considered in [21, 22], with goal to con-
trol the error in the natural H'(€) norm, while the L?(0,7; H'(Q2)) norm was
used for parabolic problems in [20, [0, [I7].

When considering hyperbolic problems of second order, the natural norm
is the CO([0, T); HL(2)) N CL([0,T); L3(2)) norm. However, as explained in [8],
the C°([0,T7; L%(Q))NC* ([0, T]; H~1(2)) norm seems to be more appropriate in
order to derive a posteriori error estimates.

In this paper, a posteriori error estimates are derived in the L?(0,7; H*(Q))
norm for the wave equation in two space dimensions, which allows the adaptive
algorithms developed for parabolic problems in [20, [I0, [T to be used with very
few modifications. For this purpose, the elliptic reconstruction technique [I8]
introduced for parabolic problems will be used.

The outline is the following. The wave equation and the continuous, piece-
wise linear finite element discretization in space is presented in the next sec-
tion. An a posteriori upper bound is proposed in section 3 for the error in the
L?(0,T; HY(Q)) norm, using the elliptic reconstruction technique introduced for
parabolic problems in [I8]. An order two time discretization is selected and nu-
merical results on non-adapted meshes are reported in section 4. It is observed
that the error indicator is sharp provided the error due to time discretization
becomes negligible, which is the case when the time step 7 is of the order of
the space step h. An adaptive algorithm is presented in section 5 in order to
control the error in the L?(0,7; H'(2)) norm. Numerical results show a dis-
crepancy between the error indicator and the true error. We suspect that this
discrepancy corresponds to the interpolation error between successive meshes
which is not accounted in the present paper - and difficult to compute since
non-compatible anisotropic meshes are involved. In order to validate this con-
jecture, the adaptive algorithm is used to solve the damped wave equation. It
is observed that the larger the damping term, the better the effectivity index.
This observation is consistent with the fact that we have observed in previous
papers [20, [0, [I7] that the interpolation error between successive meshes was
not relevant for parabolic problems. We therefore conclude that this is not true
for the wave equation.

2 The wave equation and its finite element dis-
cretization

Let T be the final time, let © be a polygon. Given f : Q x (0,7) — R, given
initial conditions wug, vg : @ — R, we are interested in finding u : Q x (0,7) — R

RR n°® 7115



4 Marco Picasso

such that
0%u .
wauff anX(O,T), (].)
u=0 on 092 x (0,7, (2)
u(+,0) = wo, %(-,0) =g in Q. (3)

Following for instance Chap. 3, Sect. 8 of [16], the weak formulation of the
above problem consists, given f € L?(0,T; L?(2)), up € Hg(Q), vo € L3(), in
finding

oo 1 ou oo 2 u 2 -1
u€eL (OaTvHO(Q))a E €L (OaTyL (Q))’ W el (OaTvH (Q))a

%(~,0) =g in L?(Q2) and

2

<%,U>+/VU'VUZ/JCU, (4)
Q Q

for all v € H}(Q), a.e. t € (0,T), where < -,- > denotes the duality pairing
between H~1(Q) and H{ (). From Chap. 3, Sect. 8, Theorem 8.1 and Remark
8.2 of [I6], such a solution exists and is unique. Moreover, using a parabolic
regularization technique, it is proved in Theorem 8.2 of [16] that

such that u(-,0) = ug in H}(Q),

we 0, 7) HY(9), T e c(lo, ) 12(9).

We now consider a finite element discretization in space. We will derive
an a posteriori error bound in the case when the same mesh is used between
initial and final time. Therefore, the interpolation error due to the use of several
meshes will not be considered from the theoretical point of view. However, the
adaptive algorithm presented in section 5 will obviously make use of several
meshes whenever needed. Moreover, numerical experiments seem to show that
this interpolation error should not be neglected in the framework of the wave
equation, eventhough previous studies have shown that the interpolation error
is not relevant for parabolic problems, provided the number of remeshings does
not depend on the mesh size and time step, see |20} [I0, [[7]. The estimation of
this interpolation error is not an obvious task since non-conforming anisotropic
meshes are involved and is therefore beyond the scope of the present paper.

For any h > 0, let 7, be a conformal finite element triangulation with
triangles K having diameter hx < h. We are looking forward to using triangles
with large aspect ratio, thus the usual minimum angle condition will not be
satisfied. In the sequel we adopt the notations of [T, [T2] but those of [13, 4]
could be used as well. Let Tx : K — K be the mapping from the reference
triangle K to the current element K and let Ag be the union of the neighbouring
triangles sharing a vertex with K. The following two assumptions must be
satisfied : i) the number of triangles belonging to Ak must be bounded above,
uniformely with respect to 4 and ii) the diameter of 7' (A ) should be bounded
above, uniformely with respect to h, which excludes meshes with large curvature,
see for instance [20), [19] for examples.

INRIA



Adaptive finite elements for the wave equation 5

Let V}, be the usual subspace of Hg(Q) corresponding to continuous func-
tions, piecewise linear and vanishing on the boundary. We denote by r, :
C°(Q) — Vj the usual Lagrange interpolant. Then, assuming that the ini-
tial data ug and vy are C°(€), the finite element discretization of (@) is to find
up € H?(0,T;Vy) such that uy(0) = rpug, Oup(0)/0t = rpve and

32uh
g2 vh T | Vun Vo= | for, (5)
Q Q Q

for all v, € Vj,, a.e. t € (0,T).

In the sequel we derive anisotropic a posteriori error estimates in the same
norm as for parabolic problems, namely the L?(0,T; H'(Q2)) norm, which allows
the same adaptive algorithm as in [20] to be used.

3 Anisotropic a posteriori error estimates

In order to control the error in the L?(0,T; H*(2)) norm, we introduce as in
[18] the elliptic reconstruction U € L2(0,T; H}(2)) defined by

2
Qaa;hw/gvuwz/ﬂfv, (6)

Our goal is to control u — up, = u — U + U — up,.

We first recall some interpolation estimates due to [T, [12]. For any triangle
K of the mesh, let Tx : K — K be the affine transformation which maps the
reference triangle K into K. Let M & be the Jacobian of Tk that is

Since M is invertible, it admits a singular value decomposition My = RIT(A x Pr,
where Ry and Pk are orthogonal and where Ak is diagonal with positive en-
tries. In the following we set

(kO (g
A = ( 0 )‘2,K) and Ry = (r;K , (7)

with the choice A x > A2 k. Finally, for any triangle K of the mesh, the three
edges will be denoted by ¢; i, i =1,2,3.

The following interpolation estimates for the Clément interpolant R;, can be
found in [TT], T2, 22].

Lemma 1 There is a constant C independent of the mesh size and aspect ratio
such that, for all v € HY(Q), for all K € Ty, for all i =1,2,3 :

A K A2, K
[o = Rl 72y + WHU — R, ) < Cwk(v), (8)
where wi (v) is defined by
wk(0) = X i (T Grelo)rr ) + N (5 G ()20 ), (9)

RR n°® 7115



6 Marco Picasso

and G (v) denotes the 2 x 2 matriz defined by
[(2)e [ 20
81‘1 (9:61 (9:62 (10)
/ Ov Ov L / v\, '
Ag 6:1:1 8902 v Ax 8902 v

We are now in position to control the error v —up, = v — U + U — uy.
Concerning U — uy,, we have the following result.

Gk (v) =

Lemma 2 Let up, U be defined by ([H), (@), respectively. Then, there exists C
independent of the mesh size and aspect ratio such that

//|v —wt<e [ Y (1)
0 KeTy,

where 77%1 is defined by

8%u
77%(,1 = <Hf ot A

Here [] denotes the jump of the bracketed quantity across edge {; i, with the
convention [-] = 0 for an edge {; xk on the boundary OS).

Proof. Using () and (), we have

1 3 |£1K| 1/2
330 (5 ) T nl

L2(K) — \ M rA K

X wK(U—uh). (12)

2
/Q|V(U —up)]? = /Q <f - aa;;h) (Ufuhfvh)f/g Vun-V(U—-up—vy)  Yop € Vi

Integrating by parts the diffusion term over each triangle K, choosing v, =
Ry (U — uy), the Clément interpolant of U — u;, and using the interpolation
estimates of Lemma [0 yields the result. O

Remark 1 The estimator {IA) is not a usual error estimator since U — uy, is
still involved. However, if we can guess U — up,, then () can be used to derive
a computable quantity. This idea has been used in [21, [2Z2] and an efficient
anisotropic error indicator has also been obtained replacing the derivatives

U —uyp) .
8:01- ‘

auh _ 8uh
81‘1' (9:61 ’

n {Id) by 11, i=1,2, (13)

where 11, is the approzimate L?(Q) projection onto Vi, defined for each vertex
P of Tp by

8uh
Oun Z K] (8951)

I, | — | (P
h 81'1 ( ) _ 1 I;Ez;h
8uh B 8uh
I, B (P) Z|K| Z|K|<5$)
2 [;E’Z(’h I}(DE?L 2

INRIA



Adaptive finite elements for the wave equation 7

We now control u — U with respect to U — uy,.

Lemma 3 Let u, up, U be defined by @), @), @), respectively. Assume that
f € H*(0,T;L*(Q)) so that up, € H*0,T;V}) and U € H*(0,T; H}()). We
have, for 0 <t <T :

+ [ IVu—U)t)?
Q

2—1—2/Q|V(u—U)(O)|2+2t/Ot/Q

Proof. Using @) and (@) we have

0? 02
/Q@(ufU)an/QV(ufU)-Vv:/ﬂw(uth)v,

for all v € H}(Q), a.e. t € (0,T). We then choose v = 9/dt(u — U) to obtain

1d 0
2 QO&(“U)

We set
vo= [ (]%w -v)

and use Cauchy-Schwarz inequality to obtain

2 w-v))

2

(u—U)(0) %w —un)

(14)

2

+|v<uU>|2> | gt - g -0)

2

+V(u— U)|2> ,

1d o <] 2 -0 12 (15)
2at’" = ||orz " v L
Since
Az L 1
di 2 dt’

we therefore obtain, integrating ([[T) between time 0 and ¢ :

2

5 (un = U)

t
1/2(4) < o1/2
v <y o+ [ 5

L2 () .

Taking the square and using Young’s inequality yields the result. O

It now remains to estimate 9/9t(u—U)(0), V(u—U)(0) and §%/0t*(U —up,).

Lemma 4 Assume that the polygon §) is convex and that f € H?(0,T; L?(2)).
Let u, up, U be defined by @), @), (@), respectively. Then, there exists C;
independent of the mesh size (but depending on the aspect ratio) such that

/OT/Q <o /OT S s (16)

KT

BE 2

@(U — Uh)

RR n°® 7115



8 Marco Picasso

where 03 5 is defined by

2 2

(92f 84uh

ot? ot

2 4

Mk = Nk

)

+ h3
L2(K)

(17)

32uh
Hv—5t2 n]
Moreover, if ug, vo € H*(Q2), then there exists Cy independent of the mesh size

and aspect ratio, C3 and Cy independent of the mesh size (but depending on the
aspect ratio) such that

J

L2(0K)

9 w—v)0)

- + [ v -nop

<Cy Y mgs+Cs Y 77?<,4+C4h2/ (ID?uol* + [D*wo[?) . (18)
KET, KeT, Q

where 77%(73 and 77%,4 are defined by

2 Hﬂm O un o +1§j(J@ﬂ—fm|w (0)-n] |

— _ — U . 2(y.
T3 ot? L2(K) 2 i=1 ALK A2, K " F)

x wic((u — U)(0)), (19)
of Bup, |1 duy, 2

2 4 3

= —(0) — — 2
Nia = hk ’(’% (0) o (0) L) +h |||V ot (0) L om) (20)

Proof. We mimick [I8] in order to obtain (). From (&) and (@) we have
V(U — uh) -Vop, =0 Yo, € V.
Q

Since f € H2(0,T; L*(2)), up € H*(0,T;V},) and U € H%(0,T; H}(?)), thus,
differentiating the above equation twice with respect to ¢, we obtain
82
/ V—Q(U —up)-Vop, =0 Yo € Vy,. (21)
q Ot

Let ¢ € L*(0,T; H} () be defined by

2
/V@-Vuz/ a—(U—uh)v Yo € H}(Q).

We thus have, using E1I),

J

2

82

@(U - uh)

82
= /§1V¢~V@(U—uh)

82
= [ Vo —u)- V50 —w).

for all v, € V},. Since Q is a convex polygon, U € H?(0,T; H*(Q2)), thus we can
integrate by parts the diffusion term over each triangle K to obtain

J

BE 2

@(U — Uh)

KeTy,

INRIA
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Adaptive finite elements for the wave equation 9

Since ) is a convex polygon, ¢ € L?(0,T; H?(R)), we are thus allowed to choose
vy, = Ty, the Lagrange interpolant of . Moreover, there exists C' depending
only on the size of {2 such that

’ (U uh)

0
ol a2 < CH
( ) atQ LQ(Q)

Therefore, using standart interpolation results, there exists C' independent of
the mesh size (but depending on the aspect ratio) such that

<CZ(

KeTy,

02 ? 1.,
o2 gl

2
(U — upn) 3

U—un) ’ o2

ot? (

L?(K)
Finally, since

PU  2f  duy

o2 o2 ot

82
and {V@U-n} =0,

then (IH) is proved.
We now derive an upper bound for (v — U)(0). From (@) we have, for all
v € Hy (),

82
/Vu— VU—/ 8t2(uh u)v

82uh
= —2vffv7Vuh Vo |+ | V(u—uy)- Vo,
Q \ Ot Q

thus using (f) we obtain :
/V(ufU)-Vv
Q
2
:/ (%(vvh)f(vvh)Vuh~V(vvh))
Q
V(u— -Vu. (22
+ [ V=) ve. @2

At initial time, the above equation writes

/QV(u—U)(O)-VU - /Q (a;;;h (0)(v — v) — £(0)(v — v4) — Vun(0) - V(v — vh))

+ /Q V(ug — rpug) - Vo.  (23)

We then choose v = (u — U)(0), v, = Rup(u — U)(0), where Ry is Clément’s
interpolant, use the interpolation estimates of Lemma [l to obtain

/|Vu— OF<c Y nK3+/|Vuo—muo>|,

KeTy,

where C' does not depend on the mesh size and aspect ratio.

RR n°® 7115

Hv"’i U~ )]

2

L2(8K)

) |



10 Marco Picasso

Differentiating ([22) with respect to t yields, at initial time

3u u
[ V0050 = [ (G- u) - G0/ - V50 Vo)

ot
+/ V(vg — rpvo) - Vo, (24)
Q
for all v € H}(Q) and vy, € Vj,. Let » € H}(Q) be defined by
9 1
Vo -Vo= | —(U —u)(0)v Yo € Hy(2).

We then chose v = 9/9t(u — U)(0) and use (4] to obtain

+/ V(’Uo - Th’l)o) . V(p.
Q

We then choose v, = rpp, the Lagrange interpolant of ¢, and use standart
interpolation results to prove ([8). O

We now state the main result of the paper.

Theorem 1 Assume that the polygon € is convez, that ug,vo € H?(Q) and
f € H*0,T;L*(Q)). Let u, up, U be defined by @), @), @), respectively. Let

the error estimators nk,1, 1K,2, NK,3, 1MK,4 be defined by [2), [T), ), @),
respectively. Then, there exists Cy independent of the mesh size and aspect ratio,

Cy independent of the mesh size (but depending on the aspect ratio) such that

/OT/Q|V(U—Uh)|2§01 (/OT Z M1 + Z 77?(,3)

KeT, KeT,
T
+ Cy (/ > nkat Y, n§4+h2/ (|D2u0|2+|D2v0|2)>. (25)
0 KeT, KeT, Q

Proof. We have

/OTA|v<uuh>|2s2/0T Q|v<uU>|2+2/OT [ V@ - .

From Lemma Bl we have
2 T
+2T/ |V(u—U)(0)|2+T2/ /
Q 0o Ja

/OT/QW(U—U)F < 2T/Q

Using Lemma B and B in the two above estimates yields the result. O

0
o= 1)(0)

INRIA
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Adaptive finite elements for the wave equation 11

4 Time discretization and numerical results with
non adapted meshes

The time discretization considered here corresponds to the implicit order two
Newmark scheme. Given an integer N, we set 7 = T/N the time step, t" =
nt and introduce u} an approximation of us(t"), n = 0,...,N. The initial
conditions are set to uy = rpug, v)) = rpve. The first approximation uj, € V,
satisfies

1 _,0 _ .0 1 1
/wvﬁ/ 1out 4 Lyu .Vvh:/f(t°>vh,
o T o \4 4 Q

for all v, € V. Then, for each n = 1..., N, we compute UZH € V}, such that

n+1 n n—1
) 1 1 1
/ - paul vh+/ FVun T S Vuh + Ve Vo = [ f ("o,
o - a \ 4 2 4 Q

for all v, € V3. This scheme is O(h + 72) convergent in the L?(0,7; H*(Q))
norm. Therefore, setting 7 = O(h), the error due to time discretization be-
comes asymptotically negligible so that the error due to space discretization
only should be recovered. The interested reader should note that the Stormer-
Numerov scheme [23] could be used to obtain a O(h + 7*) convergent scheme.

We now report numerical results using uniform meshes and constant time

steps when using
T
|3 v (26)
0 KeTy,

as error indicator. Going back to the upper bound (£3), it can be noticed that

the terms T
/0 Z 77?(,2 + Z 77%(,4

KeT, KeT,

are of higher order and can thus be disregarded. This is not the case of the

terms
Z Nk 3 and h2/ (|ID?ug|® + [D?vo?) .
KeT, Q

Since a trapezoidal quadrature formula is used to approximate (@), The nx 3
term yields a contribution which is very similar to that of ([£8). Numerical
results reported hereafter indicate that using (28 is indeed sufficient to represent
correctly the error.

RR n°® 7115



12 Marco Picasso

In order to study the quality of our error indicator, the following two effec-
tivity indices are introduced
5 5 1/2
3uh
+|(I-1I —
‘( 2 <3$2) >

o (£ ()

A 0 KeTy,
T
/ / IV — unr)?
0 Q

T 1/2

Z 77%(,1

0
. KeTy,
e@A = s

/0 ' JCETE

where II, is defined in Remark [ 7k 1 is defined in (IZ) and wj, denotes the
continuous, piecewise linear approximation in time defined by

t—tn! n -t n—1 n—1 n
upr(z,t) = ——up(z) + u, () T <t <t", xe (27)
T T

The first numerical example corresponds to the case when

Q=]0,1% T =04, f(x1,22,t)=0,

— * —0.5)2

ug(zy, o) = exp 1000 (21-0.5)" vo(x1,22) = 0. (28)
Homogeneous boundary conditions apply on the vertical sides of Q2 whereas Neu-
man homogeneous boundary conditions apply on the horizontal sides. Therefore
the solution is one-dimensional and is given by d’Alembert formula

1
u(x1, x2,t) = 5(“0(131 —t,22) +up(x1 + t,iﬂz))-

The computed solution at time 0 and 0.3 is reported in Fig. [ when using a
uniform mesh with mesh h, = 0.005, h, = 0.05 and a time step 7 = 0.0005.
Numerical experiments with several uniform meshes and constant time steps are
reported in Table [

In rows 1-6, it is observed that when setting h = O(72) then the error is
divided by four each time the time step is divided by two thus

</OT/Q IV (u — um)|2> " — O(h+ 7).

It should be noted that ei?#, the effectivity index of ZZ, is not close to one in
rows 1-3 due to the fact that the error due to space discretization is of the same
order than the error due to time discretization.

In order to insure that the error due to time discretization becomes negligible
with respect to the error due to space discretization we choose 7 = O(h) in rows
7-9. We observe that the error is still of order one and that ei?4 now converges
to one when h converges to zero, as for elliptic problems.

INRIA



Adaptive finite elements for the wave equation 13

| ha | hy | T | e | el | eil | Nyert |
0.01 0.1 0.01 1.70 | 0.23 | 0.60 | 1292
0.0025 0.025 0.005 0.46 | 0.19 | 0.52 | 20001
0.000625 | 0.00625 | 0.0025 0.11 | 0.19 | 0.51 | 325302
0.01 0.1 0.001 0.83 | 0.51 | 1.34 | 1292
0.0025 0.025 0.0005 0.10 | 0.86 | 2.41 | 20001
0.000625 | 0.00625 | 0.00025 | 0.022 | 0.98 | 2.67 | 325302
0.01 0.1 0.001 0.83 | 0.51 | 1.34 | 1292
0.005 0.05 0.0005 0.27 | 0.71 | 2.00 | 5070
0.0025 0.025 0.00025 | 0.10 | 0.87 | 2.44 | 20001
0.00125 | 0.0125 | 0.000125 | 0.046 | 0.96 | 2.63 | 80391

Table 1: Example 28 Non adapted meshes. 72 = O(h) and 7 = O(h). Notation
1/2
Ce = (fOT Jo IV (u— uhT)|2) , Nyert is the number of vertices of the final

mesh.

0.6 1 _

04} _

0.2 _

-0.2

Figure 1: ExampleZ8 Non adapted meshes. h, = 0.005, h, = 0.05, 7 = 0.0005.
Computed solution wup(x1,1,t) with respect to z1 at time ¢ = 0 and ¢ = 0.3.

In the second numerical example we change the following parameters in (28]

—1000% | (21—0.5)%4+(z2—0.5 2)
T= 14, U0($1,$2) = €ExP (( ' S : ) (29)

and homogeneous boundary conditions apply on the whole boundary of 2. For
this test case, the exact solution is not known and multiple reflections can be
observed when the initial wave hits the boundary, see Fig. B

RR n°® 7115
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Figure 2: Example B Non adapted meshes. Numerical solution on a 100 x 100
uniform mesh at time 0.3, 0.6, 0.9, 1.2.

5 An anisotropic, adaptive finite element algo-
rithm

We now use the adaptive algorithm described in [20] using
2
/ Z K1
0 KeT,

as error indicator. The goal is to find anisotropic triangulations 7,*, n = 1,..., N
such that the relative estimated error is close to a preset tolerance TOL, namely

g

KeT;
" 5 < (1+a)TOL. (30)

([ [ out) !

Hereabove, 0 < a < 1 is a parameter affecting the number of remeshings, in
general we choose o = 0.25. A sufficient condition to satisfy ([BI) is to build, for
each n = 1,..., N, an anisotropic triangulation 7,* such that

(1—a) TOL2/ /|vu,” / d nki<(1+a) TOL2/ /|Vuh7|
tTL

KGT

(1-—a)TOL <

INRIA
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We then proceed as in [20] to build such an anisotropic mesh, using the BL2D
mesh generator [9)].

Example (28) is considered. Unless otherwise specified, the initial triangu-
lation is a uniform 100 x 10 mesh. Results are reported when using several
values of TOL with 7 = O(TOL™!) so that the error due to time discretization
becomes asymptotically negligible. The results of Table B correspond to the
choice @ = 0.25 in ([BI) which was the parameter used in [20]. As expected, the
error is divided by two each time T'OL is, the number of vertices of the final
mesh is multiplied by four and the number of remeshings is roughly constant.
However, unlike the results obtained with non adapted meshes, the effectivity
index of ZZ does not go to one. The results with TOL = 0.125 are reported
in Fig. BltoBl As seen in Fig. B the discrepancy between the true and esti-
mated error increases with respect to time. We suspect that the missing error
is due to interpolation between meshes and therefore we perform experiments
with @ = 0.5 in (B), or even by imposing the times at which remeshing is
performed. The results are reported in Table Clearly, the effectivity index
of ZZ7 at final time depends on the number of remeshings. Therefore, unlike
what has been observed for parabolic problems [20, [I7], we conjecture that the
interpolation error between meshes cannot be neglected for the wave equation.
Estimating this error is not an easy task for non compatible anisotropic meshes
and is beyond the scope of the present paper. However, this interpolation error
should be considered in a forthcoming contribution.

| TOL | T | e | ei?? | eif | Nyert | Nonesh | max ratio | av ratio |
0.125 0.001 0.27 | 045 | 1.23 2382 28 145 27
0.0625 0.0005 0.10 | 0.64 | 1.73 | 9781 27 245 29
0.03125 | 0.00025 | 0.051 | 0.64 | 1.77 | 36865 39 226 30
0.015625 | 0.000125 | 0.023 | 0.71 | 1.96 | 182914 45 285 25

Table 2: Example Adaptive algorithm. Results with respect to TOL when
a = 0.25. Caption : Ny,csp, is the number of generated meshes, max ratio (resp.
av ratio) is the maximum (resp. average) aspect ratio A; x/A2K of the final
mesh.
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0.9 t=0——
0.8 | |
0.7 | |
0.6 | |
0.5 | |
0.4 t |
0.3 | |
0.2 |
0.1t |

-0.1

Figure 3: Example Adaptive algorithm with TOL = 0.125, o = 0.25.
Computed solution wup(x1,1,t) with respect to x1 at time ¢ = 0 and ¢ = 0.3.

Figure 4: Example Adaptive algorithm with TOL = 0.125, o = 0.25.
Adapted mesh at time ¢ = 0 (1305 vertices) and ¢ = 0.3 (2164 vertices).

INRIA
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10 ¢ I I I I
E true error
error estimator - - - -
) —

remeshing time ¢

—
Y
N
N
v babinl

0.1E P AN A R VYT

0.01 | | | | | | |
0 0.05 01 015 02 025 03 0.35

N
~

Figure 5: Example Adaptive algorithm with TOL = 0.125, a = 0.25. True
and estimated error with respect to time.

| e | ei?” | ei | Nyert | Nopesh | max ratio | av ratio |
0.049 | 0.77 | 2.06 | 60179 23 217 26
0.051 | 0.64 | 1.77 | 36865 39 226 30
0.071 | 0.76 | 2.03 | 33281 20 204 34
0.064 | 0.68 | 1.85 | 15817 40 355 56

Table 3: Example Adapted meshes. Influence of the number of remeshings
with TOL = 0.03125 and 7 = 0.00025; row 1 : adaptive algorithm with o = 0.5;
row 2 : adaptive algorithm with o = 0.25; row 3 : 20 imposed remeshings at
time 0.02, 0.04,... 0.38; row 4 : 40 imposed remeshings at time 0.01, 0.02,...
0.39.

In order to check the conjecture that the interpolation error between meshes
cannot be neglected, conservative interpolation [4] rather than linear interpo-
lation is considered to interpolate the computed solution after remeshing. The
results are reported in Table @l and clearly show that the effectivity index of ZZ
is closer to one with conservative interpolation rather than linear interpolation.

| TOL | T | e | ei?? | eil | Nyert | Ninesh | max ratio | av ratio |
0.125 0.001 0.20 | 0.66 | 1.77 | 3797 18 111 24
0.0625 0.0005 | 0.089 | 0.74 | 2.00 | 9260 25 245 32
0.03125 | 0.00025 | 0.045 | 0.73 | 2.00 | 27711 37 339 43
0.015625 | 0.000125 | 0.021 | 0.78 | 2.15 | 86381 46 799 52

Table 4: Example Adaptive algorithm. Results with respect to TOL when
a = 0.25 when using the conservative interpolation method of 4] to interpolate
the computed solution after remeshing.
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Still in order to check the conjecture that the interpolation error between
meshes cannot be neglected, the damped wave equation is considered

8%u

0

Clearly, when the damping coefficient 3 > 0 increases, then the behaviour of
the equation ressembles that of a parabolic problem, thus we conjecture that
the interpolation error between meshes should decrease. Still considering the
example (Z8) of the previous section, the exact solution can be computed by
means of Fourier series. The adaptive algorithm is run with several values of
(# and the results are reported in Table @l Clearly, when § = 100, then the
effectivity index of ZZ is close to one and the effectivity index of our error
estimator is close to 2.7 which corresponds to the value already observed for
various elliptic and parabolic problems, which shows that the interpolation error
between meshes becomes unimportant.

| I6] | e | el | eid | Nyert | Nesh | max ratio | av ratio |
0. 0.27 | 0.45 | 1.23 | 2382 28 145 27
10. | 0.098 | 0.68 | 1.86 | 2264 30 141 27
100. | 0.060 | 0.99 | 2.73 | 233 8 175 44

Table 5: Example B8 Adaptive algorithm. Results when solving the damped
wave equation (FII) with several values of § with TOL = 0.125 and 7 = 0.001.

Example ) of the previous section is now considered. Eventhough the
exact solution is not known, convergence of the adaptive algorithm with respect
to TOL is observed. The adapted meshes at time 0.3, 0.6, 0.9 and 1.2 are
reported in Fig. Bl Plots of the solution along the diagonal are reported in Fig.
[d and B for several values of TOL. The results are summarized in Table Bl

INRIA
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Figure 6: Example Adaptive algorithm with TOL = 0.125. Adapted mesh
at time 0.3 (23632 vertices), 0.6 (37132 vertices), 0.9 (38187 vertices), 1.2 (52132
vertices).

0.1
0.08
0.06
0.04
0.02

-0.02
-0.04
-0.06
-0.08 | | | | | | |

Figure 7: Example Adaptive algorithm. Computed solution wup (21, x2,1t)
along the diagonal 1 = x2 at time 0.3. Convergence with respect to T’OL when
7 =0.001.
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0.15 T T T
100 x 100 uniform ——
0.1k TOL =025 B
’ TOL =0.125 ——
TOL = 0.0625 - - ---
0.05 _

-0.05

-0.1

-0.15 | | | | | | |

Figure 8: Example Adaptive algorithm. Computed solution up(z1,z2,t)
along the diagonal 1 = z2 at time 1.2. Convergence with respect to 77O L when
7 =0.001.

| TOL | T | Nyert | Nesh | max ratio | av ratio |
0.25 0.001 7172 104 12 2
0.125 | 0.001 | 50264 146 38 3
0.0625 | 0.001 | 176427 160 58 4

Table 6: Example Adaptive algorithm. Results with respect to TOL.

6 Conclusions

An a posteriori error estimate in the L2(0,7; H*(£2)) norm is proposed for the
wave equation. Numerical results on non-adapted meshes show that the error
indicator 7k 1 defined by ([I2) is sharp even with meshes having large aspect
ratio. An adaptive algorithm already presented for parabolic problems is con-
sidered. A numerical study of the effectivity index on adapted meshes shows a
discrepancy between the true error and the error indicator. We suspect that this
error corresponds to the interpolation error introduced when remeshing occurs.
Experiments of the damped wave equation indeed show that the discrepancy
between error and estimator decreases when the damping coefficient increases.
This is in accordance with the fact that the interpolation error due to remeshing
does not need to be considered for parabolic problems provided the number of
remeshings does not depend on h (or TOL) and T, see [20, [0, 7.

An estimation of the interpolation error due to remeshing should be the
subject of a future work. This is a difficult task since non-compatible anisotropic
meshes are involved.
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