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Abstract—We study three scheduling problems (file
redistribution, independent tasks scheduling and broad-
casting) on large scale heterogeneous platforms under the
Bounded Multi-port Model. In this model, each node is
associated to an incoming and outgoing bandwidth and it
can be involved in an arbitrary number of communica-
tions, provided that neither its incoming nor its outgoing
bandwidths are exceeded. This model well corresponds
to modern networking technologies, it can be used when
programming at TCP level and is also implemented in
modern message passing libraries such as MPICH2. We
prove, using the three above mentioned scheduling prob-
lems, that this model is tractable and that even very simple
distributed algorithms can achieve optimal performance,
provided that we can enforce bandwidth sharing policies.
Our goal is to assert the necessity of such QoS mechanisms,
that are now available in the kernels of modern operating
systems, to achieve optimal performance. We prove that
implementations of optimal algorithms that do not enforce
prescribed bandwidth sharing can fail by a large amount if
TCP contention mechanisms only are used. More precisely,
for each considered scheduling problem, we establish
upper bounds on the performance loss than can be induced
by TCP bandwidth sharing mechanisms, we prove that
these upper bounds are tight by exhibiting instances
achieving them and we provide a set of simulations using
SimGRID to analyze the practical impact of bandwidth
control mechanisms.

I. INTRODUCTION

We consider three different problems to assess the

impact of bandwidth sharing mechanisms on the per-

formance of scheduling algorithms in large scale dis-

tributed platforms.

The first scheduling problem we consider (see Sec-

tion II-A) arises in the context of large scale distributed

storage systems such as Vespa [4], developped by Ya-

hoo!, when systems reconfiguration take place. In this

paper, following the work proposed in [6], we consider

the case where one disk is added to the system. In the

case of Vespa, the storage system replicates the data in

order to tolerate component failures and the placement

of data replicas on resources is enforced by external

mechanisms based on CRUSH [28].

The second scheduling problem (see Section II-B) is

related to independent tasks scheduling. We assume that

initially, a single node (the master) holds or generate

a large amount of independent equal-sized tasks, such

as in volunteer computing applications run on platforms

like BOINC [1] or Folding@home [18]. These tasks will

be processed by slave nodes, whose both communica-

tion (in terms on latencies and bandwidths) and com-

putation capabilities are strongly heterogeneous. In the

context of volunteer computing applications, the number

of tasks to be processed is huge so that makespan

minimization does not make sense. Therefore, we rather

consider throughput maximization, where the aim is to

maximize the number of tasks that can be processed

within one time unit once steady state has been reached,

as advocated in [5].

The third scheduling problem we consider (see Sec-

tion II-C) is related to broadcasting a large size message.

Broadcasting in computer networks is the focus of a

vast literature [17], [27], [26]. The one-to-all broadcast,

or single-node broadcast, is the most primary collec-

tive communication pattern: initially, only the source

processor holds (or generate) the data that needs to be

broadcast; at the end, there is a copy of the original

data residing at each processor. Parallel algorithms often

require to send identical data to all other processors, in

order to disseminate global information (typically, input

data such as the problem size or application parameters).

The same framework applies for broadcasting a live

stream of data, such as a movie. In this paper, we

concentrate on a simple scenario, where the nodes are

organized as a star platform (the source node being at

the center), and where all the communications take place

directly between the source node and the clients.

Since we target large scale distributed platforms, we

do not assume that the topology of the platform is

known in advance, since automatic discovery mecha-

nisms such as ENV [25] or AlNEM [12] are too slow

to be used in large scale dynamic settings. Therefore, we

rather associate to each node local properties (namely its



incoming and outgoing bandwidths and its processing

capability), whose values can easily be determined at

runtime. Thus, the network topologies we consider are

rather logical overlay networks rather than physical

networks.

To model contentions, we rely on the bounded multi-

port model, that has already been advocated by Hong

et al. [15] for independent task distribution on hetero-

geneous platforms. In this model, node Pi can serve

any number of clients Pj simultaneously, each using a

bandwidth bi,j provided that its outgoing bandwidth is

not exceeded, i.e.,
∑

j bi,j ≤ Bout
i . Similarly, Pj can

simultaneously receive messages from any set of clients

Pi, each using a bandwidth bi,j provided that its in-

coming bandwidth is not exceeded, i.e.,
∑

i bi,j ≤ Bin
j .

This corresponds well to modern network infrastructure,

where each communication is associated to a TCP

connection.

This model strongly differs from the traditional one-

port model used in the scheduling literature, where

connections are made in exclusive mode: the server can

communicate with a single client at any time-step. In

the context of large scale platforms, the networking

heterogeneity ratio may be high, and it is unaccept-

able to assume that a 100MB/s server may be kept

busy for 10 seconds while communicating a 1MB data

file to a 100kB/s DSL node. In the context of large

scale distributed platforms, we will assume that all

connections are directly handled at TCP level. It is

worth noting that at TCP level, several QoS mechanisms

such as qdisc, available in modern operating systems,

enable a prescribed sharing of the bandwidth [7], [16].

In particular, it is possible to handle simultaneously

several connections and to fix the bandwidth allocated

to each connection. In our context, these mechanisms

are particularly useful since in optimal schedules, the

bandwidth allocated to a connection between Pi and

Pj may be lower than both Bout
i and Bin

j . Therefore,

the model we propose encompasses the benefits of

both bounded multi-port model and one-port model. It

enables several communications to take place simultane-

ously, what is compulsory in the context of large scale

distributed platforms, and practical implementation is

achieved using TCP QoS mechanisms.

We prove, using the three above mentioned schedul-

ing problems, that this model is tractable and that simple

distributed algorithms can achieve optimal performance,

provided that we enforce bandwidth sharing policies.

Our goal is to assert the necessity of such QoS mecha-

nisms to obtain a prescribed share of bandwidths, that

are now available in the kernels of modern operating

systems. More precisely, we prove that implementations

of optimal algorithms that do not enforce prescribed

bandwidth sharing can fail by a large amount if TCP

contention mechanisms are used. This result is asserted

both by providing theoretical worst cases analysis and

through simulations using SimGRID.

For the sake of simplicity, all the applications we con-

sider are based on the master-worker paradigm. There-

fore, their implementations are not fully distributed

since it is assumed that the master node knows about

the characteristics of all slaves. Nevertheless, in a more

realistic context, the basic knowledge each node must

have in order to implement the algorithms proposed

in this paper is the state and characteristics of its

neighbours and in this sense, the algorithms we propose

are distributed algorithms. Distributed implementations

for the independent tasks scheduling problem can be

derived from multi-commodity flow algorithms pro-

posed in [2], [3]. Similarly, in the case of the broadcast

application, a randomized distributed implementation

has recently been proposed in [21]. On the other hand,

we are not aware of any distributed implementation of

the data redistribution scheduling problem.

To assert the importance of bandwidth sharing mecha-

nisms, we propose for each of the scheduling problems

mentionned above two different implementations. For

each problem, the first implementation does not make

use of sophisticated QoS mechanisms for bandwidth

sharing mechanisms whereas the second does. Neverthe-

less, it is worth noting that both implementations rely on

the same knowledge and therefore that the comparison

between both implementations is fair.

The rest of the paper is organized as follows. In

Section II, we formalize the scheduling problems we

consider and we describe how to model the kind of

fairness TCP implements in presence of contentions.

In Sections III, IV and V, we study the maximal

performance loss that can be induced by TCP bandwidth

sharing mechanisms in presence of contentions. More

precisely, for each scheduling problem we consider,

i.e. File Redistribution (Section III), Independent Tasks

Scheduling (Section IV) and Broadcasting (Section III),

we establish upper bounds on the performance loss

induced by TCP bandwidth sharing mechanisms, we

prove that these upper bounds are tight by exhibiting

instances achieving these bounds and we provide a set

of simulations to analyze the practical importance of

bandwidth control mechanisms. At last, we provide in

Section VI some future works and concluding remarks.
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II. PROBLEMS AND COMMUNICATION MODELING

A. Data Redistribution

In the context of large scale distributed storage sys-

tems such as Vespa [4], developed by Yahoo!, we

consider the case where a disk is added to the system. In

Vespa, the set of files that should be transfered to the

added disks is known in advance and the scheduling

problem consists in finding for each file, among the

existing replicas of it, the one that should be used for the

transfer so as to minimize to overall completion time.

Let us denote by S = {F1, F2, . . . , Fk} denote the set

of files that should be transfered to destination node D
and let us denote by xi

k the indicator function so that

xi
k = 1 if source node Si holds a replica of file Fk

and 0 otherwise. The size of file Fk is denoted by sk.

In order to make the problem tractable, we assume that

a given file can be sent partially from several source

nodes (otherwise, the problem becomes NP-Complete

and is analyzed in [6]). Let us also denote by Bin

the incoming bandwidth at destination node D and by

Bout
i the outgoing bandwidth at source node Di. The

following linear program provides a lower bound for

the time necessary to complete all transfers

Minimize T subject to














∀i, k zi
k ≤ xi

kBout
i and zi

k ≥ 0
∀k,

∑

i zi
k = sk

∀i
∑

k zi
k ≤ Bout

i T
∑

i

∑

k zi
k ≤ BinT

,

where zi
k denotes the size of the part of file Fk trans-

fered from Si to D.

Clearly, any solution (if we average bandwidth usages

over time) must satisfy above conditions, so that the

optimal value Topt of the linear program is a lower

bound on the achievable makespan. On the other hand,

let us consider an implementation such that each source

disk Si sends a part of file Fk to D at constant rate
zi

k

Topt
.

Such an implementation would achieve all file transfers

by time Topt.

We will show in Section III how to achieve optimality

using bandwidth control mechanisms and prove that

without such a mechanism, i.e. relying only on TCP

contention mechanisms, the performance of such an

implementation may be as bad as 2Topt.

B. Independent Tasks Scheduling

We consider an elementary master-slave platform

to process a huge number of independent equal-sized

tasks. Initially, the master node M holds (or generate

at a given rate) a large number of tasks that will be

processed by a set of slave nodes Pi. The master node is

characterized by its outgoing bandwidth Bout whereas

a slave node Pi, 1 ≤ i ≤ N is characterized by both its

incoming bandwidth Bin
i and its processing capability

wi. Since all tasks are equal-sized, we normalize all

Bout, Bin
i and wi in terms of tasks (transmitted or

processed) per time unit. Let us consider the following

linear program

Maximize ρopt =
∑

i ρi subject to
{

∀i ρi ≤ min(Bin
i , wi) and ρi ≥ 0

∑

i ρi ≤ Bout
,

where ρi denotes the number of tasks that the master

node delegates to Pi per time unit. We formulate the

optimization problem as a linear program for the sake

of generality, since this approach can be extended to

more complicated platforms than star-shaped platforms.

Nevertheless, in the case of a star platform, the optimal

throughput and the fraction of tasks allocated to each

slave processor can be determined in linear program by

setting














ρ′i = min(Bin
i , wi)

α = min

(

1, Bout
P

i
ρ′

i

)

ρi = αρ′i

If we consider any valid solution of the independent

tasks scheduling problem over a long time period T
and if we denote by xi the average number of tasks

processed Pi per time unit, i.e. xi = Ni(T )/T , then

the xis satisfy the conditions of the linear program,

so that
∑

i xi ≤ ρopt and
∑

i Ni(T ) ≤ ρoptT , what

proves that ρopt is an upper bound on the achievable

throughput. On the other hand, let us consider a solution

where the master node continuously sends tasks to Pi

at rate ρi and tasks are immediately processed by Pi.

Since the conditions of the linear program are satisfied,

after an initialization phase whose duration is a constant

and that corresponds to the necessary time for all the

slaves to receive their first task, this solution is valid

and processes
∑

i ρi tasks per time unit. Therefore, if

we consider an arbitrarily large execution time, then

the duration of the initialization phase can be neglected

and the achieved throughput tends to ρopt. We will

show in Section IV how to achieve optimality using

bandwidth control mechanisms and prove that without

such a mechanism, i.e. relying only on TCP contention

mechanisms, the performance of such an implementa-

tion may be as bad as 3/4ρopt.
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C. Broadcasting

In the broadcast setting, a source node S holds (or

generate at a given rate) a large file that must be sent to

all client nodes. Numerous broadcast algorithms have

been designed for parallel machines such as meshes,

hypercubes, and variants (see among others [17], [27]).

In the context, of content distribution systems, it is at

the core of live streaming distribution systems such as

CoolStreaming [29] or SplitStream [10]. In both cases,

we are interested in the distribution of a large message

to all the nodes of a large scale platform. Thus, we are

not interested in minimizing the makespan for a given

message size but rather to maximize the throughput (i.e.

the maximum broadcast rate, once steady state has been

reached).

In this context, the source node S is characterized by

its outgoing bandwidth Bout whereas a client node Pi

is characterized by both its incoming bandwidth Bin
i

and its outgoing bandwidth Bout
i since it may be used

as an intermediate source once it has received some part

of the message. In the most general case, the goal is to

design an overlay network G = (P,E, c) such that Pi

sends messages to Pj at rate c(Pi, Pj).

The optimal broadcast rate on G can be characterized

using flows. Indeed, theorems [11], [13] relate the

optimal broadcast rate with the minimum source-cut

of a weighted graph. ∀j, we can denote as cut(j) the

minimum value of a cut of G into two set of clients C1

and C2 such that C1

⋃

C2 = P , S ∈ C1 and Pj ∈ C2.

∀j, cut(j) denotes the maximal value of a flow between

the source node S and Pj and therefore represents

an upper bound of the broadcast rate. Moreover, it is

proven in [11] that this bound is actually tight, i.e.

that the optimal broadcast rate for graph G is equal

to mincut(G) = minj cut(j). Efficient algorithms [13]

have been designed to compute the set of weighted trees

that achieve this optimal broadcast rate from c(Pi, Pj)
values.

Therefore, we can use the linear programming ap-

proach proposed in proposed in [19] to compute the

optimal broadcast rate ρ∗ and ∀i, j, c(Pj , Pi), the

overall bandwidth used between nodes Pj and Pi. Once

all c(Pi, Pj) values have been determined, Massoulié

et al. [21] recently proposed a decentralized random-

ized algorithm to implement broadcast that achieves a

throughput arbitrarily close to ρ∗, in the case where

all incoming bandwidths have infinite capacity. In this

context, a single communication between Pi and Pj can

reach the maximum outgoing bandwidth of Pi, so that

we can fully make use of available bandwidth without

dealing with contentions. In this paper, we will consider

a simpler setting, where client nodes are organized as

a star network with the source node at the center and

client nodes have no outgoing bandwidth. On the other

hand, we do not make any assumption on the incoming

bandwidth of the client nodes. In particular, incoming

bandwidths may be smaller than Bout, what requires to

do several communications simultaneously to aggregate

bandwidth up to Bout, and therefore requires to deal

with contentions.

Similarly to the case of independent tasks scheduling,

it is worth noting that in the case of the star graph, the

optimal broadcast rate ρ∗ can be determined in linear

time by setting

ρ∗ = min

(

min
i

Bin
i ,

Bout

N

)

.

We will show in Section V how to achieve optimality

using bandwidth control mechanisms and prove that

without such a mechanism, i.e. relying only on TCP

contention mechanisms, the performance of such an

implementation may be arbitrarily smaller than ρ∗.

D. TCP Contention Modeling

Our goal is to study the influence in presence of

contentions of TCP bandwidth sharing mechanisms

on the performance of several scheduling algorithm

implementations. More precisely, our goal is to prove

that TCP mechanisms to deal with congestion must be

bypassed by associating to each communication a pre-

scribed bandwidth so that contentions are automatically

removed. In order to understand what kind of fairness

TCP implements in presence of contentions, several

sophisticated models have been proposed [22], [24],

[20]. In this paper, we will model contentions using

the RTT-aware Max-Min Flow-level method that has

been proposed in [8] and validated using NS-2 Network

Simulator [23] in [9].

Let us consider the basic platform depicted in Fig-

ure 1, that will be used throughout this paper. Let us

denote by Bout the outgoing bandwidth of node S,

by bin
i the incoming bandwidth of node Pi and by

λi the latency between S and Pi. Let us consider the

case where S simultaneously sends messages to all Pis

(the case where all Pis simultaneously send a message

to S gives the same results). Then, the bandwidth ci

allocated to the communication between S and Pi using

RTT-aware Max-Min Flow-level method is returned

by the following algorithm (where Brem denotes the

4
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Figure 1. Bandwidth sharing in presence of contentions

remaining bandwidth).

Set markedi = 0 ∀i; Brem = Bout

While ∃i, markedi = 0 and

bin
i ≤

1

λi
P

j, markedj=0

1

λj

Brem

ci = bin
i ; markedi = 1;

Brem = Brem − bin
i ;

EndWhile

Forall i, If markedi = 0

then Set ci =
1

λi
P

j, markedj=0

1

λj

Brem

EndForAll

Using this model, in the case where all bin
i values are

large (for instance larger than Bout), the bandwidth

allocated to the communication between S and Pi only

depends on the latency of the link and is inversely

proportional to the latency of the link. On the other

hand, if all bin
i values are very small, then the bandwidth

allocated to the communication between S and Pi is

bin
i . Let us now prove two basic lemmas related to this

model.

Lemma 2.1: If
∑

i bin
i ≤ Bout, then ∀i, ci = bin

i .

Proof: Let us first prove that initially

∃i, markedi = 0 and bin
i ≤

1

λi
P

j, markedj=0

1

λj

Bout.

All nodes are unmarked. Let us suppose that ∀i, bin
i >

1

λi
P

j
1

λj

Bout. Then,
∑

i bin
i >

P

i
1

λi
P

j
1

λj

Bout = Bout,

what is absurd. Therefore, there is at least one node

Pi1 such that bin
i1

≤
1

λi1
P

j, markedj=0

1

λj

Bout.

The algorithm marks this node and allocates a

bandwidth bin
i1

to Pi1 and Brem = Bout − bin
i1

. Since

initially
∑

i bin
i ≤ Bout, then

∑

i 6=i1
bin
i ≤ Brem and

we can prove claimed result by induction.

Lemma 2.2: If
∑

i bin
i ≥ Bout, then

∑

i ci ≥ Bout.

Proof: At the end of the While loop, let us denote

by S the set of nodes that have been marked. Then,

∀Pi ∈ S, ci = bin
i and Brem = Bout −

∑

Pi∈S ci.
At the end of the For loop, ∀Pi 6∈ S, ci =

1

λi
P

Pj 6∈S
1

λj

Brem, so that
∑

Pi 6∈S ci = Brem and
∑

i ci =
∑

Pi∈S ci+
∑

Pi 6∈S = Bout−Brem+Brem =

Bout.

III. DATA REDISTRIBUTION

A. Implementation

In this section, we consider the practical imple-

mentation of file redistribution scheduling algorithms

described in Section II-A. In the case where files can

be split and sent from several sources to the destination

disk, we have seen that a simple linear program provides

the set of file transfers that minimizes the makespan.

More precisely, the solution of the linear program
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provides for each file F k the size zi
k of the part of

Fk that should be transfered from Si to D.

In order to assess the impact of bandwidth sharing

mechanisms on the overall performance of scheduling

algorithms, we will consider two different implementa-

tions of the data redistribution algorithm.

1) Implementation 1: each source disk Si has the

list of the part of the files Fk that it has to

send to destination disk D and it sends them

synchronously to the destination node.

2) Implementation 2: Implementation 2 is exactly

the same as Implementation 1 except that we

bound the outgoing bandwidth of Si to
P

k
zi

k

T
.

B. Simulation Results using SimGRID

We present the simulation results obtained on random

but realistic instances with SimGRID. It is worth noting

that in the case of file redistribution, as in the case of

steady state scheduling (Section IV) and broadcasting

(Section V), we consider simple star platforms. In this

context, the simulation of the bounded Multi-port model

in SimGRID has been validated in [9] using NS-2

Network Simulator [23]. Since we are interested in

the impact of TCP bandwidth sharing mechanism in

presence of contention, we consider the cases where
∑

i Bout
i = 1.2Bin and

∑

i Bout
i = 2Bin, that corre-

spond respectively to low and high level of contentions.

Since the latency has a major impact on the bandwidth

sharing when using TCP, we also consider the case

when the latency are almost homogeneous (random

values between 10−5 and 3 × 10−5) or strongly het-

erogeneous (10−x, where x is a random value between

3 and 7). In order to evaluate the impact of the number

of nodes, we consider the case where N = 10 and

N = 20).

The following table represents the ratio between the

makespan obtained with Implementation 2 and the

makespan obtained using Implementation 1. All values

correspond to 20 different simulations, and in all case,

we depict the minimum, maximum and mean ratio over

the 20 simulations.

∑

i Bout
i = 1.2Bin

Homogeneous

ratio min. max. mean

N = 10 1.18 1.45 1.26
N = 20 1.25 1.40 1.30

Heterogeneous

ratio min. max. mean

N = 10 1.30 1.57 1.45
N = 20 1.22 1.64 1.51

∑

i Bout
i = 2Bin

Homogeneous

ratio min. max. mean

N = 10 1.02 1.17 1.11
N = 20 1.05 1.15 1.11

Heterogeneous

ratio min. max. mean

N = 10 1.09 1.26 1.16
N = 20 1.06 1.29 1.13

The simulation results prove the impact if the band-

width control on the performance of file redistribution

scheduling algorithms. We can notice that, as expected,

the impact is more important when the heterogeneity

is high (in this case, the bandwidth allocated to some

nodes in presence of contentions may be very small,

thus delaying their transfers) and when the level of

contention is relatively low. Indeed, in the case where
∑

i Bout
i = 2Bin, even if some transfers are almost

completely delayed first,
∑

i Bout
i once the first set of

transfers has ended is still large so that Bin bandwidth

is not wasted (what happens in the case
∑

i Bout
i =

1.2Bin.

C. Worst case analysis

In previous section, we have seen that bounding the

available bandwidth out of source nodes can improve

the overall makespan. We now prove that the ratio

between the optimal makespan using bandwidth control

and the makespan when TCP contention mechanisms

are used in presence of contention is upper bounded by

2. We also prove that this bound is tight by exhibiting

a platform where this ratio can be arbitrarily close to 2.

1) Upper bound for the makespan performance loss:

Let us consider a platform with several source disks

Si and a destination disks D and let us consider

the makespan M2 to complete all file transfers using

Implementation 2. To model contentions, we will rely

on the RTT-aware Max-Min Flow-level method that

has been introduced in Section II-D. We will prove

that the makespan M2 using Implementation 2 cannot

be larger than twice the makespan M1 obtained using

Implementation 1. The proof is based on the same

ideas as the classical Graham’s bound [14].
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Let us distinguish two sets of instants during the

execution of Implementation 2. The first phase consists

in the instants such that the incoming bandwidth of D
is fully used and the second phase consists in all other

instants. Let us denote by T1 the duration of the first

phase and by T2 the duration of the second phase, so

that T1 + T2 = M2.

Theorem 3.1: T1 ≤ M1 and T2 ≤ M1, so that T1 +
T2 ≤ 2M1

Proof: Let us first consider the first phase. During

this phase, the incoming bandwidth of D is fully used

so that the overall size of data S1 transmitted during

phase 1 is exactly S1 = Bin × T1. By construction,

S1 ≤ S, where S denotes the overall size of data that

must be transmitted to D, so that T1 ≤ S

Bin
. Moreover,

S

Bin
is a lower bound for the completion time of all file

transfers, so that T1 ≤ Topt ≤ M1.

Let us now consider the second phase and more

specifically a source disk Slast that is involved in a file

transfer at the end of Phase 2. During an instant t of

Phase 2, let us denote by U(t) the set of nodes that actu-

ally send data to D. Using the notations of Lemma 2.2,
∑

Si∈U(⊔) ci(t) < Bin so that
∑

i Bout
i < Bin and,

because of Lemma 2.1, ∀Si ∈ U(t), ci(t) = Bout
i .

Therefore, since Slast is still sending data at the end

of Phase 2, it has been sending data to D at all the

instants of Phase 2 with rate Bout
last

. Therefore, the

overall amount of data sent by Slast during Phase 2 is

at least Bout
last

× T2. Clearly, the overall amount of data

sent by Slast is at most Bout
last

× M1, so that T2 ≤ M1.

This achieves the proof of the theorem.

2) Worst Case Example:

Theorem 3.2: M2

M1

can be arbitrarily close to 2.

Proof: Let us now prove that the bound of 2

in Theorem 3.1 is tight. To obtain this result, let us

consider the following platform, made of two source

disks S1 and S2 and a destination disk D with the

following characteristics

S1 : λ1 = ǫ3, Bout
1 = 1; S2 : λ2 = ǫ, Bout

2 = ǫ

D : Bin = 1,

where ǫ stands for an arbitrarily small quantity and λ1

and λ2 denote the latencies between S1 and D and

S2 and D respectively. Since latencies are arbitrarily

small, we will not consider the delays introduced by

these latencies but rather concentrate on their impact

on bandwidth sharing using the RTT-aware Max-Min

Flow-level algorithm presented in Section II-D.

Let us assume that S1 has to send to D a file of size

1 and that S2 has to send a file of size ǫ. In the optimal

solution, S1 continuously sends data during time 1 + ǫ
to D using bandwidth 1

1+ǫ
and S2 continuously sends

data during time 1 + ǫ to D using bandwidth ǫ
1+ǫ

so

that at time 1 + ǫ, D has received both files.

Let us now consider what happens if we rely on TCP

bandwidth sharing mechanisms to deal with contentions.







Bout
1 = 1 >

1

ǫ3

1

ǫ
+ 1

ǫ3

= 1 − ǫ2 + o(ǫ2)

Bout
2 = ǫ >

1

ǫ
1

ǫ
+ 1

ǫ3

= ǫ2 + o(ǫ2)
,

so that (ci values are attributed in the Forall loop)

c1 = 1− ǫ2 + o(ǫ2) and c2 = ǫ2 + o(ǫ2). Therefore, S1

ends up its transfer at time 1 + ǫ2. At this time, S2 has

transfered ǫ2 + o(ǫ2) data so that it needs extra 1 − ǫ
time to ends up its transfer using its maximal bandwidth

ǫ. Therefore, the overall necessary time to transfer

both files using TCP bandwidth sharing mechanism is

(2− ǫ), i.e. (2− 3ǫ) times the time necessary to do the

file transfers optimally, what achieves the proof of the

theorem.

IV. STEADY STATE SCHEDULING

A. Implementation

In this section, we consider the implementation of

a scheduling algorithm to process independent equal-

sized tasks on a master-slave heterogeneous platform.

Initially, the master node holds (or generate at a given

rate) a large number of tasks that will be processed by a

set of slave nodes Pi. The master node is characterized

by its outgoing bandwidth Bout whereas a slave node

Pi is characterized by both its incoming bandwidth Bin
i

and its processing capability wi. Since all tasks are

equal-sized, we normalize all Bout, Bin
i and wi in terms

of tasks per time unit. We have seen in Section II-B

that a simple linear program provides for each slave

node Pi the rate ρi at which the master should send

tasks to Pi in order to maximize the overall throughput,

i.e. the overall (rational) number of tasks that can be

processed using this platform within one time unit. As

in the case of file redistribution, in order to assess the

impact of bandwidth sharing mechanisms on the overall

performance of scheduling algorithm, we consider two

different implementations of the scheduling algorithm.

1) Implementation 1: In order to avoid starvation,

each slave node starts with two tasks in its local

buffer. Each time Pi starts processing a new task,

it asks for another task and the master node

initiates the communication immediately.

2) Implementation 2: Implementation 2 is exactly

the same as Implementation 1 except that we
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bound the bandwidth used by M to send tasks to

Pi to ρi.

In what follows, we will denote by T1 the achieved

throughput when using Implementation 1 and by T2

the achieved throughput when using Implementation

2.

B. Simulation Results using SimGRID

We present the simulation results obtained on random

but realistic instances with SimGRID. We use exactly

the same settings as in Section III-B for the communica-

tions. The following table represents the ratio between

the throughput obtained with Implementation 2 and

the throughput obtained using Implementation 1. All

values correspond to 20 different simulations, and in all

case, we depict the minimum, maximum and mean ratio

over the 20 simulations. For each simulation, to estimate

the throughput, we run both implementations on 200

tasks. In order to estimate the impact of communications

rather than processing, the processing rate of the proces-

sors are set so that in the optimal solution, processors

are limited by their communication capabilities.

∑

i Bout
i = 1.2Bin

Homogeneous

ratio min. max. mean

N = 10 1.01 1.03 1.02
N = 20 1.00 1.02 1.01

Heterogeneous

ratio min. max. mean

N = 10 1.01 1.04 1.03
N = 20 1.01 1.03 1.02

∑

i Bout
i = 2Bin

Homogeneous

ratio min. max. mean

N = 10 1.01 1.04 1.02
N = 20 1.00 1.03 1.01

Heterogeneous

ratio min. max. mean

N = 10 1.01 1.04 1.03
N = 20 1.00 1.03 1.02

The difference between both implementations is much

smaller than for file redistribution (and broadcasting).

This is due to fact that contrarily to other situations,

compensation between processors can take place. The

processors with small latencies process more tasks with

Implementation 1 than with Implementation 2. In

order to obtain more significant difference, we can make

the processors saturated in computations in the optimal

solution, and form two groups of equivalent aggregated

processing power, one with small latencies and one with

high latencies. In this case, the ratio is closer to the 4
3

bound proved below.

C. Worst case analysis

In previous section, we have seen that bounding the

bandwidth used by a communication between M and

Pi improves the achieved throughput. In this section,

we prove that the ratio between the optimal through-

put using bandwidth control and the throughput when

TCP contention mechanisms are used in presence of

contention is smaller than 4
3 . We also prove that this

bound is tight by exhibiting a platform where this ratio

can be arbitrarily close to 4
3 .

1) Upper bound for the throughput performance loss:

Theorem 4.1: T2 ≤ 4
3T1

Proof: Let us consider the result obtained using

Implementation 1 over a long period of time and

let us denote by xi the average number of tasks pro-

cessed by Pi during one time unit. If
∑

xi = Bout,

then Implementation 1 achieves asymptotically optimal

throughput and the theorem is true. Otherwise, let us

denote by t1 the average fraction of time when the

bandwidth of the master is fully used. On the other

hand, let us denote by Bout
ave the average used bandwidth

when the bandwidth of the master is not fully used,

i.e. during fraction of time (1 − t1) (see Figure 2).

Using these notations, we can find a first upper bound

of the throughput W wasted using implementation 1,

W ≤ (1 − t1)(B
out − Bout

ave).
Let us now consider the set S1 of slave processors

that are not used at their best rate, i.e. such that

xi < min(wi, B
in
i ) and by S2 the set of processors

such that xi = min(wi, B
in
i ). Moreover, let us denote

by ρ
(k)

opt, k = 1, 2 the overall throughput achieved by

the slaves of set Sk in the optimal solution. We can

notice that
∑

Pi∈S2
xi ≥ ρ

(2)

opt.

Since the processors of S1 are not used at their

maximal processing rate, they are continuously request-

ing tasks using Implementation 1. Therefore, at each

instant when the bandwidth of M is not fully used,

slave Pi ∈ S1 is receiving tasks at rate Bin
i . Therefore,

Bout
ave ≥

∑

Pi∈S1
Bin

i and
∑

Pi∈S1
xi ≥ (1 − t1)B

out
ave.

Moreover, by definition, ρ
(1)

opt ≤
∑

Pi∈S1
Bin

i . There-

fore,

ρ
(1)

opt −
∑

Pi∈S1
xi ≤

∑

Pi∈S1
Bin

i − (1 − t1)B
out
ave

≤ Bout
ave − (1 − t1)B

out
ave

≤ t1B
out
ave.

and therefore,

W = ρ
(2)

opt −
∑

Pi∈S2

xi + ρ
(1)

opt −
∑

Pi∈S1

xi ≤ t1B
out
ave.
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B
out

t1
(1 − t1) t1

B
out
ave

W1 = (1 − t1)(Bout − B
out
ave)

W2 ≤ t1B
out
ave

P

Pi∈S1
B

in
i

Figure 2. Bandwidth sharing using TCP and Implementation 1

Using both upper bounds of W , we obtain W ≤
f(t1, B

out
ave) = min((1 − t1)(B

out − Bout
ave), t1B

out
ave).

If we first consider f(t1, B
out
ave) as a function of Bout

ave ∈
[0, Bout], we observe that f(t1, B

out
ave) is minimal when

Bout
ave = (1 − t1)B

out and f(t1, (1 − t1)B
out) =

t1(1 − t1)B
out so that

∀t1, B
out
ave, W ≤ Bout

4 , what achieves the proof of the

theorem.

2) Worst Case Example:

Theorem 4.2: T2

T1

can be arbitrarily close to 4
3 .

Proof: Let us now prove that the bound of 4
3 is

tight. To obtain this result, let us consider the following

platform, made of two slave nodes P1 and P2 and a

master node M with the following characteristics

P1 : λ1 = ǫ3, w1 = 1, Bin
1 = 2;

P2 : λ2 = ǫ, w1 = 1, Bin
2 = 1;

D : Bout = 2,

where ǫ stands for an arbitrarily small quantity and λ1

and λ2 denote the latencies between M and P1 and M
and P2 respectively. As previously, since latencies are

arbitrarily small, we will not consider the delays intro-

duced by these latencies but rather concentrate on their

impact on bandwidth sharing using the RTT-aware Max-

Min Flow-level algorithm presented in Section II-D.

Using Implementation 2, P1 starts computing its first

task at time 0 and ends up at time 1. The master starts

sending a new task at time 0 using bandwidth 1 and

the communication ends up at time 1. The same process

applies to P2, so that exactly 2 tasks are processed every

time unit, hence T2 = 2.

Let us now consider what happens if we rely on TCP

bandwidth sharing mechanisms to deal with contentions.






Bout
1 = 2 >

1

ǫ3

1

ǫ
+ 1

ǫ3

× 2 = 2 − 2ǫ2 + o(ǫ2)

Bout
2 = ǫ >

1

ǫ
1

ǫ
+ 1

ǫ3

× 2 = 2ǫ2 + o(ǫ2)
,

so that (ci values are attributed in the Forall loop) c1 =
2 − ǫ2 + o(ǫ2) and c2 = 2ǫ2 + o(ǫ2). Therefore, P1

receives its first task at time 1
2 + 2ǫ2 + o(ǫ2) and P2

receives only ǫ2 + o(ǫ2) tasks at time 1
2 + 2ǫ2 + o(ǫ2).

Between time 1
2 + 2ǫ2 + o(ǫ2) and time 1, P2 receives

tasks at rate 1 since it is the only one requiring tasks.

Thus, at time 1, P2 has received 1
2 + O(ǫ2) tasks. At

time 1, the same scheme applies since P1 requires a

new task and will receive it by time 3
2 + O(ǫ2) while

P2 receives extra O(ǫ2) tasks. Thus, P2 will end up

receiving its first task at time 2 − ǫ2. Then, the same

scheme applies during each time period of size 2.

Therefore, Implementation 1 processes 2 tasks every

time unit while Implementation 2 processes 3 tasks

every 2 time units, what achieves of the proof of the

theorem.

V. BROADCAST UNDER BOUNDED MULTIPORT

MODEL

A. Implementation

In the broadcast problem under the bounded multiport

model, we are given a source node S whose outgoing

bandwidth is Bout and a set of clients Pi. We denote by

Bin
i the incoming bandwidth of the Pi. Moreover, we

assume that S holds (or generate) a large size message

and that all client nodes should receive the whole

message. In this context, our goal is to maximize the
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throughput, i.e. the average size of the message received

by any client during one time unit. In the case where

∀i, Bin
i > Bout

j , a simple randomized and distributed

algorithm has been recently proposed by Massoulié et

al. [21]: during the execution, a node compares the set

of packets that it has received with the set of packets

received by its neighbor nodes. Then, it sends a packet

to the node that has received the less packets yet.

Remarkably enough, it has been proved in [21] that

this algorithm achieves quasi-optimal performance in

the case of a complete graph. Unfortunately, the proof

strongly relies on the assumption that ∀i, Bin
i > Bout

j

since it requires that any single communication between

Pi and Pj consumes bandwidth Bin
i . Therefore, there

is no need to use several communications to aggregate

bandwidth and thus to use the whole capacity of S.

Then, the whole execution takes place without con-

tentions.

Therefore, we concentrate in this section on a simpler

setting, where the platform is a star-shaped platform

with the master at the center. On the other hand, we

do not make any assumption on the values of Bin
i and

Bout (since the platform is a star, the client nodes do not

have any outgoing bandwidth). In this simple case, if N
denotes the number of clients, the achievable throughput

ρ∗ is given by ρ∗ = min(Bout
N

,mini Bin
i ). We consider

two different implementations of the broadcast opera-

tion.

1) Implementation 1: Every time unit, the source

S initiates simultaneously a communication with

each client node, and sends a message of size ρ∗
containing last generated packets to each client.

2) Implementation 2: Implementation 2 is exactly

the same as Implementation 1 except that we

bound the bandwidth used by S to send the

message to Pi to ρ∗.

In order to compare both implementations, we will

execute both programs for a long time period T . Let

xk
i (T ) denote the size of the message received at time T

by Pi using Implementation k. The performance of Im-

plementation k is given by ρk = limT→+∞
mini xk

i (T )
T

.
In what follows, we prove that ρ1 can be arbitrarily

smaller than ρ∗.

B. Simulation Results

We present the simulation results obtained on ran-

dom but realistic instances with SimGRID. We use

exactly the same settings as in Section III-B for the

communications. The following table represents the

ratio between ρ2 and ρ1, the throughput obtained with

Implementation 2 and the throughput obtained using

Implementation 1. All values correspond to 20 differ-

ent simulations, and in all case, we depict the minimum,

maximum and mean ratio over the 20 simulations. For

each simulation, to estimate the throughput, we run both

implementations for time 500.

∑

i Bout
i = 1.2Bin

Homogeneous

ratio min. max. mean

N = 10 1.01 1.03 1.02
N = 20 1.00 1.02 1.01

Heterogeneous

ratio min. max. mean

N = 10 1.01 1.09 1.04
N = 20 1.00 1.04 1.03

∑

i Bout
i = 2Bin

Homogeneous

ratio min. max. mean

N = 10 1.01 1.22 1.07
N = 20 1.00 1.09 1.03

Heterogeneous

ratio min. max. mean

N = 10 1.01 1.79 1.47
N = 20 1.00 1.33 1.19

The simulation results prove that the throughput

achived by Implementation 1 may be much smaller

than the troughput achived by Implementation 2, es-

pecially when the latencies are strongly heterogeneous.

Indeed, in this case, when several communications take

place simultaneously, the processors with high latencies

get a very small part of the bandwidth. Since new com-

munications are launched every time step, the size of

data received by these processors is significantly lower,

especially in the case of high contentions
∑

i Bout
i =

2Bin.

C. Worst Case Analysis

Theorem 5.1: ρ1 can be arbitrarily smaller than ρ2

and ρ∗.

Proof: Let us consider the following platform con-

sisting of N clients. The source node S has outgoing

bandwidth Bout = N . The first N − 1 clients Pi, i =
1 . . . N − 1 have incoming bandwidth Bin

i = N
N−1 and

the latency between S and Pi, i = 1 . . . N − 1 is given

by λi = ǫ2. At last, client PN has incoming bandwidth

1 and the latency between S and PN is ǫ. At last,

we assume that ǫ is arbitrarily small and in particular

ǫ × N << 1. Using this platform, Implementation 2

achieves optimal throughput ρ2 = ρ∗ = 1. Indeed, all

clients are simultaneously served every time step with

bandwidth ρ∗ and all transfers finish within one time

unit.

Using Implementation 1, the sum of the bandwidths

of the client nodes involved in communications with S
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at time 0 is given by N + 1, so that contentions take

place at the source node. Using the algorithm presented

in Section II-D to model TCP bandwidth sharing in

presence of contentions, we obtain ∀i = 1, . . . , N −
1, ci = N

N−1 (1 + O(ǫ)) and cN = Nǫ
N−1 + o(ǫ).

Therefore, all Pis, i ≤ N − 1 receive the first message

at time 1 − 1/N + O(ǫ) whereas at that time, PN

has only received a message of size O(ǫ). During the

interval between 1 − 1/N and 1 (instant when a new

message is broadcast to all clients), PN is the only node

communicating with S and CN = 1. Thus, at time 1,

PN has received a message of size 1/N + O(ǫ). The

same scheme applies between time 1 and 2 and it will

take a time N to PN to completely receive the very first

message. Hence, the overall performance is ρ1 = 1/N ,

what achieves the proof of the theorem.

VI. CONCLUSIONS

In this paper, we have studied the influence of

bandwidth control mechanisms on the performance of

several scheduling algorithms on large scale distributed

platforms. In this context, the topology is not known

since Internet is the underlying network, and the volatil-

ity of resources and the changes in their performance

make automatic discovery tools inefficient. We have

therefore proposed to model communication costs and

contentions using a very limited set of parameters, that

can be determined at runtime (incoming and outgoing

bandwidths and latencies). Rather than relying on tra-

ditional one-port model, that is not well suited to very

heterogeneous resources since it may induce important

waste in performance, we modeled communications

using the Bounded Multi-port Model, where several

incoming and outgoing communications can be done

simultaneously provided that bandwidth capacities are

not exceeded. More specifically, we have compared

on three classical scheduling problems (namely file

redistribution schemes, independent tasks and collective

communication scheduling) the performance obtained

with implementations using bandwidth and implemen-

tations relying on TCP bandwidth sharing in presence

of contention. For each problem, we have a proved

an upper bound on the maximal performance loss that

can be induced by TCP bandwidth sharing, we have

proved that this bound is tight by exhibiting instances

achieving it and we have compared the performance

of implementations using bandwidth sharing control or

relying on TCP bandwidth sharing mechanisms in pres-

ence of contentions on random realistic instances. This

work shows that in the context of large scale distributed

platforms, where latencies are strongly heterogeneous,

the use of bandwidth control mechanisms, that are

available in modern operating systems, is compulsory

to achieve good performance.
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