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Abstract

The inverse scattering problem for coupled wave equations has various ap-
plications such as waveguide filter design and electric transmission line fault di-
agnosis. In this paper, an efficient numerical algorithm is presented for solving
the inverse scattering problem related to generalized Zakharov-Shabat equa-
tions with two potential functions. Inspired by the work of Xiao and Yashiro
on Zakharov-Shabat equations with a single potential function, this new algo-
rithm considerably improves the numerical efficiency of an algorithm proposed
by Frangos and Jaggard, by transforming the original iterative algorithm to a
one-shot algorithm.

1 Introduction

The inverse scattering problem for coupled wave equations [1] has various applica-
tions, such as waveguide filter design [2, 3] and electric transmission line fault diag-
nosis [4]. The solution to such problems can be computed, in principle, by solving
the Gel’fand-Levitan-Marchenko (GLM) linear integral equations. In practice, nu-
merical algorithms are developed to solve the GLM equations. After discretization,
the GLM equations lead to a set of linear algebraic equations, typically with a large
number of equations and unknowns. Though in principle such a large set of linear
algebraic equations can be solved by standard algorithms with digital computers,
in most practical situations, due to the large size of the equations, it is important
to develop efficient numerical algorithms by taking into account the particulari-
ties of the inverse scattering problem. Such a numerical algorithm was proposed
in [5] for the inverse scattering problem related to the Zakharov-Shabat equations
with a single potential function, then extended in [6] to the generalized Zakharov-
Shabat equations with two potential functions. In this approach, by combining the
GLM equations with some second order partial differential equations derived from
Zakharov-Shabat equations, iterative algorithms are designed for solving discretized
GLM equations. These iterative algorithms can be initialized by approximative so-
lutions of discretized GLM equations. The result of [5] is later improved in [7] where
the second order partial differential equations combined to the GLM equations are
replaced by first order partial differential equations. This modification has the ad-
vantage of triangularizing the set of linear algebraic equations resulting from the
discretized differential and integral equations, hence the solution to the large set of
linear algebraic equations becomes much more efficient.

The algorithm after the improvement of [7] is much faster than that of [5]. How-
ever, in [7] this improvement has only been made to the the case of single-potential
Zakharov-Shabat equations. In the present paper, the method of [7] is extended to



the case of generalized Zakharov-Shabat equations with two-potential functions, re-
sulting in a similar fast algorithm. The two-potential generalized Zakharov-Shabat
equations have a larger scope of applications than the single-potential Zakharov-
Shabat equations. For instance, when applied to electric transmission lines, the
single-potential equations correspond to lossless lines, whereas the two-potential
equations cover the case of lossy lines [8].

After a brief formulation of the inverse scattering problem for the generalized
Zakharov-Shabat equations with two potential functions and a short presentation
of their theoretic solution through GLM equations, the new numerical algorithm,
extending the results of [5, 6, 7], will be presented.

2 The inverse scattering problem

Consider the following generalized Zakharov-Shabat equations with two potential
functions q+(x) and q−(x) which will be referred to as ZS+:

dν1(k, x)

dx
+ ikν1(k, x) = q+(x)ν2(k, x) (1a)

dν2(k, x)

dx
− ikν2(k, x) = q−(x)ν1(k, x) (1b)

ZS+ :











where q±(x) are the unknown coupling potential functions and k is the wave number.
Denote with rl(k), rr(k) and t(k) respectively the left reflection coefficient, the right
reflection coefficient and the transmission coefficient of ZS+, or of (1), the inverse
scattering problem considered in this paper is to determine the coupling potential
functions q±(x) from the scattering data. Assume that ZS+ has no bound state
(square integrable solution for x ∈ R), then the scattering data are composed of
rl(k), rr(k) and t(k) .

For a given value of k, the left and right Jost solutions ν = fl(k, x) and ν =
fr(k, x) of ZS+ are particular solutions satisfying the limiting conditions

lim
x→+∞

(

fl1(k, x)
e−ikxfl2(k, x)

)

=

(

0
1

)

, and lim
x→−∞

(

eikxfr1(k, x)
fr2(k, x)

)

=

(

1
0

)

.

The three coefficients constituting the scattering data of ZS+ can be expressed as

rl(k) = lim
x→−∞

fl1(k, x)

fl2(k, x)
e2ikx

rr(k) = lim
x→+∞

fr2(k, x)

fr1(k, x)
e−2ikx

t(k) =
lim

x→+∞
fl2(k, x)e−ikx

lim
x→−∞

fl2(k, x)e−ikx
=

lim
x→−∞

fr1(k, x)eikx

lim
x→+∞

fr1(k, x)eikx

To solve the inverse scattering problem as formulated above, it is useful to
introduce the following auxiliary system, referred to as ZS−:



dν−

1
(k, x)

dx
+ ikν−

1
(k, x) = q−(x)ν−

2
(k, x) (3a)

dν−

2
(k, x)

dx
− ikν−

2
(k, x) = q+(x)ν−

1
(k, x). (3b)

ZS− :











which is obtained by interchanging the two potential functions q±(x) of ZS+. The
left reflection coefficient, the right reflection coefficient and the transmission coeffi-
cient of ZS− will be respectively denoted by r−l (k), r−r (k) and t−(k) in the following.

The solution to the inverse scattering problem of ZS+ summarized below will
retrieve the two potential functions q±(x) from the two left reflection coefficients
rl(k) and r−l (k) which are respectively related to ZS+ and ZS−. In most applications,
only the reflection and transmission coefficients of ZS+ are available, not those of
the auxiliary system ZS−. Fortunately, in the case of real potential functions q±(x),
r−l (k) can be computed from the reflection and transmission coefficients of ZS+

based on the following lemmas.
Lemma 1. If the potential functions q±(x) are real, the following equalities hold,

where “ ∗” represents the complex conjugate:

rr(−k) = [rr(k)]∗, rl(−k) = [rl(k)]∗, t(−k) = [t(k)]∗.

This result can be proved by simply taking the complex conjugate at both sides
of ZS+.
Lemma 2. The reflection and transmission coefficients of ZS+ and ZS− are related

by

(

t(k) rr(k)
rl(k) t(k)

)−1

=

(

t−(−k) r−l (−k)
r−r (−k) t−(−k)

)

(4)

See [9] for a proof of this result.

By combining the above two lemmas, we have

r−l (k) =
rr(−k)

rr(−k)rl(−k) − [t(−k)]2

=

[

rr(k)

rr(k)rl(k) − [t(k)]2

]∗

(5)

Hence r−l (k) can be computed from rl(k), rr(k) and t(k), the scattering data of
ZS+, which are thus sufficient for retrieving the potential functions q±(x) through
the inverse scattering transform.

To avoid infinite integral intervals in the GLM equations, we assume that
q±(x) = 0 for all x < 0. This is the case if r−l (k), and rl(k) can be extended
analytically to the upper half of the complex k-plane without any pole. Then, as
derived in [9], the inverse scattering transform consists of the following steps for
computing the potential functions q±(x) from rl(k), rr(k) and t(k).



1. Compute r−l (k) from rl(k), rr(k) and t(k) through (5).

2. Compute the Fourier transforms,

Rl(y) ,
1

2π

∫

+∞

−∞

rl(k)e−ikydk (6a)

R−

l (y) ,
1

2π

∫

+∞

−∞

r−l (k)e−ikydk (6b)

3. Solve the following GLM integral equations for the kernel functions Ar1(x, y),
Ar2(x, y), A−

r1(x, y), and A−

r2(x, y),

A−

r1(x, y) +

∫ x

−y

dsRl(y + s)Ar2(x, s) = 0 (7a)

A−

r2(x, y) + Rl(y + x) +

∫ x

−y

dsRl(y + s)Ar1(x, s) = 0 (7b)

Ar1(x, y) +

∫ x

−y

dsR−

l (y + s)A−

r2(x, s) = 0 (8a)

Ar2(x, y) + R−

l (x + y) +

∫ x

−y

dsR−

l (y + s)A−

r1(x, s) = 0 (8b)

4. Compute the potential functions q±(x) from

q+(x) = 2A−

r2(x, x) (9a)

q−(x) = 2Ar2(x, x) (9b)

For more details about the inverse scattering theory, we refer the readers to [9].

3 Numerical algorithm

Inspired by the results of [5, 6, 7], here we present an efficient numerical algorithm
to solve the inverse scattering problem formulated in the previous section.

As the computation of r−l (k) from rl(k), rr(k) and t(k) is trivial, and the Fourier
transforms Rl(y) and R−

l (y) can be computed with the aid of FFT from discretized
values of rl(k) and r−l (k), the main numerical computations concern the solution of
the GLM equations (7) and (8) for the kernel functions Ar1(x, y), Ar2(x, y), A−

r1(x, y)
and A−

r2(x, y).

In addition to the GLM equations (7) and (8), the following two pairs of equa-
tions respectively derived from ZS+ and ZS− will also be used:

∂Ar1(x, y)

∂x
+

∂Ar1(x, y)

∂y
= q+(x)Ar2(x, y) (10a)

∂Ar2(x, y)

∂x
−

∂Ar2(x, y)

∂y
= q−(x)Ar1(x, y) (10b)



∂A−

r1(x, y)

∂x
+

∂A−

r1(x, y)

∂y
= q−(x)A−

r2(x, y) (11a)

∂A−

r2(x, y)

∂x
−

∂A−

r2(x, y)

∂y
= q+(x)A−

r1(x, y) (11b)

These equations are redundant to the GLM equations (7) and (8). Their combina-
tion with the GLM equations will make easier the solution of the large set of linear
algebraic equations resulting from the discretization of the GLM equations.

For the case of single-potential Zakharov-Shabat equations (q+(x) = ±q−(x)),
only the pair (10) is used in [7], where it was proposed as an alternative to the
similar second order equations used in [5]. This improvement made in [7] leads to
an algorithm much faster than the original algorithm of [5].

Similar to the improvement made in [7] to the algorithm of [5], the use of the
two pairs of first order equations (10) and (11) in this paper is in replacement of the
second order equations used in the algorithm of [6].

As in [5, 6, 7], we introduce the following coordinate change which will transform
the region of x ≥ |y| in the x-y plane to the first quadrant in the ξ-η plane:

ξ =
x + y

2
, η =

x − y

2
(12)

then the potential functions can be expressed in terms of ξ and η as

q+(x) = q+(ξ + η), q−(x) = q−(ξ + η)

and the A-kernels will be rewritten as B-kernels after the coordinate change:

A−

r1(x, y) = B−

1
(ξ, η), A−

r2(x, y) = B−

2
(ξ, η)

Ar1(x, y) = B1(ξ, η), Ar2(x, y) = B2(ξ, η).

Then the GLM equations (7), (8) and equations (9) become

B−

1
(ξ, η) + 2

∫ ξ

0

B2(s + η, ξ − s)Rl(2s)ds = 0 (13a)

B−

2
(ξ, η) + Rl(2ξ) + 2

∫ ξ

0

B1(s + η, ξ − s)Rl(2s)ds = 0 (13b)

B1(ξ, η) + 2

∫ ξ

0

B−

2
(s + η, ξ − s)R−

l (2s)ds = 0 (13c)

B2(ξ, η) + R−

l (2ξ) + 2

∫ ξ

0

B−

1
(s + η, ξ − s)R−

l (2s)ds = 0 (13d)

q+(ξ + η) = 2B−

2
(ξ + η, 0) (13e)

q−(ξ + η) = 2B2(ξ + η, 0) (13f)

By setting ξ = 0 in the first four equations of (13), the following boundary conditions



are derived:

B−

1
(0, η) = 0 (14a)

B−

2
(0, η) = −Rl(0), (14b)

B1(0, η) = 0 (14c)

B2(0, η) = −R−

l (0). (14d)

After the coordinate change (12), equations (10) and (11) become

∂B1(ξ, η)

∂ξ
= q+(ξ + η)B2(ξ, η) (15a)

∂B2(ξ, η)

∂η
= q−(ξ + η)B1(ξ, η) (15b)

∂B−

1
(ξ, η)

∂ξ
= q−(ξ + η)B−

2
(ξ, η) (15c)

∂B−

2
(ξ, η)

∂η
= q+(ξ + η)B−

1
(ξ, η) (15d)

Now discretize all these equations over the grid on the ξ-η plane defined by
ξ = id and η = jd, with i, j = 0, 1, 2, . . . , and d being the discretization step size1.
The discrete counterparts of equations (13) and (15) then write

B−

1
(i, j) = −2d

i−1
∑

k=0

B2(k + j, i − k)Rl(2k) (16a)

B−

2
(i, j) = −Rl(2i) − 2d

i−1
∑

k=0

B1(k + j, i − k)Rl(2k) (16b)

B1(i, j) = −2d

i−1
∑

k=0

B−

2
(k + j, i − k)R−

l (2k) (16c)

B2(i, j) = −R−

l (2i) − 2d

i−1
∑

k=0

B−

1
(k + j, i − k)R−

l (2k) (16d)

q+(i + j) = 2B−

2
(i + j, 0) (16e)

q−(i + j) = 2B2(i + j, 0) (16f)

B1(i, j) = B1(i − 1, j) + dq+(i + j − 1)B2(i − 1, j) (16g)

B2(i, j) = B2(i, j − 1) + dq−(i + j − 1)B1(i, j − 1) (16h)

B−

1
(i, j) = B−

1
(i − 1, j) + dq−(i + j − 1)B−

2
(i − 1, j) (16i)

B−

2
(i, j) = B−

2
(i, j − 1) + dq+(i + j − 1)B−

1
(i, j − 1) (16j)

The numerical inverse scattering algorithm should solve for B1(i, j), B2(i, j),
B−

1
(i, j), B−

2
(i, j), and hence for q±(i+j), from the above discretized equations. Usu-

ally the discretization grid is defined for i and j ranging from 0 to a large integer value
(typically hundreds or thousands). Hence these equations constitute a large system

1The index notations i, j used here should not be confused with the imaginary unit number.



of linear algebraic equations in the unknowns B1(i, j), B2(i, j), B
−

1
(i, j), B−

2
(i, j).

Fortunately, these equations can be efficiently solved by observing the following
particular structure of the discretized equations.

In what follows, the L-th diagonal of the discretization grid will refer to the set
of all the grid nodes (i, j) such that i + j = L and i, j ≥ 0. For any node (i, j) on
diagonal L = i + j of the grid, we said the kernel value B1(i, j) is on diagonal L, so
are the other similar kernel values. Moreover, q+(i + j) and q−(i + j) are also said
to be on diagonal L = i + j.

The kernel value B1(i, j) on diagonal L = i + j can be computed from kernel
and potential functions values on diagonal L − 1, following (16g), since the indexes
of each quantity appearing at the right hand side of this equation sum to i+j−1. If
the kernel values on diagonal L−1 are already computed, and so is q+(i+j−1), then
the kernel value B1(i, j) can be easily obtained through (16g). The same observation
can be made for the other kernel values and q−(i + j − 1) by examining (16h), (16i)
and (16j). Therefore, the kernel and potential function values can be computed
diagonal by diagonal, by repeatedly increasing the value of L. This reasoning does
not apply to nodes at the border of the first quadrant where i = 0 or j = 0, for which
the boundary conditions (14) or equations (16b) or (16d) provide the kernel values.
Following this algorithm, at each step a single unknown kernel value is computed
with a new equation where the other unknowns are already computed in previous
steps, without requiring any algebraic operation for eliminating unknonws. This
simplicity indicates that the set of linear algebraic equations to be solved is in a
triangular form.

The complete algorithm is summarized as follows.

• At diagonal L = 0, apply the boundary conditions B−

1
(0, 0) = 0, B−

2
(0, 0) =

−Rl(0), B1(0, 0) = 0, B2(0, 0) = −R−

l (0), q+(0) = 2B−

2
(0, 0) = −2Rl(0),

q−(0) = 2B2(0, 0) = −2R−

l (0).

• For L = 1, 2, 3, . . . , the nodes (i, j) on diagonal L are such that i + j = L.

1. Compute B−

1
(0, L) = 0, B−

2
(0, L) = −Rl(0), B1(0, L) = 0, B2(0, L) =

−R−

l (0).

2. Use (16g) and (16i) to find all the other values of B1(i, j) and B−

1
(i, j),

and use (16h) and (16j) to find all the other values of B2(i, j) and B−

2
(i, j),

except B2(L, 0) and B−

2
(L, 0).

3. Compute B2(L, 0) and B−

2
(L, 0) through (16b) and (16d).

4. Compute q+(L) and q−(L) through (16e) and (16f):

q+(L) = q+(i + j) = 2B−

2
(i + j, 0), q−(L) = q−(i + j) = 2B2(i + j, 0).

4 Conclusion

In this paper an efficient numerical algorithm is presented for solving the inverse
scattering problem related to the generalized Zakharov-Shabat equations with two



potential functions. Inspired by the work of [7] on Zakharov-Shabat equations with
a single potential function, the second order differential equations derived from
Zakharov-Shabat equations used in the algorithm of [6] are replaced by first order
differential equations. This modification has the advantage of triangularizing the
large set of linear algebraic equations resulting from the discretization of the GLM
equations, hence these equations can be efficiently solved by a one-shot algorithm,
instead of the iterative algorithm used in [6].
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