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Abstract: For solving large sparse symmetric linear systems, arising from the
discretization of elliptic problems, the preferred choice is the preconditioned con-
jugate gradient method. The convergence rate of this method mainly depends
on the condition number of the preconditioner chosen. Using Fourier analy-
sis the condition number estimate of common preconditioning techniques for
two dimensional elliptic problem has been studied by Chan and Elman [SIAM
Rev., 31 (1989), pp. 20-49]. Nested Factorization(NF) is one of the powerful
preconditioners for systems arising from discretization of elliptic or hyperbolic
partial differential equations. The observed convergence behavior of NF is bet-
ter compared to well known ILU(0) or modified ILU. In this paper we introduce
Modified Nested Factorization(MNF) which is an improvement over NF. It is
proved that condition number of modified NF is O(h−1). An optimal value
of the parameter for the model problem is derived. The condition number of
modified NF predicts the condition number of NF in limiting sense when the
parameter is close to zero. Moreover it is proved that condition number of NF is
atleast O(h−1). Numerical results justify Fourier analytic method by exhibiting
remarkable similarity in spectrum of periodic and Dirichlet problems.
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Analyse de Fourier des preconditioneurs du type

factorisation emboite modifie pour les problemes

isotropique en 3D

Résumé : Pour resondre des grands systemes linéaire d’quation symétrique
obtenu de la discrétisation d’une equation aux dérivés partielles elliptique, on
choisit le plus souvent la mthode du gradient conjugué prconditionné. La conver-
gence de cette method depend le plus souvent du conditionnement du systeme
ainsi preconditionné. L’analyse de Fourier est une technique utilisée par Chan
et Elman pour estimer le conditionnement de ce system préconditionné pour les
problémes 2D.

La factorisation emboitée est un preconditionneur puissant pour les systémes
d’equation obtenu de la discretisation d’une EDP elliptique ou hyperbolique.
Les observations de la convergence de la factorisation emboite montrent qu’il
se comporte mieux que ILU(0) ou ILU modifié. Dans ce papier on introduit la
factorisation emboitée qui est une amlioration de la factorisation emboite. Il est
prouv que le conditionnement de la factorisation emboite est de O(h−1)

Les valeurs optimales des paramétres est obtenues. Le conditionnement de
la factorisation emboitée modifie permet de prédire celui de la factorisation
emboitée lorsque les paramétres sont prés de zéro. De plus nous prouvons que
le conditionnement du NF est au moins de O(h−1). Les résultats numérique
justifie les resultats de l’analyse de Fourier en exhibant avec des conditions
remarquable sur des problems avec des conditions aux limites de Dirichlet et les
conditions aux limites périodiques.

Mots-clés : factorization emboitée, valeurs propres, vecteurs propres, LU
creux, LU creux modifie, matrice circulaire
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1 INTRODUCTION

For solving large sparse symmetric linear systems arising from the discretization
of elliptic or hyperbolic partial differential equations, a preferred choice is the
preconditioned conjugate gradient method. The convergence rate of this method
mainly depends on the condition number of the preconditioned matrix; hence,
the choice of a preconditioner is crucial. On the other hand, the choice of a
preconditioner also depends on the cost of construction, storage requirements,
and solve time. Although, most of these properties can be predicted in advance,
predicting the condition number of a preconditioner is generally one of the most
difficult properties to be determined in advance.

With fast setup time and very modest storage requirement, the Nested Fac-
torization (NF) preconditioner introduced in [1] is one of the powerful precon-
ditioners; it performs better compared to the widely used ILU(0) and Modified
ILU [2] for certain class of problems [1, 3]. The method of NF differs from
ILU(0) or Modified ILU(0) in that the preconditioning matrix in NF is not
formed strictly from upper and lower triangular factors. Instead, block lower
and upper factors are constructed using a procedure which adds one dimension
at a time to the preconditioning matrix having the diagonal matrix on the low-
est level. In modified NF (namely, MNF(c)), a slight perturbation ch2 (c is
constant and h is the mesh size independent of c) is added to the diagonal, this
is similar to the perturbation added to the diagonal of MILU preconditioner as
suggested by Gustafsson [4].

The NF preconditioner has some important properties. If BNF is the NF pre-
conditioner, then colsum(BNF −A) = 0 (also known as zero colsum property),
as a consequence the sum of the residuals in successive Krylov iterations remain
zero, provided a suitable initial solution is used [1]. This property can provide a
very useful check on the correctness of the implementation. Further, quoting [1],
“the factorization procedure conserves material exactly for each phase at each
linear iteration, and accommodates non-neighbor connections (arising from the
treatment of the faults, completing the circle in three-dimensional coning stud-
ies, numerical aquifers, dual porosity/permeability systems etc.) in a natural
way.” Moreover, for fluid flow problems it is proved in [5] that the lower and the
upper triangular factors of NF are nonsingular. Due to these desirable qualities,
the NF preconditioner is of particular interest in the oil reservoir industry; a
method similar to NF is implemented in Schlumberger’s widely used Eclipse oil
reservoir simulator [6].

Our goal in this paper is to give a condition number estimate of MNF pre-
conditioned matrix using Fourier analysis. In principle, Fourier analysis is an
exact analysis for the periodic problem. However, empirical observations sug-
gest that the extreme eigenvalues of the periodic case remain in close agreement
with the corresponding Dirichlet problem. So, the results obtained via Fourier
analysis for the periodic case should predict the properties of the preconditioner
for the corresponding Dirichlet case as well. It is in this light that most of
the properties of the common preconditioners including Jacobi, Gauss-Siedel,
SSOR, ADI, ILU(0), and MILU which were earlier obtained by “hard” analysis,
were obtained easily and elegantly via Fourier analysis by Chan and Elman in
[7]. For a two dimensional model problem, the method of NF is similar to block
MILU, and Fourier analysis has been used to analyze the condition number for
hyperbolic model problem [8]. Later, a similar technique was used to analyze
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4 Pawan Kumar , Laura Grigori , Qiang Niu , Frederic Nataf

the condition number of ILU(0) and MILU for a three dimensional anisotropic
model problem [9]. To the best of our knowledge, no results on the condition
number of NF for three-dimensional case is known. Using Fourier analysis, we
prove that the all the eigenvalues of NF preconditioned matrix are larger than
one, and the condition number of MNF preconditioned matrix is of order h−1

which is similar to that of MILU. Although, our analysis is for MNF, in the
limiting sense, i.e., when c tends to zero it essentially predicts the condition
number of NF. Moreover, we will prove that the order of condition number for
NF preconditioned matrix is at least O(h−1). Finally, for an isotropic model
problem we will propose an optimal value of the parameter.

Numerical results will illustrate the dependence of convergence of MNF on
parameter c. The spectrum plots for different values of the parameter for the
periodic problem are found to be in remarkable agreement with the correspond-
ing Dirichlet problem, this justifies the applicability of our theoretical results
for the corresponding Dirichlet problem.

The rest of this paper is organized as follows. In section 2, we briefly intro-
duce some notations and collect some results on circulant matrices. In section
3, we describe the model problem and describe the MNF preconditioner. The
Fourier eigenvalues for MNF is derived in this section. Later in section 4, we
present various numerical experiments and compare the results of the periodic
problem with that of Dirichlet problem for MNF and compare the obtained re-
sults with those of ILU and MILU. Section 5 concludes the paper. Finally, in
appendix we present the proof of results leading to condition number estimate
and the derivation of optimal value of the parameter.

2 MODEL PROBLEM AND THE PRECON-

DITIONER

We choose the same model as in [9] so that the results can be compared with
ILU(0) and MILU. The model is the following three-dimensional anisotropic
equation:

− (l1uxx + l2uyy + l3uzz) = r (1)

defined on a unit cube Ω = {0 ≤ x, y, z ≤ 1}, with l1, l2, l3 ≥ 0, and with the
periodic boundary conditions as follows

u(x, y, 0) = u(x, y, 1),

u(x, 0, z) = u(x, 1, z),

u(0, y, z) = u(1, y, z).

The discretization scheme considered in the interior of the domain is the second
order finite differences on a uniform n×n×n grid, with mesh size h = 1

n+1 along
x, y, and z directions. Here we shall use the notation h to denote the mesh size
for the periodic case. With this discretization we get a system of equation

Au = b. (2)

It is useful to express the matrix A arising from the periodic boundary condi-
tions using the notation of circulant matrices and the Kronecker product. We
introduce these notations as follows.

INRIA



Fourier Analysis of MNF 5

Definition 2.1 Let C be a matrix of size pq×pq. We call C a block circulant

matrix if it has the following form

C = Bcircp(C0, Cp−1, · · · , C2, C1) =





C0 Cp−1 · · · C2 C1

C1 C0 Cp−1
. . .

...
... C1 C0

. . .
...

Cp−2
. . .

. . . Cp−1

Cp−1 Cp−2 · · · C1 C0





pq×pq

,

where each of the blocks Ci are matrices of size q × q each. We observe
that a block circulant matrix is completely specified by a block row. How-
ever if q = 1, then we simply call it circulant matrix and denote it by
circp(C0, Cp−1, · · · , C2, C1).

Notation 2.2 Further, for block circulant tridiagonal matrices we intro-
duce the following notation

Bctridp(C2, C0, C1) =





C0 C1 C2

C2
. . .

. . .

. . .
. . .

. . .

. . . C0 C1

C1 C2 C0





pq×pq

,

where each of the blocks Ci are matrices of size q × q each. However if q = 1,
then we denote it by ctridp(C2, C0, C1).

Notation 2.3 For block tridiagonal matrix with constant block bands we
introduce the following notation

Btridp(F2, F0, F1) =





F0 F1

F2
. . .

. . .

. . .
. . .

. . .

. . . F0 F1

F2 F0





pq×pq

,

where each of the blocks Fi are matrices of size q × q each. If q = 1, then we
simply denote it by tridp(F2, F0, F1).

Definition 2.4 The Kronecker product ⊗ is an operation on two matrices of
arbitrary size resulting in a block matrix. Let A = (ai,j) and B = (bi,j), then by
A ⊗ B we mean

A ⊗ B =





a11B a12B . . . a1nB
...

. . .
...

... . . .
...

an1B an2B . . . annB




.

RR n° 0123456789
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If the difference operators are scaled by step size h2, then equation of (2)
corresponding to the (i, j, k)th grid point is the following:

ai,j,kui,j,k + bi,j,kui+1,j,k + ci,j,kui,j+1,k + di,j,kui−1,j,k

+ei,j,kuij−1,k + fi,j,kui,j,k+1 + gi,j,kui,j,k−1 = wi,j,k, (3)

where 1 ≤ i, j, k ≤ n, and

bi,j,k = 0, i = n,

ci,j,k = 0, j = n,

fi,j,k = 0, k = n,

di,j,k = 0, i = 1, (4)

ei,j,k = 0, j = 1,

gi,j,k = 0, k = 1.

For an anisotropic model problem, we have the following assignments:

ai,j,k = 2(l1 + l2 + l3),

bi,j,k = −l1,

ci,j,k = −l2,

di,j,k = −l1, (5)

ei,j,k = −l2,

fi,j,k = −l3,

gi,j,k = −l3,

where wi,j,k = h2r(i, j, k). Here the subscript (i, j, k) correspond to the grid
location (ih, jh, kh).

Let Ik denote the identity matrix of size k × k. Using the notation of circu-
lant matrix and the Kronecker product, the coefficient matrix corresponding to
formula (3) is expressed as follows

A = Bctridn

(
−l3In2 , D̂,−l3In2

)
,

D̂ = Bctridn

(
−l2In, D,−l2In

)
,

D = ctridn (−l1, d,−l1) .

We consider now the same problem (1) with the following Dirichlet boundary
condition

u(x, y, 0) = 0,

u(x, 0, z) = 0, (6)

u(0, y, z) = 0.

To differentiate the Dirichlet problem with that of periodic problem, we shall
use bold face letters to denote the matrices corresponding to the Dirichlet case.
Using second order finite differences with the Dirichlet boundary conditions 7
above, we obtain the matrix A corresponding to the Dirichlet case as follows

A = D + L1 + LT

1
+ L2 + LT

2
+ L3 + LT

3
,

INRIA



Fourier Analysis of MNF 7

where

L3 = Btridn(−l3In2 , 0, 0),

L2 = In ⊗ Btridn(−l2In, 0, 0),

L1 = In2 ⊗ tridn(−l1, 0, 0).

For the above model problem the nested factorization preconditioner B for
the Dirichlet problem is defined as follows:

B = (P + L3)
(
I + P−1LT

3

)
,

P = (T + L2)
(
I + T−1LT

2

)
, (7)

T = (M + L1)
(
I + M−1LT

1

)
,

where M = diag(A)−L1M
−1LT

1
− colsum

(
L2T

−1LT

2

)
− colsum(L3P

−1LT

3
).

Here we denote colsum(K) to mean diagonal matrix K formed from the
vector 1K, here 1 stands for vector of all ones; and by diag(K) we mean the
strict diagonal of matrix K.

The MNF preconditioner has the same hierarchical definition as 7 above; it
differs from NF in that the diagonal matrix M above is replaced by

MMNF = diag(A) + ch2 − L1M
−1

L
T

1 − colsum(L2T
−1

L
T

2 ) − colsum(L3P
−1

L
T

3 ), (8)

where ch2 is a perturbation added to the diagonal matrix M. Here the constant
c is independent of the mesh size h. We will use notations B̃, P̃ , and T̃ for MNF
preconditioner corresponding to the periodic case.

The construction and the solution procedure for MNF is very similar to NF,
see [1, 3].

3 FOURIER ANALYSIS OF THE MNF PRE-

CONDITIONER

In this section, we will derive the Fourier eigenvalues of the MNF precondi-
tioned matrix. For clarity and simplicity we restrict our analysis to the isotropic
problem (l1 = l2 = l3 = 1), however, similar analysis holds for the general
anisotropic case. We shall exhibit numerical comparisons and results for the
general anisotropic case. Along the way we will outline certain assumptions on
which our analysis will be based. These assumptions are similar to those made
in [7] and has been justified their appropriately.

We shall treat matrices B̃ and A as if they were periodic.
Fourier analysis is an exact analysis only for constant coefficient matrix

with periodic boundary conditions. Our original matrix A is indeed a constant
coefficient matrix but the corresponding MNF preconditioner is not a constant
coefficient matrix since the diagonal matrix M̃ is not constant; the recursive
expression for M̃ leads to varying entries in M̃ . However, the values of M̃ away
from the boundary tend to certain value in limiting sense (apparent for a large
matrix). In other words, for a large size matrix most of the entries of M̃ are close
to entries of M̃ near the middle entry, i.e., the entry M̃n3/2,n3/2. To observe this

we plot a histogram of the entries of M̃ corresponding to the Dirichlet boundary
condition for 120×120×120 grid in Figure (1). We find that most of the entries

RR n° 0123456789
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Figure 1: Histogram plot of Diag(M̃) for MNF(cd), Here cd = 1.45π2 is the
optimal value of the parameter c for the Dirichlet case as derived in appendix.
The matrix corresponds to 7-point dicretization scheme applied to (1) on 120×
120×120 unit cube with coefficients set such that the matrix is symmetric with
lower bands (l1, l2, l3)=(1, 1, 1)

of M̃ are close to the middle entry of M̃ . So in some sense we can treat the
matrix M̃ to be a constant coefficient matrix for large dimension. To find this
constant value for the periodic case, we force the diagonal matrix MMNF to be
constant in recursion (8) in the previous section. But this recursion will lead
to a fifth degree equation which may not be solved using radicals. Instead, we
observe that the matrix T̃ for MNF preconditioner is

T̃ = MMNF + L1 + LT
1 + L1M

−1
MNF LT

1 ,

= M̃ + L1 + LT
1 ,

where

M̃ = diag(A) + ch2 − colsum(L2T̃
−1LT

2 ) − colsum(L3P̃
−1LT

3 ). (9)

INRIA



Fourier Analysis of MNF 9

Using the notation of circulant matrix and the Kronecker product, the MNF
preconditioner is now defined as follows:

B̃ = (P̃ + L3)(I + P̃−1LT
3 ), P̃ is of size n3 × n3,

L3 = Bcircn(0, · · · , 0,−l3In2),

LT
3 = Bcircn(0,−l3In2 , 0, · · · , 0),

P̃ = In ⊗ P0,

P0 = (T̂ + L̂2)(I + T̂−1L̂T
2 ),

L̂2 = Bcircn(0, · · · , 0,−l2In),

L̂T
2 = Bcircn(0,−l2In, 0, · · · , 0),

T̂ = In ⊗ T0, T0 is of size n × n,

T0 = circn(m̃,−l1, 0, · · · , 0,−l1),

m̃ = d + ch2 − l22
m̃ − 2l1

− l23

m̃ − 2l1 − 2l2 +
l22

m̃−2l1

. (10)

We notice here that recursion (10) is obtained from recursion (9); the recur-
sion (10) is satisfied by the roots of a fourth degree equation which can now be
solved by radicals.

To obtain recursion (10), we observe that the matrices L2 and LT
2 being

constant coefficient circulant matrices and T̃ being a circulant matrix, we have

colsum(L2T̃
−1LT

2 ) =
l22

colsum(T̃ )
=

l22
m̃ − 2l1

.

Also, L3 and LT
3 being constant coefficient circulant matrices and P being a

circulant matrix, we have

colsum(L3P̃
−1LT

3 ) =
l23

colsum(P̃ )
=

l23
colsum(T̃ + L2 + LT

2 ) + colsum(L2T̃−1LT
2 )

.

It is easy to see that colsum(T̃ + L2 + LT
2 ) = m̃ − 2l1 − 2l2.

The recurrence (10) is satisfied by the roots of the following fourth degree
equation

x4 + c1x
3 + c2x

2 + c3x + c4 = 0,

where c1 = −14−ch2, c2 = 71+8 ch2, c3 = −154−21 ch2, and c4 = 121+18 ch2.
In this fourth degree equation, we choose a root with maximum magnitude

m̃ = 7/2 + 1/4 ch2 + 1/4
p

fh +

1/4
√

2

s

10
√

fh + 8 ch2
√

fh + c2h4
√

fh + 24 ch2 + 10 c2h4 + c3h6

√
fh

, (11)

where fh = 4 ch2 +c2h4. For the isotropic case, the recurrence relation can have
four roots, the maximum of these roots in magnitude approximates the value
most achieved, as suggested by the histogram plot of diagonal matrix M̃ for the
Dirichlet case in Figure 1. In this figure, cp is the optimal value of parameter
for the periodic case as derived in the appendix.

RR n° 0123456789
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According to an argument in [7], the extreme eigenvalues for the periodic and
the corresponding Dirichlet problems are same provided n = 2nd. Here nd+1 =
1/hd and hd is the mesh size for the Dirichlet problem. This assumption is
important for our analysis as we are interested in studying the condition number
of the preconditioned matrix, and the extreme eigenvalues play an important
role.

With the above assumptions, we have obtained a periodic constant coefficient
MNF preconditioner, for which exact Fourier analysis can be used.

Eigenvectors of A are found by applying the operator A to eigenvectors vs,t,r.
The (i, j, k)th grid component of eigenvector vs,t,r is given by

vs,t,r
i,j,k = eιiθseιjφteιkξr , (12)

where ι =
√
−1, θs = 2π

n+1s, φt = 2π
n+1 t, and ξr = 2π

n+1r, for r, s, t = 1, · · · , n.
The eigenvalue λs,t,r(A) of the matrix A is determined by substituting (12) for
ui,j,k in the left hand side of (3) and it is found to be

λs,t,r(A) = 4

(
l1sin

2 θs

2
+ l2sin

2 φt

2
+ l3sin

2 ξr

2

)
. (13)

For circulant matrices following results hold.

Lemma 3.1 [10] Any circulant matrix of size n share the same set of eigen-
vectors.

Using lemma (3.1) above, we have the following result.

Lemma 3.2 Let S and R be two given circulant matrices with eigenvalues
λs,t,r(S) and λs,t,r(R) respectively. Then the eigenvalues of S + R and SR
corresponding to the (s, t, r)th grid point is given as follows:� λs,t,r(S + R) = λs,t,r(S) + λs,t,r(R).� λs,t,r(SR) = λs,t,r(S)λs,t,r(R).

Proof: It follows easily using lemma (3.1) above.

Using the lemma 3.2 above, eigenvalue λs,t,r

(
B̃−1A

)
of MNF preconditioned

matrix is then given by

λs,t,r

(
B̃−1A

)
=

λs,t,r(A)

λs,t,r

(
B̃
) , (14)

INRIA
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where λs,t,r

(
B̃
)

is given hierarchically as follows:

λs,t,r

(
B̃
)

=
(
λs,t,r(P̃ ) + λs,t,r(L3)

)


1 +
λs,t,r

(
LT

3

)

λs,t,r

(
P̃
)



 ,

λs,t,r

(
P̃
)

=
(
λs,t,r(T̃ ) + λs,t,r(L2)

)(
1 +

λs,t,r(L
T
2 )

λs,t,r(T̃ )

)
,

λs,t,r

(
T̃
)

= λs,t,r

(
M̃
)

+ λs,t,r (L1) + λs,t,r

(
LT

1

)
,

λs,t,r (L1) = −l1e
ιθs ,

λs,t,r

(
LT

1

)
= −l1e

−ιθs , (15)

λs,t,r

(
M̃
)

= m̃,

λs,t,r (L2) = −l2e
ιφt ,

λs,t,r

(
LT

2

)
= −l2e

−ιφt ,

λs,t,r (L3) = −l3e
ιξr ,

λs,t,r

(
LT

3

)
= −l3e

−ιξr .

The eigenvalues for L1, L2, L3, U1, U2, U3, and M̃ were found by inspec-
tion, for instance, if (3) denotes the stencil for the original matrix A, then the
stencils (or equations) for the matrices L1, L2, L3, L

T
1 , LT

2 , LT
3 , and M̃ are given

by

stencil for M̃ = m̃ui,j,k,

stencil for L1 = −l1ui−1,j,k,

stencil for LT
1 = −l1ui+1,j,k,

stencil for L2 = −l2ui,j−1,k, (16)

stencil for LT
2 = −l2ui,j+1,k,

stencil for L3 = −l3ui,j,k−1,

stencil for LT
3 = −l3ui,j,k+1.

After substituting the eigenvector (12) in (16) for ui,j,k, a straightforward
computation gives the required eigenvalues in (15).

Consider now the isotropic problem (l1 = l2 = l3 = 1). From the expres-
sion for the eigenvalues of MNF preconditioned matrix, we obtain the following
estimate for the condition number.

Theorem 3.3 If 0 < c < 16π2

45

(
35 + 15

√
5
)
, then for MNF preconditioned

isotropic operator we have

κ(B̃−1A) = O(h−1),

and for NF preconditioned isotropic operator, we have

κ(B−1A) ≥ O(h−1). (17)
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12 Pawan Kumar , Laura Grigori , Qiang Niu , Frederic Nataf

4 NUMERICAL EXPERIMENTS

The aim of this section is two folds:� To present the convergence results of MNF with the optimal value of the
parameter copt = 40

9 π2, and to compare the results with other common
preconditioners including NF.� To exhibit remarkable similarity in the spectrum distribution of MNF pre-
conditioned matrix for periodic and the corresponding Dirichlet problems.
For this, we will compare the extreme eigenvalues and the condition num-
ber for different values of parameter for the periodic and the corresponding
Dirichlet preconditioned matrices.

All numerical experiments are performed in double precision arithmetic in MAT-
LAB except the MNF solver subroutine which is implemented in FORTRAN 90.
For solving the system Au = b for the Dirichlet problem via PCG, the initial
solution vector is chosen to be vector of all zeros. The known solution vector
is chosen to be a random vector. The stopping criteria for solving the iteration
is the decrease of relative residual below 10−12, and the maximum number of
iterations allowed is 200. The eigenvalues for MNF preconditioned Dirichlet
problem for matrices of size nd ≥ 16 is approximated by the harmonic Ritz
values obtained after 20 steps of the Arnoldi iteration [11].

4.1 Performance of MNF

For numerical experiments we consider the following test cases:

1. Data Set 1 : (l1, l2, l3) = (1, 1, 1)

2. Data Set 2 : (l1, l2, l3) = (1, 1, 0.01)

3. Data Set 3 : (l1, l2, l3) = (1, 0.01, 0.01)

The test cases above are same as those found in [9]. In Table (1), convergence
results are shown for Data set 1. The optimal value of the parameter chosen for
MNF is cd = 1.45π2, where cd is the optimal parameter for the Dirichlet case
as derived in the appendix. We observe that MNF performs better compared
to NF itself, and the difference in number of steps for convergence becomes
significant as the problem size increases. On the other hand, MILU performs
better than ILU but it is slower when compared to both NF and MNF.

4.2 Numerical Experiments with Fourier Eigenvalues

In Figures (5), (6), and (7) we present the spectrum comparison for Dirichlet
and periodic case for nd = 10 for MNF preconditioned matrix. In Figure (8),
we have a similar plot for NF. We observe that the similarity in the spectrum is
remarkable, apart from coherence in extreme eigenvalues, the clustering traits
found in Figures (6) and (7) for the Dirichlet problem is captured extremely
well by the periodic problem. To verify such coherence in extreme eigenvalues
for large problem sizes we do the following experiment.

In Tables (2), (3), and (4) we compare the extreme eigenvalues for large
matrices, we tabulate the minimum, maximum eigenvalues, and the condition

INRIA
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Table 1: Convergence results for MNF(cd) PCG, Data set 1
hd ILU(0) MILU NF MNF(cp)

iter err iter err iter err iter err
1
16 30 e-12 31 e-13 16 e-13 14 e-12
1
32 55 e-11 46 e-12 23 e-12 20 e-12
1
64 128 e-10 74 e-11 33 e-12 28 e-12
1

120 169 e-11 98 e-12 46 e-12 38 e-12

number of B̃−1A . We observe that the extreme eigenvalues and the condition
numbers for the periodic case are in close agreement with Dirichlet problem. For
data set 1 (Table (2)), we find that the minimum eigenvalues for the periodic
and Dirichlet problem tend to one as the matrix size increases; the minimum
eigenvalue of one is indeed achieved for periodic problem corresponding to the
grid size 240×240×240. This is in agreement with theorem 5.4 which is true for
small enough grid size h. Comparing with data in [9] for MILU, we find that the
condition number of MNF preconditioned matrix is better, and comparatively
the eigenvalues are closer to one.

In figures (2), (3), and (4) the maximum eigenvalue, the minimum eigen-
value, and the condition number of B−1

MNF A for nd = 64 for different values of
parameter c are shown. We observe that the matching of condition numbers for
the periodic and Dirichlet case seems to be perfect for the value of c larger than
its predicted optimal value.

The optimal value of the parameter for the periodic and the corresponding
Dirichlet problem are

cp = 5.8π2,

cd = 1.45π2,

respectively, as derived in appendix for Data Set 1. These optimal values are
predicted in our plot for Data Set 1, see Figure (2) for example. The predicted
optimal value is a slight underestimate of the exact optimal value observed in
the plots, this is because of the approximation in the condition number while
finding the optimal value (See appendix). Nevertheless, the predicted optimal
value remains a good “heuristic“ estimate, given that the flatness in the graph
of condition number begin to appear immediately after this optimal value.

On the other hand, in Figure (3) corresponding to Data Set 2, we observe
that the condition number is more sensitive with parameter c, and the flatness
around the optimal value is not as prominent as found in Data Set 1. From these
plots it is also clear that the optimal value of parameter is problem dependent.

5 CONCLUSION

We have introduced modified nested factorization (MNF) which is an improved
version of popular nested factorization preconditioner. We have implemented
a tool of Fourier analysis to analyse MNF along with the nested factorization
preconditioner. We derive that the condition number of MNF preconditioned
matrix is O(h−1). The analysis for MNF also predicts the condition number

RR n° 0123456789
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Figure 2: Condition No. versus c, nd = 64 for Data set 1
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Figure 3: Condition No. versus c, nd = 64 for Data set 2
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Table 2: Dir. Versus Per. MNF(cp) for Data set 1

hd λmin λmax cond. no.
Dir. Per. Dir. Per. Dir. Per.

1
8 0.663 0.798 1.098 1.136 1.655 1.423
1
16 0.738 0.948 1.503 1.632 2.035 1.720
1
32 0.664 0.840 2.166 2.356 3.261 2.803
1
64 0.906 0.906 4.020 4.226 5.267 4.660
1

120 0.928 1.000 8.292 8.794 8.934 8.793

Table 3: Dir. Versus Per. MNF(cp) for Data set 2

hd λmin λmax cond. no.
Dir. Per. Dir. Per. Dir. Per.

1
8 0.555 0.635 1.057 1.071 1.903 1.687
1
16 0.613 0.708 1.354 1.436 2.208 2.026
1
32 0.667 0.781 2.002 2.123 2.997 2.715
1
64 0.734 0.894 3.106 3.310 4.229 3.701
1

120 0.787 1.001 4.936 5.283 6.264 5.277

Table 4: Dir. Versus Per. MNF(cp) for Data set 3

hd λmin λmax cond. no.
Dir. Per. Dir. Per. Dir. Per.

1
8 0.375 0.402 0.950 0.951 2.533 2.365
1
16 0.404 0.422 0.980 0.988 2.422 2.338
1
32 0.423 0.449 0.995 0.998 2.352 2.219
1
64 0.447 0.504 1.037 1.060 2.319 2.101
1

120 0.573 0.483 1.418 1.325 2.473 2.740

of nested factorization in the “limiting sense”. Moreover, from our analysis
of an isotropic model problem, it is established that for nested factorization
preconditioned matrix, the order of condition number is at least O(h−1).

Future work may involve studying a dynamically modified version of NF
where the parameter is chosen dynamically as in [13] for Modified ILU.

Appendix. In this section, we will give a condition number estimate for
modified nested factorization as stated in Theorem 3.3. In the end, we will
derive an optimal value for parameter c.

A symbolic algebra software MAPLE is used to perform some algebraic
manipulation. We tabulate relevant built in functions. Let X = (x1, x2, . . . , xn)
where xi, i = 1 . . . n are independent variables.

In Table (5) the maximize and minimize functions are the not the numerical
maximum of minimum, but in fact they are the actual extreme values found (or
proved) symbolically by MAPLE for the specified domain of X .
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Figure 8: Spectrum comparison NF pre. matrix for Data set 1

Table 5: MAPLE functions

Syntax Result
simplify(f(X)) Simplified expression

numer
(

N(X)
D(X)

)
N(X)

denom
(

N(X)
D(X)

)
D(X)

collect(f(X), xi) Collect like powers of f in xi

expand(f(X)) Expand the expression f
minimize(f(X), x1 = r1

1 . . . r1
2 , . . . , xn = rn

1 ...rn
2 ) Find the minimum of f for given range.

maximize(f(X), x1 = r1
1 . . . r1

2 , . . . , xn = rn
1 . . . rn

2 ) Find the maximum of f for given range.

The Fourier eigenvalues for the coefficient matrix A, and MNF precondi-
tioner B̃ are given as follows:

λs,t,r(A) = 4

(
sin2 θs

2
+ sin2 φt

2
+ sin2 ξr

2

)
,

λs,t,r(B̃) = λs,t(P̃ ) +
1

λs,t(P̃ )
− 2cos(ξr),

λs,t(P̃ ) = λs(T̃ ) +
1

λs(T̃ )
− 2cos(φt),

λs(T̃ ) = m̃ − 2cos(θs),

m̃ ≈ 7 +
√

5

2
+ Kh,
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where K = 3
√

5
√

c
10 . Due to the periodicity of eigenvalues, i.e.,

λs,t,r(A) |(θs,φt,ξr) = λs,t,r(A) |(2π−θs,2π−φt,2π−ξr),

λs,t,r(B̃) |(θs,φt,ξr) = λs,t,r(B̃) |(2π−θs,2π−φt,2π−ξr),

we will restrict our domain to (0, π) instead of (0, 2π). Notice that due to
restrictions on θs, φt, and ξr, and n being an even number, the end points of
the interval (0, π) are never achieved.

For any arbitrary matrix K, we will use the notation λmin(K) and λmax(K)
to denote the minimum and maximum eigenvalues respectively.

Lemma 5.1 If θs, φt, and ξr lie in the interval (0, π), then λs,t,r(A) > 0,

λs,t,r(B) > 0, and λs,t,r(B̃) > 0.

Proof : We observe that λmin(A) = 4
(
sin2 θ1

2 + sin2 φ1

2 + sin2 ξ1

2

)
> 0. To

prove other parts of the lemma, we observe that λmin

(
T̃
)

= m̃ − 2cos(θs) >

3+
√

5
2 + 4sin2 θ1

2 (= λmin(T )) > 3+
√

5
2 . Now given x > 1, x + 1

x increases or
decreases according as x increases or decreases, thus

λmin

(
P̃
)

= λmin

(
T̃
)

+
1

λmin

(
T̃
) − 2 + 4sin2(φt),

> λmin (T ) +
1

λmin (T )
− 2 + 4sin2(φt),

= λmin(P ),

> 1 + 4sin2(φt) > 1.

Consequently, we have

λmin

(
B̃
)

= λmin

(
P̃
)

+
1

λmin

(
P̃
) − 2 + 4sin2(ξr),

> λmin (P ) +
1

λmin (P )
− 2 + 4sin2(ξr),

= λmin (B) ,

> 4sin2(ξr) > 0.

Notice that λmin(P ) > 1 as shown above and hence the following holds

λmin (P ) +
1

λmin (P )
− 2 > 0.

Hence, the lemma is proved.

Following lemma will be useful to find a lower bound of λmin

(
B̃−1A

)
.

Lemma 5.2 For sufficiently small h, we have

λmax(B̃ − A) = λ1,1,p(B̃ − A),

λmin(B̃ − A) = λn
2 , n

2 ,q(B̃ − A),

for any fixed integers p and q, satisfying 1 ≤ p, q ≤ n
2 .
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Proof : We have

λs,t,r

(
B̃ − A

)
= m̃ − 6 +

1

λs

(
T̃
) +

1

λs,t

(
P̃
) .

Now,

λmin

(
T̃
)

= m̃ − 2cos(θ1) = λ1

(
T̃
)

,

λmin

(
P̃
)

= λmin

(
T̃
)

+
1

λmin

(
T̃
) − 2cos(φ1) = λ1,1

(
P̃
)

.

So,

λmax

(
B̃ − A

)
= m̃ − 6 +

1

λmin

(
T̃
) +

1

λmin

(
P̃
) ,

= λ1,1,p

(
B̃ − A

)
.

Also, we notice that

λmax

(
T̃
)

= m̃ − 2cos(θn/2) = λn/2

(
T̃
)

,

λmax

(
P̃
)

= λmax

(
T̃
)

+
1

λmax

(
T̃
) − 2cos(φn/2) = λn

2
, n
2

(
P̃
)

.

This gives

λmin

(
B̃ − A

)
= m̃ − 6 +

1

λmax

(
T̃
) +

1

λmax

(
P̃
) ,

= λn
2

, n
2

,q

(
B̃ − A

)
.

Corollary 5.3 From arguments in the proof of lemma 5.1 above, we at once
have

λmin

(
B̃
)

= λ1,1,1

(
B̃
)

,

λmin (A) = λ1,1,1 (A) .

Lemma 5.4 For sufficiently small h and c < 16
9 π2

(
7 + 3

√
5
)
, we have

λs,t,r(B̃) − λs,t,r(A) < 0,

i.e.,

λmin(B̃−1A) > 1.

Proof : From previous Lemma, we have λmax(B̃ − A) = λ1,1,1(B̃ − A). We

will prove that λ1,1,1(B̃ − A) < 0. We notice that

λ1,1,1

(
B̃ − A

)
= m̃ − 6 +

1

λ1

(
T̃
) +

1

λ1,1

(
P̃
) .
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Using truncated Taylor series expansions, we have cos(θ1) ≈ 1− θ2
1 = 1− 2π2h2

and cos(φ1) ≈ 1 − φ2
1 = 1 − 2π2h2, and we have

λ1,1,1(B̃ − A) =

(
−56 π2 − 24

√
5π2 + 10 K2

)
h2 + O(h3)

7 + 3
√

5 + O(h)
,

< 0.

provided K < 1
5

√
5π

√
2
(
3 +

√
5
)
, that is, c < 16

9 π2
(
7 + 3

√
5
)

and thus λs,t,r(B̃−
A) ≤ λ1,1,1(B̃ − A) < 0, and from this it follows that λmin(B̃−1A) > 1.

Hence, the lemma is proved.
Next we will bound λmax(B̃−1A), for which we will use the following lemma.

Lemma 5.5 For sufficiently small h, we have

1

(6 − m̃)
(λs,t,r(A) − λs,t,r(B̃)) ≤ 1

(6 − m)
(λs,t,r(A) − λs,t,r(B)).

Proof : We shall treat variables θs and φt as continuous variables θ and φ
respectively. Also, we assume that h is any continuous variable, not necessarily
the mesh size. We define

f(θ, φ, h) =
1

(6 − m̃)
(λs,t,r(A) − λs,t,r(B̃)).

Now taking partial derivative of f(θ, φ, h) with respect to h, we obtain

∂

∂h
f(θ, φ, h) =

f(θ, φ)h5 + g(θ, φ)h4 + h(θ, φ)h3 + u(θ, φ)h2 + v(θ, φ)h1 + w(θ, φ)

q(θ, φ, h)
,

where

q(θ, φ, h) =
“

58 + 14
√

5 − 2 y
√

5 − 28 x + 4 x2 − 4
√

5x + 4 yx − 14 y
”

2
“

7 +
√

5 − 2x
”

2

×
“

−5 +
√

5
”

2

+ O(h).

Here x = 2cos(θ) and y = 2sin(θ), and

f(θ, φ) = −1024 K6,

g(θ, φ) = −16 K(−288 K4x − 80 K4y + 160 K4
√

5 + 928 K4),

h(θ, φ) = −16 K(6016 K3 + 1856
√

5K3 − 576
√

5K3x − 160
√

5K3y + 288 K3yx

+512 K3x2 + 32 y2K3 − 928 K3y − 3264 K3x),

u(θ, φ) = −16 K(8224
√

5K2 − 4896
√

5K2x − 80 y2K2x − 4528 K2y + 20864 K2

+2448 K2yx − 15440 K2x + 4224 K2x2 + 768
√

5K2x2 + 240 y2K2 − 448 K2x3

−384 K2yx2 − 1392
√

5K2y + 48 y2
√

5K2 + 432
√

5K2yx),

v(θ, φ) = −16 K(4224
√

5Kx2 − 2368 Kx3 − 34448 Kx + 192 Kx4 − 4128
√

5yK

+12832 Kx2 − 14000
√

5Kx − 10400 yK + 7728 Kyx + 16224
√

5K − 368 y2Kx

−80 y2
√

5Kx + 624 y2K − 384 Kx2y
√

5 − 448
√

5Kx3 + 224 Kx3y

−2112 Kx2y + 36864 K + 2448
√

5Kyx + 64 y2Kx2 + 240 y2
√

5K),

w(θ, φ) = −16 K(25216 + 11712
√

5 − 8920 y − 28840 x + 13584 x2 + 8496 yx

−3408 x3 + 480 x4 − 3200 yx2 + 592 x3y + 496 y2 − 408 y2x + 128 y2x2

−32 x5 − 48x4y − 16 y2x3 − 4040 y
√

5 − 13144
√

5x + 5776
√

5x2

−1184
√

5x3 − 184 y2
√

5x + 3504
√

5yx + 272 y2
√

5 − 1056
√

5x2y

+112
√

5x3y + 32 y2
√

5x2 + 96 x4
√

5).
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With the aid of symbolic manipulator MAPLE [12], we find that

q(θ, φ, h) > 0,

f(θ, φ) = (−1024 )K6,

g(θ, φ) <
“

−3072 − 2560
√

5
”

K5,

h(θ, φ) <
“

−15360 − 6144
√

5
”

K4,

u(θ, φ) <
“

−10240
√

5 − 20480
”

K3,

v(θ, φ) <
“

−5120
√

5 − 12800
”

K2,

w(θ, φ) < 0.

Note that K = 3
√

5
√

c
10 > 0 and from this it follows that ∂

∂hf(θ, φ, h) < 0, and
this indicates that f(θ, φ, h) is a decreasing function, or in other words, the
function f(θ, φ, h) increases as h tends to zero and it tends to f(θ, φ, 0). With
this we have established the lemma.

Lemma 5.6 For MNF preconditioned isotropic operator, we have

λmax

(
B̃−1A

)
≤ 1

K
h−1,

where K = 3
√

5
√

c
10 .

Proof : We have

λs,t,r

(
B̃−1A

)
=

λs,t,r (A)

λs,t,r

(
B̃
) =

1

1 − λs,t,r(A)−λs,t,r(B̃)
λs,t,r(A)

,

=
1

1 − (6 − m̃)
1− 1

(6−m̃)(λs(T̃ ))
− 1

(6−m̃)(λs,t(P̃))

λs,t,r(A)

.

Using m̃ ≈ 7+
√

5
2 + Kh, we have

λs,t,r

(
B̃−1A

)
=

1

1 − (5−
√

5
2 − Kh)

1− 1
(6−m̃)(λs(T̃))

− 1
(6−m̃)(λs,t(P̃))

λs,t,r(A)

.

We observe that −λs,t,r (B) ≤ 0 (Lemma 5.1), and it follows that

λs,t,r (A) − λs,t,r (B)

λs,t,r (A)
≤ 1,

⇔ (6 − m)

(
1 − 1

(6−m)λs(T ) − 1
(6−m)λs,t(P )

)

λs,t,r (A)
≤ 2

5 −
√

5
(6 − m),

⇔

(
1 − 1

(6−m)λs(T ) − 1
(6−m)λs,t(P )

)

λs,t,r (A)
≤ 2

5 −
√

5
.
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Using lemma 5.5, the theorem is proved.

Finally, we prove theorem (3.3).
Proof of Theorem (3.3): We have

κ
(
B̃−1A

)
=

λmax

(
B̃−1A

)

λmin

(
B̃−1A

) .

From lemma (5.4), we have λmin

(
B̃−1A

)
> 1. We prove that this bound

is tight, i.e., λmin

(
B̃−1A

)
= O(1). Choosing (s, t, r) = (1, 1, 1), we have

λ1,1,1 (A) ≈ 12π2h2 and

λ1,1,1

“

B̃
”

≈ −5/2 + 1/2
√

5 + Kh + 12 π2h2 +
“

3/2 + 1/2
√

5 + Kh + 4 π2h2

”−1

+
“

−1/2 + 1/2
√

5 + Kh + 8 π2h2 + (3/2 + 1/2
√

5 + Kh + 4 π2h2)−1

”−1

.

After algebraic manipulations and collecting powers of h, we have

λ1,1,1

(
B̃−1A

)
=

λ1,1,1 (A)

λ1,1,1

(
B̃
) ≈ 3 π2

(
3 +

√
5
)2

14 π2 + 5 K2 + 6
√

5π2
= O(1),

so that we have λmin

(
B̃−1A

)
= O(1). Next, we wish to prove that λmax

(
B̃−1A

)
=

O(h−1). For this we fix s = 1√
2πh

, t = 1, and r = 1. Now, using truncated Taylor

series expansion and ignoring higher powers of h, we have, cos
(
θ 1

√

2πh

)
≈ 1−π h,

cos(φ1) ≈ 1 − 2 π2h2, and cos(ξ1) ≈ 1 − 2 π2h2 and hence

λ 1
√

2πh
,1,1

(
B̃−1A

)
≈ π

(
3 +

√
5
)2

h
(
12 π2

√
5 + 68 π2 + 40 Kπ + 10 K2

)
h2

, (18)

= O(h−1).

This gives

λmax

(
B̃−1A

)
= O(h−1),

⇒ κ(B̃−1A) = O(h−1).

Hence the theorem.

Theorem 5.7 For Nested Factorization preconditioned isotropic operator, we
have

κ(B−1A) ≥ O(h−1).

Proof: Choosing s = t = r = 1, we have

λmin(B−1A) ≤ λ1,1,1(B
−1A) = 24

π2
(
3 +

√
5
) (

6 + 2
√

5
)

+ O(h2)

224 π2 + 96
√

5π2 + O(h2)
,
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and choosing s = 1√
2πh

and t = r = 1, we have

λmax(B−1A) ≥ λ 1
√

2πh
,1,1(B

−1A) = 4
π
(
3 +

√
5
) (

6 + 2
√

5
)

+ O(h)

h
(
544 π2 + 96 π2

√
5
)

+ O(h2)
,

thus, κ
(
B−1A

)
≥

λ 1
√

2πh
,1,1

(B−1A)

λ1,1,1(B−1A) , i.e.,

κ
(
B−1A

)
≥ O(h−1).

Hence, the lemma is proved.

Result: For the MNF preconditioned isotropic operator, the optimal value

of the parameter c occurs near cp =
(

32
3 − 8

9

√
5
√

19 + 6
√

5 + 8/3
√

5
)

π2 for

the periodic problem, and 1
4cp for the corresponding Dirichlet problem.

In principle, we would like to choose c to minimize the condition num-
ber κ(B̃−1A). Unfortunately, this turns out to involve rather complicated
calculations. Instead, we use the same expression for the condition number
where we obtain the exact order of condition number in Theorem (5.6). We

have κ
(
B̃−1A

)
= O(h−1) and this order of condition number is achieved for

λmax

(
B̃−1A

)
corresponding to the grid point

(
1√
2πh

, 1, 1
)

and for λmin

(
B̃−1A

)

corresponding to the grid point (1, 1, 1). We obtain

κ
(
B̃−1A

)
=

λ 1
√

2πh
,1,1

(
B̃−1A

)

λ1,1,1

(
B̃−1A

) ,

≈ 1/3
14 π2 + 5 K2 + 6

√
5π2

π
(
12

√
5π2 + 68 π2 + 40 Kπ + 10 K2

)
h

,

∂

∂K
κ
(
B̃−1A

)
≈ 10/3

−14 π2 + 10 Kπ + 5 K2 − 6
√

5π2

(
6
√

5π2 + 34 π2 + 20 Kπ + 5 K2
)2

h
.

To find optimal value of parameter c, we set ∂
∂K κ

(
B̃−1A

)
= 0. Now choosing

positive root of K, we get

K = −π + 1/5

√
95 π2 + 30

√
5π2.

Consequently, we have

cp = 5.8π2 ≈ 52.43.

On the other hand, to predict the optimal value of the parameter cd, for the
Dirichlet problem, we use δp = cph

2 = δd = cdh
2
d as in [7, 9], where h = hd

2 and
we obtain

cd =
1

4
cp ≈ 1.45π2 ≈ 13.10. (19)

We note here that the optimal value of parameter for the Periodic and Dirichlet
problems for MILU are cp ≈ 12π2 and cd ≈ 3π2 respectively [9].
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