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Abstract: This paper extends the result of Steele [6, 5] on the worst-case length
of the Euclidean minimum spanning tree EMST and the Euclidean minimum
insertion tree EMIT of a set of n points S ⊂ R

d. More precisely, we show that, if
the weight w of an edge e is its Euclidean length to the power of α, the following
quantities

∑

e∈EMST w(e) and
∑

e∈EMIT w(e) are both worst-case O(n1−α/d),
where d is the dimension and α, 0 < α < d, is the weight. Also, we analyze and
compare the value of

∑

e∈T w(e) for some trees T embedded in R
d which are of

interest in (but not limited to) the point location problem [2].
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Sûr la Taille de Quelques Arbres Plongées dans

R
d

Résumé : Ce papier étend le résultat de Steele [6, 5] sûr la taille au pire des cas
de la plus petite arbre de couverture minimal Euclidienne et l’arbre d’insertion
minimal d’un ensemble de n points S ⊂ R

d. Plus précisément, nous démontrons
que si le poids w d’une arête e est sa longueur Euclidienne à la puissance α, les
quantités suivantes

∑

e∈EMST w(E) et
∑

e∈EMIT w(E) valent au pire des cas
O(n1−α/d), où d est la dimension et α, 0 < α < d, est le poid. Nous déterminons
et comparons aussi la valeur de

∑

e∈T w(E) pour des arbres T plongées dans
R

d, qui sont d’intèrêt au problème de la localisation des points [2].

Mots-clés : Géométrie Algorithmique, Graphes Géométriques
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1 Introduction

This paper extends the result of Steele [6, 5] on the worst-case length of the
Euclidean minimum spanning tree EMST and the Euclidean minimum insertion
tree EMIT of a set of n points S ⊂ R

d. More precisely, we show that, if the
weight w of an edge e is its Euclidean length to the power α, the following
quantities

∑

e∈EMST w(e) and
∑

e∈EMIT w(e) are both worst-case O(n1−α/d),
where d is the dimension and α, 0 < α < d, is the weight. Also, we analyze and
compare the value of

∑

e∈T w(e) for some trees T embedded in R
d which are of

interest in (but not limited to) the point location problem [2].
Let S = {pi, 1 ≤ i ≤ n} be a set of points in R

d and G = (V,E) be the
complete graph such that the vertex vi ∈ V is embedded on the point pi ∈ S;
the edge eij ∈ E linking two vertices vi and vj is weighted by |pi − pj |α, its
Euclidean length to the power of α. G is usually referred to as the geometric

graph of S. We will denote the sum of the weight of the edges of G by |G|α (or
|G| if α = 1). We will also refer to |G|α as the weighted-length of G.

Consider the following trees:
(i) A star is a tree having one vertex that is linked to all others (see Figure 1a).
(ii) A path is a tree having all vertices of degree 2 but two with degree 1 (see
Figure 1b).
(iii) Among all the trees spanning S, a tree with the minimal length is called an
Euclidean minimum spanning tree of S and denoted EMST (S) (see Figure 1c).
(iv) Consider that an ordering is given by a permutation σ, vertices are inserted
in the order vσ(1), vσ(2), . . . , vσ(n). We build incrementally a spanning tree Ti

for Si = {pσ(j) ∈ S, i ≤ j} with T1 = {vσ(1)}, Ti = Ti−1 ∪ {vσ(i)vσ(j)} and a
fixed k, with 1 ≤ k < n, such that vσ(i)vσ(j) has the shortest length for any
max (1, i − k) ≤ j < i. This tree is called the Euclidean minimum k-insertion

tree, and will be denoted by EMITk(S) (see Figure 1e); when k = n − 1, we
will write EMIT (S) (see Figure 1d). |EMIT (S)| depends on σ and for some
permutations it coincides with |EMST (S)|.

It is noteworthy that both the combinatorics of EMST (S) and of EMIT (S)
are invariant to α (since f(λ) = λα, is monotonically increasing for positive
α and λ). What changes is the sum of the weights associated with the edges.
Also, EMST assumes that the position of all the points in S is available (static)
whereas EMIT clearly does not (dynamic).
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Figure 1: Trees embedded in the plane.

Steele proves [4] that if pi are i.i.d. random variables with compact support,
then |EMST (S)|α = O(n1−α/d) with probability 1. For the extreme case of
α = d, Aldous and Steele [1] show that |EMST (S)|d = O(1) if the variables
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4 P. de Castro & O. Devillers

above are evenly distributed in the unit cube. Without any dependence on
probabilistic hypotheses, Steele proves [6] that the complexity of |EMST (S)|
is bounded by O(n1−1/d) in the worst case. Finally, the asymptotic length of
|EMIT (S)| is shown to be the same as the one of |EMST (S)| [5]. In other
words, |EMIT (S)| = O(n1−1/d). This result is surprising because it means
that a priori knowledge of S does not affect the asymptotic length of trees
following the greedy strategy of an EMST . This fact has application in the
dynamic point location problem [2].

This work is presented as follow: First, in Section 2, we extend the result
of Steele [5] stating that |EMIT | and |EMST | have the same asymptotical
behavior to the case of |EMIT |α and |EMST |α for 0 < α < d as well. Second,
in Section 3, we obtain the expected weighted-length of some stars of interest
inside the unit ball. Then in Section 4 we obtain some ratios between the ex-
pected weighted-length of such stars and random paths in the unit ball. Finally,
in Section 5 we obtain bounds on the expected weighted-length of EMITk.

2 Weighted Euclidean Minimum Insertion Tree

We extend the result of Steele [5] for |EMIT |α (and consequently |EMST |α)
with the following theorem:

Theorem 1. Let S be a sequence of n points in [0, 1]d, then |EMST (S)|α ≤
|EMIT (S)|α ≤ γd,αn1−α/d, with d ≥ 2 and 0 < α < d. Where, γd,α = 1 +

24ddd/2

(2α−1)(d/α−1) .

The proof of Theorem 1 follows exactly the same line as Steele [5], and
starts with the two lemmas below. Given a fixed sequence S = {p1, p2, . . . , pn}
of points in R

d, then we can build a spanning tree for S by sequentially joining
xi to the tree formed by {p1, p2, . . . , pi−1} for 1 < i ≤ n. Let wi ∈ R be defined
as follow:

wi = min
1≤j<i

|pi − pj |α, (1)

then wi is the minimal cost of joining pi to a vertex of a spanning tree of
{p1, p2, . . . , pi−1}. Now, we have that |EMIT (S)|α =

∑

1<i≤n wi.

Lemma 2. If {p1, p2, . . . , pn} ⊂ [0, 1]d and wi = min
1≤j<i

|pi −pj |α, for 1 < i ≤ n,

d ≥ 2 and 0 < α < d, then for any 0 < λ < ∞ we have

∑

λ≤wi<2αλ

w
d/α
i ≤ 8ddd/2. (2)

Proof. Let C = {i : λ ≤ wi < 2αλ} and for each i ∈ C let Bi be a ball of radius

ri = 1
4w

1/α
i with center pi. We will argue by contradiction that Bi ∩Bj = ∅ for

all i < j. If Bi ∩ Bj 6= ∅, then the bounds ri ≤ 2αλ and rj ≤ 2αλ gives us

|pi − pj | ≤
1

4
(wi

1/α + wj
1/α) < λ1/α. (3)

But, by definition of wj we have |pi − pj |α ≥ wj for all i < j, which implies

|pi−pj | ≥ w
1/α
j for all i < j; and, by the lower bound on the summands in Eq.(2)

INRIA
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we have λ ≤ wj , which means λ1/α ≤ wj
1/α, so we also see |pi − pj | ≥ λ1/α.

Since |pi − pj | ≥ λ1/α contradicts Eq.(3), we have Bi ∩ Bj = ∅.
Now, since all of the balls Bi are disjoint and contained in a sphere with

radius 2
√

d, the sum of their volumes is bounded by the volume of the sphere
of radius 2

√
d. Thus, if ωd denotes the volume of the unit ball in R

d, we have
the bound

∑

i∈C

ωdw
d/α
i 4−d ≤ ωd2

ddd/2 from which Eq.(2) follows.

Lemma 3. Let Ψ be a positive and non-increasing function on the interval
(

0,
√

d
]

, then for any 0 < a < b ≤
√

d, with d ≥ 2 and 0 < α < d,

∑

a≤wi≤b

wi
(d/α)+1Ψ(wi) ≤

2α

2α − 1
· 8ddd/2

∫ b

a/2α

Ψ(λ)dλ. (4)

Proof. By Lemma 2 we have for any 0 < λ < ∞,

∑

a≤wi<b

wi
d/αI(λ ≤ wi < 2αλ) ≤ 8ddd/2,

where

I(λ ≤ wi < 2αλ) = I(
1

2α
wi ≤ λ < wi)

is the indicator function. If we multiply by Ψ(λ) and integrate over [ 1
2α a, b], we

find
∑

a≤wi≤b

wi
(d/α)

∫ wi

wi/2α

Ψ(λ)dλ ≤ 8ddd/2

∫ b

a/2α

Ψ(λ)dλ. (5)

Since Ψ is non-increasing, the integrand on the left-hand side of Eq.(5) is
bounded from below by Ψ(wi), so Ψ(wi)wi(1− 1

2α ) ≤
∫ wi

wi/2α Ψ(λ)dλ, and Eq.(4)
follows from Eq(5).

Proof of Theorem 1. Divide the set {w2, w3, . . . , wn} in two sets R1 = {wi :
wi ≤ n−α/d} and R2 = {wi : wi > n−α/d}. We have the trivial bound
∑

wi∈R1

wi =
∑

wi≤n−α/d

wi ≤ n · n−α/d = n1−α/d. Now, let [a, b] =
[

n−α/d,
√

d
]

,

Ψ(λ) = λ−d/α in Eq.(4), then we have:

∑

wi≥n−α/d

wi ≤
2α

2α − 1
· 8ddd/2(d/α − 1)−1 ·

(

2d−αn1−α/d − d−(d/α−1)/2
)

.

And hence,
∑

wi∈R2

wi ≤
24ddd/2

(2α − 1)(d/α − 1)
· n1−α/d. Now, we have that

n
∑

i=2

wi =
∑

wi∈R1

wi +
∑

wi∈R2

wi ≤
(

1 +
24ddd/2

(2α − 1)(d/α − 1)

)

· n1−α/d,

from which Theorem 1 follows. The constant is γd,α = 1 + 24ddd/2

(2α−1)(d/α−1) .

RR n° 7179



6 P. de Castro & O. Devillers

3 Two Stars Embedded in R
d

Assume a set of points S = {pi, 1 ≤ i ≤ n}, evenly distributed inside the unit
ball B. Let c be a point in B, and E(|cp|α, p ∈ B) be the expected value of
the distance between c and a point inside the unit ball to the power of α, with
α > 0, as n → ∞. The following theorem distinguish two stars of particular
interest.

Theorem 4. The shortest and largest expected weighted-length stars inside the

ball are respectively: the star centered at O, the center of the ball; and the star

centered at Ω, a point on the boundary of the ball, denoted by H.

We have that

lim
n→∞

n
∑

i=1

|pi − c|α
n

= E(|cp|α, p ∈ B).

In other words, lim
n→∞

E(|cp|α, p ∈ B) is the weighted-length of an edge of the

star centered in c as n → ∞. Now, let us turn the attention to the so-called
weighted Steiner star of S, the star with the smallest weighted-length we can
imagine of S. Consider that the weighted Steiner star of the first n points is
centered at c∗n, then we have

n
∑

i=1

|pi − c∗n|α ≤
n
∑

i=1

|pi − c|α, (6)

for any n > 0 and c ∈ B. Let An(c) =
∑n

i=1 |pi−c|α/n. The proof of Theorem 4
is divided into several lemmas. First, we show that An(c∗n) converges. Then we
show that there is a point c ∈ B such that An(c) and An(c∗n) converge to the
same limit. Finally, we argue that c must be the center of the ball, the point O.

Lemma 5. Let An(c) =
∑n

i=1 |pi − c|α/n and c∗n be the center of the weighted

Steiner star of the first n points An(c∗n). Then An(c∗n) converges.

Proof. As points are evenly distributed in B, c∗n is a non-constant sequence with
probability 1, and thus we can assume that 0 < An(c∗n) < 2α for any n > 1 and
d ≥ 1. We have from Eq.(6)

An+1(c
∗
n+1) ≤ An+1(c

∗
n) =

n
∑

i=1

|pi − c∗n|α
n + 1

+
|pn+1 − c∗n|α

n + 1

≤
n
∑

i=1

|pi − c∗n|α
n

+
|pn+1 − c∗n|α

n
.

But |pn+1 − c∗n| ≤ 2, and thus An+1(c
∗
n+1) ≤ An(c∗n) + 2α/n, which means

that lim
n→∞

An+1(c
∗
n+1)

An(c∗n)
≤ 1. Analogously, we have, from the fact that |pn+1 −

c∗n+1| ≤ 2 and Eq.(6), An(c∗n) ≤
(

n+1
n

)

An+1(c
∗
n+1) − 2α

n . This means that

lim
n→∞

An+1(c
∗
n+1)

An(c∗n)
≥ 1, and thus lim

n→∞

An+1(c
∗
n+1)

An(c∗n)
= 1. As 0 < An(c∗n) < 2α for

any n > 1 and d ≥ 1, An(c∗n) converges.

INRIA
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Now, we need the following easy lemma.

Lemma 6. Assume a, b ∈ R, 0 ≤ a, b ≤ 2, for each α > 0 there is a function

fα(b) such that (a + b)α ≤ aα + fα(b) and lim
b→0

fα(b) = 0.

Proof. For α ≤ 1, we have fα(b) = bα, as (a + b)α ≤ aα + bα.
For α ≥ 2 and α ∈ N, we have fα(b) = 22α−1b, as

(a + b)α = aα + b

α
∑

i=1

(

α

i

)

aα−ibi−1 ≤ aα + 22α−1b.

Let, {x} signify x−⌊x⌋, then for α > 1 and α /∈ N, we have fα(b) = 22⌊α⌋b{α} +
22αb, as

(a + b)α = (a + b)⌊α⌋(a + b){α}

≤
(

a⌊α⌋ + 22⌊α⌋−1b
)(

a{α} + b{α}
)

≤ aα + 22⌊α⌋b{α} + 22αb.

Lemma 7. There is a point c ∈ B such that An(c) and An(c∗n) converge to the

same limit.

Proof. If a topological space X is compact, then every infinite subset of X has
an accumulation point. Assume c is an accumulation point of the sequence
{c∗i }i=1,2,...,∞, then we have a subsequence of indices ζ : N

∗ → N
∗ such that

{c∗ζ(i)}i=1,2,...,∞ converges to c. Because of the triangulation inequality and by
direct application of Lemma 6, for any i > 0, we have that

Aζ(i)(c) ≤ Aζ(i)(c
∗
ζ(i)) + fα(|cc∗ζ(i)|).

As |cc∗ζ(i)| converges to 0, then fα(|cc∗ζ(i)|) also converges to 0 (see Lemma 6).
And thus lim

i→∞
Aζ(i)(c) = lim

i→∞
Aζ(i)(c

∗
ζ(i)). Therefore, as An(c∗n) converges,

lim
i→∞

Aζ(i)(c
∗
ζ(i)) = lim

n→∞
An(c∗n) and lim

n→∞
An(c) = lim

i→∞
Aζ(i)(c) = lim

n→∞
An(c∗n).

Proof of Theorem 4. By symmetry, lim
n→∞

An(O) ≤ lim
n→∞

An(c) for any c ∈ B,

and from Eq.(6) and Lemma 7, we have that lim
n→∞

An(O) ≥ lim
n→∞

An(c∗n) =

lim
n→∞

An(c) ≥ lim
n→∞

An(O). Therefore, at the limit, we have that the length of

the weighted Steiner star is equivalent to the length of the star centered at O.
With analogous arguments, we have that the largest weighted-star and a

star centered at the boundary of the ball have equivalent length.

Denote the shortest and largest expected weighted-length stars inside the
ball by S and H respectively. Let E(|Op|α, p ∈ B) and E(|Ωp|α, p ∈ B) be the
expected value of an edge of S and H respectively, then as n → ∞ the size of S
and H are given accordingly by n · E(|Op|α, p ∈ B) and n · E(|Ωp|α, p ∈ B).

We analyze in the sequel the values of E(|Op|α, p ∈ B) and E(|Ωp|α, p ∈ B).

RR n° 7179



8 P. de Castro & O. Devillers

Theorem 8. When points are uniformly i.i.d in a ball, the expected size

E(|Op|α, p ∈ B) of and edge of the star centered at the center of the unit ball,

with positive α, is given by:
(

d

d + α

)

.

Proof. Let Bl be a ball with radius l centered at the origin, we have

E(|Op|α, p ∈ B) =

∫ 1

0

lαProb(p ∈ Bl+dl \ Bl) =

∫ 1

0

lα
(dVd(l)/l)dl

Vd(1)

=

∫ 1

0

dld−1+αdl =
d

d + α
,

where Vd(l) is the volume of a ball of radius l (and dVd(l)/l is its area).

Theorem 9. When points are uniformly i.i.d in a ball, the expected size

E(|Ωp|α, p ∈ B) of and edge of the star centered at the boundary of the unit ball,

with positive α, is given by:

2d+α

(

2d + α

2d + 2α

)

B
(

d
2 + 1

2 , d
2 + 1

2 + α
2

)

B
(

d
2 + 1

2 , 1
2

) ,

where B(x, y) =
∫ 1

0
λx−1(1 − λ)y−1dλ is the so-called Beta function.

The computation of the average is more involved than in Theorem 8, and
we split the computation into several lemmas.

Lemma 10. Consider the spherical cap Hh formed by crossing a ball BR with

radius R centered at the origin, with the plane x = R − h. Denote h the height

of the cap. The volume of Hh is the volume of the intersection between the

half-space x ≥ R − h and BR. This volume is given by:

Rd π
d−1

2

Γ(d+1
2 )

∫ arccos (R−h
R )

0

sind(λ)dλ. (7)

Proof. The volume Vd(r) of a ball with radius r in dimension d is given by
rd · π

d
2 /Γ(1 + d

2 ). Each cross-section x = R − h + δ, 0 ≤ δ ≤ h is a (d − 1)-
dimensional ball. If we integrate all of those balls along the x axis, we have
∫ R

R−h
Vd−1(

√
R2 − t2)dt. Eq.(7) follows from replacing t by λ = R cos (t).

Lemma 11. Let Ω be a point on the boundary of the unit ball Bunit, and PH(l) =
Prob(|Ωp| ≤ l ; p ∈ Bunit) be the cumulative distribution function of distances

between an uniformly distributed random point inside Bunit and Ω, then

PH(l) =
1

B
(

d
2 + 1

2 , 1
2

)

(

∫ arccos (1−l2/2)

0

sind(λ)dλ + ld
∫ arccos (l/2)

0

sind(λ)dλ

)

,

where B(x, y) =
∫ 1

0
λx−1(1 − λ)y−1dλ is the Beta function.

Proof. If we denote Bl the ball of radius l centered in Ω, the desired probability
is clearly volume(Bl ∩ Bunit)/volume(Bunit). Bl ∩ Bunit is the union of two
spherical caps limited by the plane x = 1 − l2/2 which can be computed using
Lemma 10.

INRIA
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Proof of Theorem 9. The theorem follows from:

E(|Ωp|α, p ∈ B) =

∫ 2

0

lαP ′
H(l)dl

=

∫ 2

0

lα











1
2 ld
(

1 − l2

4

)
d−1

2

B
(

d
2 + 1

2 , 1
2

) + dld−1

∫ arccos (l/2)

0

sind(λ)dλ

B
(

d
2 + 1

2 , 1
2

)











dl

=
1

2

∫ 2

0

ld+α
(

1 − l2

4

)
d−1

2

dl

B
(

d
2 + 1

2 , 1
2

) +
1

2

∫ 2

0

2dld−1+α

∫ arccos (l/2)

0

sind(λ)dλ

B
(

d
2 + 1

2 , 1
2

) dl

The right part of the expression above corresponds exactly to the expected
value of lα where l is the length of a random segment determined by two evenly
distributed points in the unit ball [3, 7]. Its value is given by:

∫ 2

0

2dld−1+α

∫ arccos (l/2)

0

sind(λ)dλ

B
(

d
2 + 1

2 , 1
2

) dl = 2d+α

(

d

d + α

)

B
(

d
2 + 1

2 , d
2 + 1

2 + α
2

)

B
(

d
2 + 1

2 , 1
2

) .

The left part of the expression can be obtained as follows:

∫ 2

0

ld+α
(

1 − l2

4

)
d−1

2

dl

B
(

d
2 + 1

2 , 1
2

) = 2

∫ 1

0

2d+αyd+α
(

1 − y2
)

d−1

2 dy

B
(

d
2 + 1

2 , 1
2

)

=

∫ 1

0

2d+αz
d
2
+ α

2
− 1

2 (1 − z)
d−1

2 dz

B
(

d
2 + 1

2 , 1
2

)

= 2d+α B
(

d
2 + 1

2 , d
2 + 1

2 + α
2

)

B
(

d
2 + 1

2 , 1
2

) .

Finally, we have

E(|Ωp|α, p ∈ B) = 2d+α

(

2d + α

2d + 2α

)

B
(

d
2 + 1

2 , d
2 + 1

2 + α
2

)

B
(

d
2 + 1

2 , 1
2

) .

4 Some Ratios

We may ask now what is the value of the ratio ρ(d, α) between E(|Ωp|α, p ∈ B)
and E(|Op|α, p ∈ B). It is an easy exercise to verify that ρ(1, α) = 2α. In
Corollary 12, we compute lim

d→∞
ρ(d, α).

Corollary 12. The ratio ρ(d, α) = E(|Ωp|α, p ∈ B)/E(|Op|α, p ∈ B) when d →
∞ is given by 2α/2.

Proof. Computing ρ(d, α) with Theorems 8 and 9 gives:

ρ(d, α) = 2d+α

(

2d + α

2d

)

B
(

d
2 + 1

2 , d
2 + 1

2 + α
2

)

B
(

d
2 + 1

2 , 1
2

) (8)
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10 P. de Castro & O. Devillers

Using the Stirling’s identities:

B(a, b) ∼
√

2π
aa− 1

2 bb− 1
2

(a + b)a+b− 1
2

, a, b ≫ 0, (9)

B(a, b) ∼ Γ(b)a−b, a ≫ b > 0, (10)

we have:

lim
d→∞

ρ(d, α) = lim
d→∞

{

2d+α

(

2d + α

2d

)

B
(

d
2 + 1

2 + α
2 , d

2 + 1
2

)

B
(

d+1
2 , 1

2

)

}

= lim
d→∞







2d+α
√

2π
(

d
2 + 1

2

)
d
2
(

d
2 + 1

2 + α
2

)
d
2
+ α

2

√
π
(

d + 1 + α
2

)d+ 1
2
+ α

2
(

d
2 + 1

2

)− 1
2







= 2α/2 · lim
d→∞

{

(d + 1)
d+1

2 (d + 1 + α)
d+α

2

(d + 1 + α
2 )

d+1

2 (d + 1 + α
2 )

d+α
2

}

= 2α/2 · e−α/4 · eα/4 = 2α/2

If we consider a tree which is a random path in the unit ball, then the average
size of its edge is given by the expected weighted-length of a random segment
determined by two evenly distributed points in the unit ball. This is given by:

2d+α

(

d

d + α

)

B
(

d
2 + 1

2 , d
2 + 1

2 + α
2

)

B
(

d
2 + 1

2 , 1
2

) (11)

The reader may refer to Tu and Fischbach [7] for a proof.
From Theorem 8, Corollary 12 and Eq.(11) we obtain the following corollary:

Corollary 13. The ratio between the weighted-length of a random path in the

unit ball and the weighed-length of a star centered at the center of the unit ball

is 2α

1+α/2 when d = 1 and 2α/2 when d → ∞.

From Theorem 9 and Eq.(11) we obtain the following corollary:

Corollary 14. The ratio between the weighted-length of a star centered at the

boundary of the unit ball and the weighted-length of a random path in the unit

ball is given by 2d+α
2d .

5 Weighted Euclidean Minimum k-Insertion Tree

for Random Points

Now, we will compute a bound on the expected weighted-length of an edge of
|EMITk|α for points evenly distributed in the unit ball.

Theorem 15. When points are uniformly i.i.d in a ball, the expected length

E(length) of an edge of |EMITk|α, with positive α, verifies:
(α

d

)

B
(

k + 1,
α

d

)

≤ E(length) ≤ 2α
(α

d

)

B
(

k + 1,
α

d

)

, (12)

where B(x, y) =
∫ 1

0
λx−1(1 − λ)y−1dλ is the Beta function.
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First, we will evaluate the weighted-distance between the origin and the
closest amongst k points {p1, p2, . . . , pk} evenly distributed in the unit ball.
This provides the lower-bound. Then, we will find an upper-bound on the
weighted-distance between any point inside the ball and the closest amongst k
points {p1, p2, . . . , pk} evenly distributed in the unit ball.

Lemma 16. Let c be a point inside the unit ball, Prob (|cp| ≤ l) = Pc(l) be the

probability that the distance between a point p ∈ B and c is less or equal to l, and

Pc,k(l) = Prob (min(|cpj |)1≤j≤k ≤ l) be the cumulative distribution function of

the minimum distance among k points following a uniformly i.i.d inside the unit

ball and c, then

Pc,k(l) = 1 − (1 − Pc(l))
k
.

Proof.

Pc,k(l) = Prob (min(|cpj |)1≤j≤k ≤ l)

= 1 − Prob (|cpj | > l , 1 ≤ j ≤ k)

= 1 − Prob (|cp1| > l)
k

= 1 − (1 − Pc(l))
k
.

A direct consequence of Lemma 16 is the following corollary.

Corollary 17. Let PB,k(l) = Prob (min(|Opj |)1≤j≤k ≤ l) be the cumulative

distribution function of the minimum distance among k points following a uni-

formly i.i.d inside the unit ball, and the center of the unit ball, then

PB,k(l) = 1 − (1 − ld)k.

Lemma 18. The expected value E (min(|Opj |α)1≤j≤k) of the minimum weighted-

distance among k points following a uniformly i.i.d inside the unit ball and the

center of the unit ball, with positive α, is given by

E (min(|Opj |α)1≤j≤k) =
(α

d

)

B
(

k + 1,
α

d

)

.

Proof. Using Corollary 17, we have:

E (min(|Opj |α)1≤j≤k) =

∫ 1

0

lαP ′
B,k(l)dl = kd

∫ 1

0

ld−1+α
(

1 − ld
)k−1

dl

= k

∫ 1

0

λα/d (1 − λ)
k−1

dλ = kB
(

k, 1 +
α

d

)

=
(α

d

)

B
(

k + 1,
α

d

)

.

Now, we shall obtain the upper-bound, which is more involved. First we will
obtain a general expression for the expected value of min(|cpj |α)1≤j≤k. Assume
δ(c) = 1 + |Oc| in what follows.
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12 P. de Castro & O. Devillers

Lemma 19. The expected value E (min(|cpj |α)1≤j≤k) of the minimum weighted-

distance among k points following a uniformly i.i.d inside the unit ball and c,
with positive α, is given by

E (min(|cpj |α)1≤j≤k) =

∫ δ(c)

0

αlα−1(1 − Pc(l))
kdl.

Proof. As Pc(0) = 0 and Pc(δ(c)) = 1, integration by parts gives us the following
identity:

∫ δ(c)

0

lαP ′
c(l)P

i−1
c (l) =

δ(c)α −
∫ δ(c)

0

αlα−1P i
c(l)

i
, i > 0. (13)

From Lemma 16, we also have the following expression for E (min(|cpj |α)1≤j≤k):

E (min(|cpj |α)1≤j≤k) =

∫ δ(c)

0

klαP ′
c(l)(1 − Pc(l))

k−1

=
k−1
∑

i=0

(−1)i

(

k − 1

i

)∫ δ(c)

0

klαP ′
c(l)P

i
c(l)dl. (14)

Replacing Eq.(13) in Eq.(14) leads to:

k−1
∑

i=0

(−1)i

(

k − 1

i

)∫ δ(c)

0

klαP ′
c(l)P

i
c(l)dl =

k
∑

i=0

(−1)i

(

k

i

)∫ δ(c)

0

αlα−1P i
c(l)dl

=

∫ δ(c)

0

αlα−1
k
∑

i=0

(−1)i

(

k

i

)

P i
c(l)dl

=

∫ δ(c)

0

αlα−1(1 − Pc(l))
kdl.

Proof of Theorem 15. Lemma 18 gives us the lower-bound in Theorem 15. Now,
if we take a function Ψ(l) such that Ψ(l) ≤ Pc(l) for 0 ≤ l ≤ δ(c), it upper-
bounds the integral in Lemma 19. Take Ψ(l) = (l/δ(c))d, then we have:

E (min(|cpj |α)1≤j≤k) =

∫ δ(c)

0

αlα−1(1 − Pc(l))
kdl

≤
∫ δ(c)

0

αlα−1(1 − Ψ(l))kdl

=

∫ δ(c)

0

αlα−1

(

1 − ld

δ(c)d

)k

dl

=

∫ 1

0

αδ(c)αλα−1(1 − λd)kdλ

= δ(c)α
(α

d

)

∫ 1

0

y(α/d)−1(1 − y)kdy

= δ(c)α
(α

d

)

B
(

k + 1,
α

d

)

.
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And thus, δ(c) = 2 (c on the boundary) maximizes the value above. This
completes the proof.

Remark: The results obtained here for evenly distributed points in the unit
ball (expected values, ratios, bounds) so far are valid for any positive α. Then,
we have that the expected weighted-length of the i-th step si of |EMIT |d in
the unit ball for evenly distributed point is

1

i + 1
= B (i + 1, 1) ≤ si ≤ 2dB (i + 1, 1) =

2d

i + 1
.

Evaluating for n steps leads to

Ω(log n) =

n+1
∑

i=2

1

i
≤ |EMIT |d ≤ 2d

n+1
∑

i=2

1

i
= O(log n).

Unlike |EMST |d of points evenly distributed inside the unit cube, which con-
verges to a constant as n → ∞ [1], the expected value of |EMIT |d of points
evenly distributed inside the unit ball is Θ(log n). With the same argument, for
k > 0 we have that the expected |EMITk|d = Θ

(

log k + n
k

)

.
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