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Abstract—The now commonplace multi-core chips have in-
troduced, by design, a deep hierarchy of memory and cache
banks within parallel computers as a tradeoff between the user
friendliness of shared memory on the one side, and memory
access scalability and efficiency on the other side. However, to
get high performance out of such machines requires a dynamic
mapping of application tasks and data onto the underlying
architecture. Moreover, depending on the application behavior,
this mapping should favor cache affinity, memory bandwidth,
computation synchrony, or a combination of these. The great
challenge is then to perform this hardware-dependent mapping
in a portable, abstract way.

To meet this need, we propose a new, hierarchical approach
to the execution of OpenMP threads onto multicore machines.
Our ForestGOMP runtime system dynamically generates struc-
tured trees out of OpenMP programs. It collects relationship
information about threads and data as well. This information
is used together with scheduling hints and hardware counter
feedback by the scheduler to select the most appropriate
threads and data distribution. ForestGOMP features a high-
level platform for developing and tuning portable threads
schedulers. We present several applications for which we
developed specific scheduling policies that achieve excellent
speedups on 16-core machines.

I. INTRODUCTION

Typical nowadays computer architectures are based on
a non uniform memory access (NUMA) interconnect of
processing units based on multicores and simultaneous mul-
tithreading technologies. They can be seen as nested sets
of resources with varying degrees, tightness and complexity
of relationships, from a general point of view. The nature
of these relationships being the sharing (or not) of some
memory bank, cache, or even internal processing circuitry
in the case of SMT.

Sharing has potentials for efficiency as a source of ra-
tionalization, but the other side of the coin is that sharing
also has potentials for inefficiency as well, as a source of
contention. Exploiting these machines efficiently is therefore
a real challenge and dilemmas come when trying to take
into account the memory hierarchy and the CPU utilization
simultaneously. On NUMA machines for instance, threads
should generally be scheduled as close to their data as
possible, but bandwidth-consuming threads should rather be
distributed over different chips.

As a consequence of their hierarchical nature, nowadays

architectures feature numerous degrees of freedom. The
layout, the number and the respective size of the nested
sets of resources may considerably differ from one machine
to another one. Therefore, the efficient programming of
multicore and NUMA architectures requires an in-depth
knowledge of both the target computer architecture and
the application behavior like data sharing, synchronizations,
memory access patterns, affinity and inter-thread relation-
ship. As a consequence, the programmer should be given
means to hint and guide the execution of his application.

Nevertheless, even if experienced programmers are able
to develop efficient applications for a specific hardware
configuration, most of them rely on the operating system
to get performance out of their parallel programs. Thus, the
application programmer should be able to decide how much
effort he wants to invest in his application parallelization
process, and how much control he is willing to leave to
the operating system. However, while the core scheduler
of operating systems can often be influenced, it misses
the ability to get accurate information about application
behavior: for instance, adaptively-refined meshes entail very
irregular and unpredictable behavior. This is why we claim
that we can only reach the portability of performance by
letting the runtime system be in charge of controlling thread
scheduling and data placement layouts with the help of the
application programmer. The runtime system can in turn
cooperate with the operating system and gather hardware
counters in the name of the application programmer, thus
adapting the programmer requests to the current system state
and the available resources.

The runtime system plays central role here. Its job is
to adapt the execution of the application to the resources
allocated by the operating system. Now, while the scheduling
decisions should be left to the runtime, the whole software
stack, from the application to the operating system, should
be involved in the parallelizing and locality adaptation by
providing useful information to the other components. In
particular, it is important for the application to expose a
structured view of its parallelism so that the runtime can later
map it onto the allocated resources. For instance, in OpenMP
frameworks, the information extracted by the compiler about
memory affinity and adherence to the same parallel section
can benefit in the guidance of task/thread scheduling. Such



an information may also help in selecting a suitable memory
bank location for pieces of data, or moving data to a new
location to follow the evolution of the application state and
behavior.

Our approach builds on these ideas to provide an OpenMP
runtime system tightly integrated with a hardware-aware
scheduler for structured execution of applications on nowa-
days hierarchical shared-memory computers. It combines the
principles of a tree-like application parallelism structuring
extracted with the help of the OpenMP compiler front-end
and a tree-like modeling of the underlying architecture. It
then dynamically maps the continuously evolving applica-
tion parallelism tree onto the architecture tree, migrating
threads and/or data when needed so as to maintain a good
balancing of threads when events arise (task termination,
new parallel sections, etc.).

This paper is organized as follows. Section 2 presents
our FORESTGOMP OpenMP runtime system to exploit
multicore and NUMA architectures through high level
guided parallel execution. FORESTGOMP cooperates with
our BUBBLESCHED programmable thread scheduling frame-
work. Section 3 and Section 4 respectively introduce and
evaluate the BUBBLESCHED policy we designed to schedule
OpenMP programs onto multicore architectures and the
complementary policy we designed for the NUMA case.
Section 6 discusses relationships with other works from the
community and Section 7 concludes the paper.

II. FORESTGOMP: A HIGH LEVEL WAY TO GUIDE
PARALLEL EXECUTION

To fully tap into the potential of multicore machines,
we have designed a platform for experimenting with and
tuning scheduling policies of threads and tasks generated by
OpenMP programs.

A. Rationale

Up to now, the OpenMP specification [1] has been built
on the assumption that the underlying target architecture
is a set of identical, independent computing units with
a flat, isochronic shared memory space. For many years,
this assumption was reasonable, but it is not anymore.
Multicore and NUMA architectures break the assumption
and offer new challenges to the application programmer that
the OpenMP specification is not yet ready to take up.

Parallel programming approaches on such architectures
have to deal with thread and data placement which OpenMP
ignores. This is why the OpenMP ARB is currently dis-
cussing possible evolutions providing ways to group related
threads together, place them according to their affinities,
and distribute the data they access. These evolutions are
promising but are mostly designed for the experienced
programmers. The application programmer still has to make
assumptions on parameters he cannot guess that directly de-
pends on the underlying system state, like the amount of free

memory or memory contention. This may lead to developing
non-portable applications by defining the number of threads
devoted to a parallel section and explicitly pinning threads
onto the cores. Explicit binding and extended scheduling
controls are desirable for advanced users to experiment
with accurate low-level placement and understanding perfor-
mance, but for the regular scientific application programmer
there is a need for a more abstract, higher level approach.

The OpenMP specification was designed keeping in mind
that the more accurate an OpenMP application is, the better
performance it obtains. The OpenMP language implements
this philosophy by providing high level clauses and key-
words that help the programmer with parallelizing his appli-
cation. For example, the user can define the minimal length
of a chunk of the iteration space a parallel loop. Additional
parameters and keywords helps the programmer defining the
loop scheduling behavior or his parallelism grain.

Our approach extends the OpenMP philosophy of an
incremental parallelization work from the application pro-
grammer. It advocates the idea that the programmer can
help in the mapping of his application on the multicore or
NUMA underlying architecture by progressively providing
the runtime system with the additional information it needs
to get a global view of thread and data relationship. The task
of the runtime system is then to structure that parallelism to
make an efficient use of hierarchical architectures.

B. The ForestGOMP runtime system

We developed the FORESTGOMP runtime to meet all
these needs. FORESTGOMP is an extension of the GNU
OpenMP library (LIBGOMP) that automatically structures
the parallelism of OpenMP applications relying on the
BUBBLESCHED platform. BUBBLESCHED provides a way
to group related threads together into structures called Bub-
bles [2]. This way, the scheduler has a persistent view of
the threads relationship that can be defined by sharing data
or synchronizing a lot for example. As bubbles can contain
nested bubbles, nested parallelism ends up with generating
a tree of threads.

OpenMP parallel regions create threads to parallelize a
sequential job. These threads usually share data and often
needs to synchronize with each other. Thus the FOREST-
GOMP runtime groups these threads into the same bubble
structure. More generally, a bubble is created every time
the application creates parallelism. As nested parallel re-
gions generate nested bubbles, FORESTGOMP automati-
cally builds a tree of OpenMP thread teams out of any
OpenMP applications. This gives the FORESTGOMP sched-
uler a persistent and global view of threads likely to work
together.

The runtime then needs to efficiently map this structured
parallelism onto any hierarchical architecture. To do so, we
believe that the operating system should not completely hide
the computer architecture. Therefore, our runtime builds a
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Figure 1. Description of the FORESTGOMP runtime system, its schedulers
that are combined to tackle cache and memory affinity, and its interaction
with the application and low-level libraries.

generic representation of the architecture with the help of
the OS as hierarchical runqueues. A runqueue is a list
containing threads and bubbles to be executed. We associate
a runqueue to any level of the architecture: we define
core-level runqueues, processor-level runqueues, NUMA
node-level runqueues that define scheduling domains. For
instance, scheduling a thread on a node-level runqueue
means this thread can only be executed by one of the core
this NUMA node contains. This way, one may constrain
the execution of OpenMP teams to a specific part of the
computer architecture.

To sum it up, FORESTGOMP structures the parallelism
by generating a tree of threads and bubbles out of OpenMP
applications and models hierarchical architectures with a tree
of runqueues. So the problem of scheduling boils down to
mapping a tree of threads onto a tree of runqueues. Many
ways exist to implement this mapping, depending on the
application nature and needs. The FORESTGOMP runtime
provides several mapping policies called bubble schedulers.
One may even design his own specific bubble scheduler
thanks to a programming interface that helps with the details
of bubbles and runqueues management.

The FORESTGOMP runtime system is implemented as a
shared library that is binary compatible with LIBGOMP and
extends it by adding a specialized affinity hint interface. As
depicted on Figure 1, applications create OpenMP thread
teams and let FORESTGOMP transparently schedule them
using custom thread schedulers that are for instance invoked
when an imbalance or locality issue appears. FOREST-
GOMP relies on the BUBBLESCHED framework of the
MARCEL multithreading library [2] to actually execute these
threads according to its scheduling decision.

The knowledge of the underlying hardware is gathered
from the HWLOC and MAMI libraries. HWLOC1 [3] was
initially developed internally in BUBBLESCHED to gather
portable information about the underlying hardware at
startup. It is now available as a standalone library that
builds a hierarchical architecture tree composed of objects

1http://runtime.bordeaux.inria.fr/hwloc

describing the hardware (Node, Socket, Cache, Core, and
more) and various attributes such as the cache type and
size, or the socket number. It provides MPI and OpenMP
libraries with a portable programming interface that abstracts
the machine hierarchy, offering both hardware information
gathering and process and thread binding facilities. MAMI2

is a memory interface that was designed to manage memory
allocation and placement with regard to NUMA nodes within
our user-level thread library in a portable manner. Aside
from usual memory allocation policies such as binding
or interleaving, it also offers synchronous and next-touch
memory migration strategies. FORESTGOMP relies on these
features to implement its memory affinity directives.

C. An open scheduling framework

The FORESTGOMP platform allows programmers to
easily write, experiment with and tune thread scheduling
policies. It provides a high-level API for writing powerful
and portable schedulers that manipulate threads grouped
into bubbles, as well as tracing tools to help analyzing
the dynamic behavior of these schedulers. Programmers
can hence focus on algorithmic issues rather than on nasty
technical details.

Our programming interface is centered around primitives
for manipulating bubbles and threads among a hierarchy of
runqueues reflecting the underlying topology. Threads and
bubbles are equally considered as entities, while bubbles and
runqueues are equally considered as scheduling holders, so
that we end up with entities (threads or bubbles) that we
can schedule on holders (bubbles or runqueues). Primitives
are then provided for manipulating entities in holders. Run-
queues can be accessed through vectors, and can be walked
thanks to “father” and “son” pointers. Some functions permit
to gather statistics about bubbles so as to take appropriate
decisions. This includes for instance the total number of
threads and the number of running threads, but also various
information such as the accumulated expected and current
CPU computation time or memory usage, or the cache miss
rates. To handle concurrency, one can use either fine-grain
locking functions or coarse-grain functions which lock a
whole sub-part of the machine (runqueues and bubbles).

Writing a high-level scheduler actually reduces to writing
some hook functions. For instance, one of these hooks is
called when the ground Self-Scheduler encounters a bubble
during its search for the next thread to execute. The default
implementation just looks for a thread in the bubble (or
one of its sub-bubbles) and switches to it. Another hook
is called when some time-slice for a bubble expires, and
hence permits periodic operations on bubbles with a per-
bubble notion of time. Of course, mere “daemon” threads
can also be started for performing background operations. As
a result, programmers may manipulate threads with a high

2http://runtime.bordeaux.inria.fr/MaMI



level of abstraction by deciding the placement of bubbles
on runqueues, or even temporarily putting some bubbles
aside (by defining their own runqueues that the basic Self-
Scheduler will not look at).

D. Raw performance

As preliminary experiments, we tested the LIBGOMP
library that comes with GCC 4.4, the INTEL compiler
11.1 and the FORESTGOMP runtime on the EPCC micro-
benchmark and the NAS OpenMP parallel benchmark suite.
We executed these benchmarks on a quad-socket quad-core
Opteron computer while setting the OMP_NUM_THREADS
environment variable to 16 to get one thread per core.
In that case, and more generally when dealing with flat
parallelism, the FORESTGOMP runtime binds one thread
per core. Figure II shows the overhead of each runtime
system for each OpenMP construct obtained with the EPCC
micro-benchmark. Figure I shows the speed-up of the B class
of each application from the NAS OpenMP parallel bench-
mark suite. The calculated speed-ups refer to the sequential
execution time of each application compiled with the INTEL
compiler. The FORESTGOMP runtime behaves better on
both BT and MG applications thanks to a more stable thread
distribution. The INTEL runtime obtains better speed-ups on
EP and SP thanks to better compiler optimizations. Indeed,
the last two lines of table I show that serial execution times
compiled with ICC and GCC (without OpenMP directives)
differ a lot for these applications. INTEL locks are more
efficient than the ones provided by the LIBGOMP and
FORESTGOMP runtimes, so the INTEL runtime behaves
better on the UA application which generates more than
300000 locks. The performance obtained with the CG, FT
and LU applications (exceeding 16 of speed-up thanks to
cache effects) is very similar. FORESTGOMP only adds a
small overhead induced by the management of the bubble
structures.

III. DESIGNING MULTICORE-AWARE SCHEDULING
POLICIES

OpenMP developers are used to explicitly drive the par-
allel behavior of their code but the increasing complexity
of computer architectures now renders this process difficult.
Multicore architectures expose many processing units often
organized in a hierarchical way, sharing multiple levels of
cache memory. This explains why parallel languages gener-
ating flat parallelism often fail to exploit these architectures
at their full potential (benefit from cache memory reuse, fast
synchronizations, locality commodities).

Nested parallelism seems to be a natural way to fit
the hierarchical structure of parallel computers. However,
considering two running nested teams for instance, the first
team to finish its work will make a whole set of cores idle,
waiting for the other one to complete. Thus, to exploit this
paradigm efficiently, it is necessary to create more OpenMP

threads than cores or to dynamically allocate new cores to
teams. This comes with a price that needs to be mitigated
by the runtime system. For instance, Table III shows how
the FORESTGOMP barrier was tailored in this aim.

A. A scheduling strategy to deal with multiple levels of cache
memory

We previously presented a scheduler named Affinity [4]
and showed that FORESTGOMP was able to schedule a very
irregular application, called MPU, computing an implicit
surface reconstruction which produces more than 30 000
threads per second on a 16-core computer. We present
here the Cache scheduler, an evolution of Affinity, which
differs in its initial distribution and by the fact Cache is
able to take the thread workload into account. The Cache
bubble scheduler main goal is to maximize cache memory
reuse by scheduling related threads together onto cache-
sharing cores. In the context of OpenMP, this means to
keep the OpenMP teammates together as long as possible.
FORESTGOMP structures OpenMP parallelism by grouping
threads created from a parallel region into the same bubble.
Taking cache affinity into account reduces to preventing the
scheduler from breaking these bubbles. The Cache distribu-
tion algorithm first sorts the teams to schedule depending
on their workload. This way, when there are more teams
than cores to occupy, a greedy distribution guarantees that
the scheduler will not have to burst any bubble. Otherwise,
Cache decides to burst the bubble containing the greatest
number of threads first. The scheduler maintains statistics
about where the threads were scheduled the last time the
Cache algorithm was called, to be able to place them back at
their previous location and maximize cache memory reuse.
The Cache scheduler also implements a work stealing algo-
rithm, inspired from existing programming models like Cilk
or TBB, with the exception that the Cache scheduler starts
to look for threads to steal locally first, in accordance with
cache affinities expressed by bubbles. The way the Cache
work stealing algorithm browses the architecture topology
has a direct impact on the overall application performance.

B. Evaluation with the BT-MZ application

We also experimented with the BT-MZ application. It
is one of the 3D Fluid-Dynamics simulation applications
of the Multi-Zone OpenMP version of the NAS Parallel
Benchmark 3.3. In this version, the mesh is split in the
x and y directions into zones. Parallelization is then
performed twice: simulation can be performed rather
independently on the different zones with periodic face
data exchange (coarse grain outer parallelization), and
simulation itself can be parallelized among the z axis
(fine grain inner parallelization). As opposed to other
Multi-Zone NAS Parallel Benchmarks, the BT-MZ case is
interesting because zones have very irregular sizes: the size
of the biggest zone can be as big as 25 times the size of



Table I
SPEED-UP OF THE NAS OPENMP PARALLEL BENCHMARK SUITE, COMPARED TO THE ICC AND GCC SERIAL TIME, ON A QUAD-SOCKET QUAD-CORE

OPTERON COMPUTER.

Runtime BT CG EP FT LU MG SP UA
LIBGOMP3 vs. GCC serial 12.4 14.0 15.8 12.2 19.8 5.8 4.3 7.0

FORESTGOMP vs. GCC serial 13.1 14.0 15.6 12.0 19.8 6.4 4.8 3.3
LIBGOMP3 vs. ICC serial 11.5 12.4 9.1 10.1 17.0 5.1 3.2 6.6

FORESTGOMP vs. ICC serial 12.1 12.4 9.0 9.9 17.0 5.6 3.6 3.1
INTEL ICC vs. ICC serial 11.2 12.3 14.9 10.1 17.9 4.7 5.3 4.4

GCC serial (s) 693 369 152 120 913 22.7 655 420
INTEL ICC serial (s) 642 327 87.8 99.1 782 20.0 493 397

Table II
RUNTIME OVERHEAD (US) OBTAINED WITH THE EPCC MICRO-BENCHMARK ON A QUAD-SOCKET QUAD-CORE OPTERON COMPUTER.

Runtime atomic barrier critical for lock parallel parallel for reduction single
LIBGOMP3 0.30 2.91 4.01 2.91 3.95 7.15 8.15 8.74 3.74
INTEL ICC 0.39 5.12 2.20 5.07 2.21 8.15 8.18 15.66 19.50

FORESTGOMP 0.29 3.31 4.03 3.34 3.88 7.02 7.46 7.58 2.56

Table III
EPCC BENCHMARK: OVERHEAD (US) OF THE BARRIER CONSTRUCT DEPENDING ON THE NUMBER OF THREADS ON A QUAD-SOCKET QUAD-CORE

OPTERON COMPUTER.

Runtime 16 threads 32 threads 64 threads
LIBGOMP3 2.91 187.9 (×64) 371.1 (×128)
INTEL ICC 4.93 17.98 (×3.64) 63.29 (×12.84)

FORESTGOMP 3.31 3.87 (×1.17) 5.15 (×1.56)

the smallest one. In the original SMP source code, outer
parallelization is achieved by using Unix processes while
the inner parallelization is achieved through an OpenMP
static parallel section. Similarly to Ayguade et al. [5] and
Jin et al. [6], we modified this to use two nested OpenMP
static parallel sections instead, using no ∗ ni threads.

This application differs from MPU in the way the
application programmer knows the workload associated
with each zone. Transmitting this information to the
runtime system can help guiding the scheduling to favor
load balancing. The Cache distribution algorithm takes
workload information into account when there are more
groups of threads to distribute than cores to occupy. In
that case, the scheduler performs a greedy distribution
considering the workload of each team.

Table IV shows the speed-ups obtained by the LIB-
GOMP and INTEL runtime systems, and different versions
of the Cache scheduler that comes with FORESTGOMP,
depending on the number of threads created from outer and
inner parallel regions. We tested the C class of the BT-
MZ application on a quad-socket quad-core computer. First,
the performance confirms the FORESTGOMP runtime was
designed for nested parallelism as it behaves better, for any
combination of outer and inner number of threads, than the
LIBGOMP and INTEL libraries. The Cache scheduler behaves

best with 32 teams of 8 threads. Creating more threads than
processors in this application offers the Cache scheduler
ways to steal work when a processor idles, reaching this way
a speed-up of 14.48. The column Cache + load info shows
the performance obtained when the application programmer
provides the workload associated to each zone to compute.
This way, the Cache scheduler distribution algorithm takes
the load into account when distributing the teams thus
minimizing the need to call the work stealing algorithm.
Such a distribution obtains a speed-up of 15.05. Alterna-
tively, we slightly modified the Cache distribution algorithm
to improve the load balance. In this version, instead of
distributing all the teams over the core-level runqueues, we
pick the most-loaded runqueue of each NUMA node and put
its workload on the NUMA-level runqueue. This way, when
a core completes the jobs associated to its runqueue, it starts
helping out the most-loaded core associated to its NUMA
node without having to call the work stealing algorithm. This
strategy leads to a speed-up of 15.25, the best performance
we obtained on the BT-MZ application, thanks to the fact
that Cache distributes the OpenMP teams in a deterministic
way that always leads to the same distribution, thus improv-
ing locality. This strategy also guarantees that teams with the
highest workload will be executed first reducing the ending
idle time.

Several OpenMP language extensions have been proposed
to control the allocation of work to the participating threads.



Table IV
SPEED-UPS OBTAINED WITH THE BT-MZ (CLASS C) APPLICATION, COMPARED TO THE ICC SERIAL TIME, ON A QUAD-SOCKET QUAD-CORE OPTERON

COMPUTER DEPENDING ON THE NUMBER OF THREADS CREATED FROM OUTER AND INNER PARALLEL REGIONS.

Outer × Inner LIBGOMP3 INTEL Cache Cache + load info Tuned Cache + load info
4×4 9.4 13.8 14.1 14.1 14.1

16×1 14.1 13.9 14.1 14.1 14.1
16×2 11.8 9.2 14.1 14.2 14.3
16×4 11.6 6.1 14.1 14.9 14.9
16×8 11.5 4.0 14.4 15.0 15.2
32×1 12.6 10.3 13.5 13.8 13.8
32×2 11.6 5.9 14.2 14.2 14.3
32×4 11.2 3.4 14.3 14.8 14.8
32×8 10.9 2.8 14.5 14.7 14.7

In order to favor affinities in a portable manner the NANOS
compiler [5] allows to associate groups of threads with
parallel regions in a static way in order to always execute
the same thread on the same core. The OpenUH Compiler
[7] proposes a mechanism to accurately select the threads of
a subteam to define the thread-core mapping for better data
locality, although this proposition does not involve nested
parallelism.

Both mechanisms can lead to the performance FOREST-
GOMP obtains on the BT-MZ benchmark. Indeed, the
regular application scheme makes the best thread distribution
feasible by explicit thread binding. However, the next section
presents experiments in which the thread distribution needs
to be reviewed dynamically to achieve the best performance.

IV. DESIGNING MEMORY-AWARE SCHEDULING
POLICIES

FORESTGOMP achieves interesting speedups on previ-
ous examples thanks to regular memory access patterns.
However, in the general case, the application may exhibit
irregular access patterns that must be taken into account
when load-balancing threads. Thread teams must be able
to migrate together with their datasets in memory so as to
maintain good locality and load balance.

A. Dealing with NUMA constraints at runtime

To keep designing larger scale configurations, computer
architects propose ways to connect multicore chips together
relying on technologies like AMD HYPERTRANSPORT or
INTEL QPI. The resulting computers burden the applica-
tion programmer with NUMA penalties and memory con-
tention, making him concerned by memory affinity and
thread/memory locality. Some software support already ex-
ists to help with limiting the amount of remote memory
accesses in parallel applications, like the first-touch and
next-touch allocation policies. first-touch makes the oper-
ating system allocate the considered pages next to the first
thread to access them. It helps with improving thread/data
locality, but assumes the memory access patterns will not
change during the entire execution. next-touch asks the
operating system to migrate the considered pages next to

the next thread to access them. It helps with improving
the performance of irregular applications, but is not widely
available. More generally, both policies suffers from the
same issues. First, they assume the first thread to touch the
page will be the one that will work on them later. They
also ignore the underlying system state while migration may
suffer from out-of-memory situations or contention on the
bus. These issues vary during the execution, forcing the
thread and data distribution to adapt dynamically. That is
why our approach is to let the runtime system in charge
of threads and data placement. It is easier to achieve a
sharper jointed distribution of threads and data with the
precious hints the application programmer (or compiler) can
provide : programmers (or compilers) may have a global
view of threads and data relationship while a runtime can
only discover them on the fly.

When it comes to designing applications for NUMA ar-
chitectures, the application programmer has no other option
than relying on the operating system. From our point of
view, the runtime system is more likely to communicate
efficiently with the operating system. Expressing his needs
to the runtime system keeps the application programmer
from designing non-portable applications. That is why, in
a NUMA context, FORESTGOMP provides a programming
interface for the programmer to express memory affinity
from his application [8]. He no longer needs to be concerned
about the underlying system state. All he has to do is to
express his application patterns in a generic way. FOREST-
GOMP provides two functions to do so: the first one sets
the memory affinity for an OpenMP team to be born, and the
second one sets the affinity for the caller thread from inside
a parallel region. While the first one allows the runtime to
perform early optimizations like directly creating the threads
on the right runqueues, the second one is also needed when
the memory access pattern changes inside a parallel region.

B. The Memory bubble scheduler
Now that the application programmer is able to transmit

the memory affinities from his application to the runtime
system, we need a scheduling strategy to perform a sound
distribution of threads and data regarding the gathered



information. This section introduces the Memory bubble
scheduler.

Scheduling while preserving memory affinities: Every
FORESTGOMP threads and teams now have some attached
memory areas the runtime system can see. The Memory
scheduler main goal is to distribute the threads and migrate
the attached data to make every OpenMP team access local
memory. To do so, it implements a three-phases distribution
algorithm. The first algorithm phase consists in attracting
the threads to the NUMA node holding the higher amount
of their data. This information can be summarized onto
bubbles. A bubble will explode if it contains threads attracted
to different runqueues for the scheduler to be able to
satisfy every expressed affinity. The phase one can lead to
an unbalanced distribution. Indeed, some applications may
allocate the accessed data on a small group of nodes, which
means some nodes would not have any threads to execute
at the end of phase one. To make sure every core will be
occupied at the end of the distribution, the second algorithm
phase stretches some memory affinities to balance the load
on the computer. We move the threads with the smallest
amount of attached memory first to do so (including threads
with untouched memory). The last phase of the distribution
algorithm is a matter of migrating the remotely-located data
to the new threads location. As threads were driven to
the node holding the bigger amount of their data during
phase one, the Memory scheduler is guaranteed to migrate
as less data as possible. This aspect has a real impact on
performance, as migrating data is far more expensive than
moving FORESTGOMP threads. When the distribution over
the node level runqueues is over, an instance of the Cache
scheduler is called inside each NUMA node to perform a
cache-aware threads distribution.

Updating the threads and data distribution at the
right time: Updating the threads and data distribution is a
sensitive mechanism that influences the overall application
performance. Calling the bubble scheduler too often will
slow down the execution, as the bubble scheduler will
browse the architecture topology to figure out the updates
to perform on the current distribution. On the other hand,
you will not get the best performance if the scheduler do
not react soon enough in case of a major access pattern
change. FORESTGOMP adopts a two-ways mechanism to
decide how often the distribution needs to be updated.
First, every time the application programmer updates the
memory affinities, the bubble scheduler is called to check
the current distribution. This approach may not be sufficient
for irregular applications, so FORESTGOMP also provides
a more dynamic mechanism based on hardware counters
inspecting. The runtime checks the counters on a regular
basis and infers the amount of remote memory accesses
initiated from the current processor while defining a thresh-
old from which FORESTGOMP will call the scheduler for
checking the current distribution. These two approaches are

complementary. Indeed, in some cases updates from the ap-
plication programmer will not need the scheduler to rethink
the current distribution. In other cases the programmer is
able to roughly define which part of his application will
work on which data, but cannot tell precisely when and how.
Hardware counters can help reacting at the right time for
these situations.

C. Evaluation

We evaluate our approach on the Twisted-STREAM and
LU matrix factorization benchmarks.

Twisted-STREAM: STREAM3 is a synthetic benchmark
parallelized using OpenMP that measures sustainable mem-
ory bandwidth and the corresponding computation rate for
simple vectors. The three input vectors are wide enough
to limit the cache memory benefits (20 millions double
precision floats) and are initialized in parallel using a first-
touch allocation policy to get the corresponding memory
pages close to the thread that will access them.

To complicate the STREAM memory access pattern, we
designed the Twisted-STREAM benchmark in which we use
nested OpenMP parallel regions. The benchmark now cre-
ates one team per NUMA node of the computer that works
on its own set of STREAM vectors initialized in parallel, as in
the original version of STREAM. To fit the target computer, a
quad-socket quad-core OPTERON computer, the benchmark
creates four teams of four threads.

Twisted-STREAM contains two distinct phases. During the
second phase, each team works on a different data set than
the one it was given in the first phase. We also modified
the original benchmark so as to make the threads workload
vary. The user can so specify how many STREAM iterations
each team will have to compute.

The first-touch allocation policy only gives good results
for the first phase as shown in table V. FORESTGOMP
achieves the best and most stable performance on phase 1.
The underlying bubble scheduler distributes the threads by
the time the outer parallel region is reached. Each thread is
permanently placed on one NUMA node of the computer.
Furthermore, FORESTGOMP creates the teammates threads
where the master thread of the team is currently located. As
the vectors accessed by the teammates have been touched
by the master thread, this guarantees the threads and the
memory are located on the same NUMA node, and thus
explains the good performance we obtain during phase one.

A typical solution to the lack of performance observed
during phase two seems to rely on a next-touch page mi-
gration between the two phases of the application. However
we show in the remaining of this section that next-touch is
not always the best answer to the memory locality problem.
We tested two different versions of the Twisted-STREAM
benchmark: Twisted-100, in which all of the three vectors are

3http://www.cs.virginia.edu/stream/



Table V
AVERAGE RATES PER NODE OBSERVED WITH THE TWISTED-STREAM BENCHMARK USING A first-touch ALLOCATION POLICY. DURING PHASE 2,

THREADS ACCESS DATA ON A DIFFERENT NUMA NODE.

LIBGOMP INTEL FORESTGOMP
Phase 1 2 ± 1 GB/s 3 ± 0.5 GB/s 3.6 ± 0.2 GB/s
Phase 2 1.3 ± 1 GB/s 2 ± 0.5 GB/s 1.7 ± 0.2 GB/s

remotely-located during phase 2, and Twisted-66 in which
only two of the three vectors are located on a remote NUMA
node. It is worth noticing that we obtained performance
shown in table V with Twisted-100.

Table VI shows the normalized execution times of the
Twisted-100 benchmark compared to the performance ob-
tained by the LIBGOMP runtime. In this case, all data is
remotely located during phase 2. next-touch migrates the
data to the location of the threads, which helps improving the
performance when the threads workload is big enough. The
Memory bubble scheduler prefers to move the threads to the
location of the data. Indeed, the STREAM benchmark works
on three 160MB-vectors. As migrating 480MB of memory is
far more expensive than moving 16 FORESTGOMP threads,
FORESTGOMP obtains the best performance here, whatever
threads workload we set.

In the case of the Twisted-66 benchmark, only two of the
three STREAM vectors are located on a remote NUMA node
during phase 2. This time, the Memory bubble scheduler
will first attract to threads to the location of the two
remote vectors, and then migrate the remaining one. This
way, FORESTGOMP only migrates one vector, instead of
migrating two of them with a next-touch approach. Table VII
shows the Memory scheduler algorithm offers performance
gain sooner, and still behaves better than next-touch when
the workload increases.

LU Matrix Factorization: We now look at a threaded
LU matrix factorization. As usual, the implementation splits
the matrix into smaller data blocks that are actually manipu-
lated by a BLAS library (ATLAS). During each step, a new
pivot block is computed on the diagonal. Then, the values
for the corresponding column and row are updated as well
as the ones for the remaining bottom-right blocks. This is
done using for loops that we parallelized thanks to OpenMP
parallel for pragmas. Data is initially distributed across all
memory nodes in a interleaved manner so as to maximize the
memory throughput. We measure a 388.9s factorization time
(60.3 Gflop/s) for a 32k-wide matrix divided in 64 blocks per
dimension.

This program is actually a good example of application
where the developer cannot easily give useful hints about
memory access patterns. Indeed, the number of blocks
involved in each computation step decreases quadratically,
causing threads to work on highly different blocks at each
step. Therefore, instead of trying to understand these patterns

and place threads and data jointly, we use a lazy next-touch
approach. The whole matrix is marked as next-touch when
the hardware counters overcome the FORESTGOMP remote
accesses threshold so that the data is redistributed among the
NUMA nodes when needed, depending on OpenMP thread
access patterns. The factorization time decreases by 30%
down to 298.2s (80.78 Gflop/s) thanks to this strategy that
requires a moderate amount of work from the developer.
Other matrix sizes show similar behavior but the block size
must be carefully chosen so that the next-touch strategy is
not disturbed by single pages being shared between multiple
blocks/threads.

If migrating pages on next-write only, another 2.7%
improvement is even obtained. We understand this result as
the fact that Writers should be privileged in this algorithm
since placing pages near them improves performance over
placing pages near the first reader or writer.

V. RELATED WORK

Memory placement has been studied in the context
ofOpenMP through some proposals towards data distribution
directives la HPF [9], [10]. Such directives are useful to
organize data the right way to maximize page locality, and,
in our research context, a way to transmit affinity infor-
mation to our runtime system without heavy modifications
of the user application. Automatic page migration [11] was
also proposed as an innovative way to maintain locality
in applications with regular memory access pattern. The
convenient next-touch policy was studied as a way to tackle
irregular algorithms which suffer from the lack of cooper-
ation between the scheduler and the allocation library [12],
[13].

Multilevel and nested parallelism has long been em-
phasized as a promising path toward scalability with
OpenMP [14], [15], gradually brought compiler researchers
and vendors to put more of their efforts on OpenMP nested
parallelism. Extensions to control the binding of OpenMP
threads were also proposed [5], [7]. Beyond the specific
context of OpenMP, user-level multithreading was also the
target of the INTEL Many-Core RunTime [16] environment.
McRT extends the task queue mechanism to support schedul-
ing domains that allows an application to select different
hardware units where its different parts to be scheduled on.
It however doesn’t provide any framework for developing
dedicated schedulers, and thus can only provide a limited
range of scheduling abilities.



Table VI
NORMALIZED EXECUTION TIMES OF THE TWISTED-100 BENCHMARK (1.00 IS LIBGOMP) DEPENDING ON THE NUMBER OF STREAM ITERATIONS.

1 2 4 8 16 32 64 128
next-touch 5.92 3.28 2.06 1.36 1.07 0.99 0.97 0.95

FORESTGOMP 0.75 0.74 0.74 0.74 0.74 0.74 0.74 0.74

Table VII
NORMALIZED EXECUTION TIMES OF THE TWISTED-66 BENCHMARK (1.00 IS LIBGOMP) DEPENDING ON THE NUMBER OF STREAM ITERATIONS.

1 2 4 8 ... 128 256 512 1024
next-touch 1.72 1.3 1.1 1 ... 0.96 0.94 0.93 0.93

FORESTGOMP 1.29 1.08 0.99 0.94 ... 0.90 0.88 0.86 0.85

Several operating systems provide facilities for distribut-
ing kernel threads along the machine by grouping them into
sets: liblgroup on SolarisNSG on Tru64 and libnuma on
Linux. These look very much like single level bubbles, but
no possibility of nested sets is provided, which limits the
affinity expressivity. Moreover, none of them provides the
degree of control that we provide: with BUBBLESCHED, the
application has hooks at the very heart of the scheduler to
react to events like thread wake up or processor idleness.

In the context of high productivity computing systems,
PGAS languages (Chapel, UPC, X10,...) and Fortress pro-
vide programmers with ways to control where particular
threads run and how large objects are laid out in memory.
For instance, Fortress proposes a tree of regions to describe
the structure of the machine on which a program is run
and provides means to place a thread at a given region.
It may be interesting to associate a region with a bubble
and have our threading library schedule Fortress threads:
the Fortress programmer could therefore express affinities
and could benefit from dynamic scheduling mechanisms we
propose.

VI. CONCLUSION AND FUTURE WORK

FORESTGOMP is a platform for executing and tuning
OpenMP programs over hierarchical multicore architectures.
Its main component is an efficient runtime system capable
of scheduling trees of threads generated by an OpenMP
compiler. These trees both capture application parallelism
and serve as a vehicle for carrying thread relationship and
memory affinity information. Because this information is
maintained by the runtime system during the whole applica-
tion run, it can be used to perform appropriate redistributions
of threads or data whenever it is necessary.

We have shown the benefits of designing and tuning spe-
cific scheduling policies, according to the general behavior
of the application. We have presented the Cache and Mem-
ory bubble schedulers that achieve very high performance
on several applications. These schedulers are written in a
portable way, independently from the target architecture,
which demonstrates the relevance of our approach.

There are several research directions we intend to address
in the near future. We plan to provide the application
programmer with tools to mark memory areas that should be
attached to a thread upon the next read or write touch. This
mechanism would help the runtime system to better infer
the memory affinities, especially when the memory access
patterns become too complex to be defined a priori by the
programmer.

Our proposal is in line with the recent efforts of the
OpenMP Architecture Review Board which is currently
working on the next evolution of the specification towards
a satisfying support of hierarchical, multicore architectures.
In particular, the next release will feature new directives for
specifying affinity between threads and data. Our proposal
of a runtime system able to handle this information is
complementary.

In the longer run, we plan to explore ways to com-
pose our scheduling strategies with other schedulers and
paradigms. For instance, parallel languages like Cilk or TBB
rely on runtime systems able to efficiently schedule fine-
grain parallelism on SMP architectures. The idea here is
for instance to assign instances of TBB schedulers to each
NUMA node, while letting our Memory scheduler distribute
the work across the nodes, thus widening the spectrum of flat
parallelism approaches to NUMA computers in a portable
way.
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