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Chaotic dynamical systems associated with tilings of RN

Lionel Rosier ∗

February 3, 2010

Abstract

In this chapter, we consider a class of discrete dynamical systems defined on the homogeneous
space associated with a regular tiling of RN , whose most familiar example is provided by the
N−dimensional torus TN . It is proved that any dynamical system in this class is chaotic in the
sense of Devaney, and that it admits at least one positive Lyapunov exponent. Next, a chaos-
synchronization mechanism is introduced and used for masking information in a communication
setup.

Key words: Chaotic dynamical system, regular tiling of RN , ergodicity, Lyapunov exponent,
equidistributed sequence, chaos synchronization, cryptography.
AMS subject classifications: 34C28, 37A25, 93B55, 94A60

1 Introduction

Chaos synchronization has exhibited an increasing interest in the last decade since the pioneering
works reported in [21, 22], and it has been advocated as a powerful tool in secure communication
[31, 30, 10, 32, 3]. Chaotic systems are indeed characterized by a great sensitivity to the initial
conditions and a spreading out of the trajectories, two properties which are very close to the
Shannon requirements of confusion and diffusion [14].

There are basically two approaches when using chaotic dynamical systems for secure commu-
nications purposes. The first one amounts to numerically computing a great number of iterations
of a discrete chaotic system, in using e.g. the message as initial data (see [29] and the references
therein). The second one amounts to hiding a message in a chaotic dynamics. Only a part of
the state vector (the “output”) is conveyed through the public channel. Next, a synchronization
mechanism is designed to retrieve the message at the receiver part (see [27] and the references
therein).

In both approaches, the first difficulty is to “build” a chaotic system appropriate for encryption
purposes. In this context, the corresponding chaotic signals must have no patterning, a broad-band
power spectrum and an auto-correlation function that quickly drops to zero. In [23], a mean for
synthesizing volume-preserving or volume expanding maps is provided. For such systems, there
are several directions of expansion (stretching), while the discrete trajectories are folded back into
a confined region of the phase space. Expansion can be carried out by unstable linear mappings
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CISIFS, grant ANR-09-BLAN-0213-02.

1



with at least one positive Lyapunov exponent. Folding can be carried out with modulo functions
through shift operations, or with triangular, trigonometric functions through reflexion operations.
Fully stretching piecewise affine Markov maps have also attracted interest because such maps are
expanding in all directions and they have uniform invariant probability densities (see [28, 8]).

Besides, we observe that the word “chaotic” has not the same meaning everywhere, and that
the chaotic behavior of a system is often demonstrated only by numerical evidences. The first aim
of this chapter is to provide a rigorous analysis, based on the definition given by Devaney [6], of
the chaotic behavior of a large class of affine dynamical systems defined on the homogeneous space
associated with a regular tiling of RN . Classical piecewise affine chaotic transformations, as the
tent map, belong to that class. The dimension N may be arbitrarily large in the theory developed
below, but, for obvious reasons, most of the examples given here will be related to regular tilings
of the plane (N = 2). The study of the subclass of (time-invariant or switched) affine systems on
TN , the N−dimensional torus, is done in [25, 27]. The folding for this subclass is carried out with
modulo maps, which, from a geometric point of view, amounts to “fold back” RN to [0, 1)N by
means of translations by vectors in ZN . Those translations are replaced here by all the isometries of
some crystallographic group for an arbitrary regular tiling of RN . Notice also that the fundamental
domain used in the numerical implementation may be chosen with some degree of freedom. It may
be a hypercube (as [0, 1)N for TN ), or a polyhedron, or a more complicated bounded, connected
set in RN .

For ease of implementation and duplication, a cryptographic scheme must involve a map for
which the parameters identification is expected to be a difficult task, while computational require-
ments for masking and unmasking information are not too heavy. The second aim of this chapter
is to show that all these requirements are fulfilled for the class of dynamical systems considered
here. The way of extracting the masked information is provided through an observer-based syn-
chronization mechanism with a finite-time stabilization property.

Let us now describe the content of the chapter. Section 2 is devoted to the mathematical
analysis of the chaotic properties of the following discrete dynamical system

(1.1) xk+1 = Axk +B (mod G)

where A ∈ ZN×N , B ∈ RN , and (mod G) means roughly that xk+1 is the point in the fundamental
domain T derived from Axk + B by some transformation g in the group G. (1.1) may be viewed
as a “realization” in T ⊂ RN of an abstract dynamical system on the homogeneous space RN/G
of classes modulo G. The torus TN corresponds to the simplest case when G is the group of all the
translations of vectors u ∈ ZN and the fundamental domain is T = [0, 1)N . Note that most of the
examples encountered in the literature are given only for the torus TN with N = 1 and |A| > 2, or
for N = 2 and det A = 1 (see e.g. [9]). We give here a sufficient condition for (1.1) to be chaotic in
the sense of Devaney for any given regular tiling of RN (N > 1), and we investigate the Lyapunov
exponents of (1.1) and the equirepartition of the trajectories of (1.1).

Finally, a masking/unmasking technique based on a dynamical embedding is proposed in Section
3.

2 Chaotic dynamical systems and regular tilings of RN

2.1 Chaotic dynamical system

Let (M,d) denote a compact metric space, and let f : M → M be a continuous map. The following
definition of a chaotic system is due to Devaney [6].

Definition 1 The discrete dynamical system

(Σ) xk+1 = f(xk)
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is said to be chaotic if the following conditions are fulfilled:
(C1) (Sensitive dependence on initial conditions) There exists a number ε > 0 such that for any
x0 ∈ M and any δ > 0, there exists a point y0 ∈ M with d(x0, y0) < δ and an integer k > 0 such
that d(xk, yk) > ε;
(C2) (One-sided topological transitivity) There exists some x0 ∈ M with (xk)k>0 dense in M ;
(C3) (Density of periodic points) The set D = {x0 ∈ M ; ∃k > 0, xk = x0} is dense in M .

Recall [35, Thm 5.9], [34, Thm 1.2.2] that when f is onto (i.e., f(M) = M), the one-sided topological
transitivity is equivalent to the condition:
(C2′) For any pair of nonempty open sets U, V in M , there exists an integer k > 0 such that
f−k(U) ∩ V 6= ∅ ( ⇐⇒ U ∩ fk(V ) 6= ∅).

2.2 Regular tiling of RN

An isometry g of RN is a map from RN into RN such that ||g(X) − g(Y )|| = ||X − Y || for all
X,Y ∈ RN . Let G be a group of isometries of RN such that for any point X ∈ RN the orbit of X
under the action of G, namely the set

G ·X = {g(X); g ∈ G},

is closed and discrete. Let P ⊂ RN be a compact, connected set with a nonempty interior. Following
[2], we shall say that the pair (G,P ) constitutes a regular tiling of RN if the two following conditions
are fulfilled:

⋃

g∈G

g(P ) = RN(2.2)

∀g, h ∈ G
(

g(
◦
P ) ∩ h(

◦
P ) 6= ∅ ⇒ g = h

)

.(2.3)

Recall that
◦
P stands for the interior of P , that is

◦
P= {x ∈ P ; ∃ε > 0, B(x, ε) ⊂ P}.

The set P ⊂ RN is termed a fundamental tile, and the group G a crystallographic group. An
example of a regular tiling of R2 with a triangular fundamental tile is represented in Fig. 1.

Note that a point X ∈ RN may in general be obtained in several ways as the transformation
of a point in P by an isometry in G. We introduce a set T , called a fundamental domain, with
◦
P⊂ T ⊂ P and such that

⋃

g∈G

g(T ) = RN(2.4)

∀X,X ′ ∈ T , ∀g ∈ G
(

X ′ = g(X) ⇒ X ′ = X
)

.(2.5)

Introducing the equivalence relation in RN

X ∼ Y ⇐⇒ ∃g ∈ G, Y = g(X),

we denote by x = X the class of X for ∼, i.e. x = {g(X); g ∈ G} = G ·X. When several groups

are considered at some time, we denote by X
G

the class of X modulo G. Finally, we introduce
the homogeneous space of cosets H = (RN/G) = {x = X ;X ∈ RN}, and define on it the following
metric

d(X,Y ) = inf
g∈G

||Y − g(X)||.
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Figure 1: A regular tiling of R2 with a triangular fundamental tile.

The natural covering mapping π : RN → H, defined by π(X) = X, satisfies

d(π(X), π(Y )) 6 ||X − Y ||,

hence it is continuous. It follows that H = π(P ) is a compact metric space. On the other hand,
the restriction of π to T is a bijection from T onto H. We may therefore define the projection
̟ : RN → T by ̟(X) = (π|T )

−1π(X). Note that ̟ is in general not continuous when T is

equipped with the topology induced from RN , while it is continuous when T is endowed with the
topology inherited from H.

The simplest example of a regular tiling of RN is provided by the group of translations by
vectors with integral coordinates (which is isomorphic to the lattice subgroup)

(2.6) G = {tu; u ∈ ZN} ∼ ZN ,

where tu(X) = X+u. In such a situation, a fundamental tile (resp. domain) is given by P = [0, 1]N

(resp. T = [0, 1)N ), and the homogeneous space H is the standard N−dimensional torus TN . A
classification (up to isomorphism) of the crystallographic groups of RN has been done for a long
time for N 6 3. There are 17 such groups in R2, and 230 groups in R3, see [2, 5].

2.3 Affine transformation

We aim to define “simple” chaotic dynamical systems on M = H by using affine transformations.
Assume given a matrix A ∈ ZN×N and a point B ∈ RN . The following hypotheses will be used at
several places in the chapter.
(H1)

∀X,X ′ ∈ Rn (X ∼ X ′ ⇒ AX +B ∼ AX ′ +B)

i.e. X ′ = g(X) for some g ∈ G implies AX ′ +B = g′(AX +B) for some g′ ∈ G;
(H2) There exist a subgroup G′ ⊂ G of translations and a finite collection of isometries (gi)

k
i=1 in

G such that

(i) G is spanned as a group by the isometries in G′ ∪ (gi)
k
i=1;

(ii) G′ = {tu;u =
∑N

i=1 yiui, y = (yi)
N
i=1 ∈ ZN} for some basis (ui)

N
i=1 of RN ;
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(iii) Setting P ′ := ∪16i6k gi(P ) we have that (G′, P ′) is a regular tiling of RN . We denote by T ′

a fundamental domain for (G′, P ′).

(H1) is a compatibility condition needed to define a dynamical system on H. If G is given by (2.6),
then (H1) holds for any A ∈ ZN×N and any B ∈ RN . However, if

(2.7) G = {tu;u =

N
∑

i=1

yiui, y = (yi)
N
i=1 ∈ ZN}

for some basis (ui)
N
i=1 of RN , then (H1) holds if and only if

(2.8) U−1AU ∈ ZN×N

where U is the N ×N matrix with ui as ith column for 1 6 i 6 N .
(H2) allows to decompose the projection ̟ onto T into a projection onto T ′, a fundamental

domain for the regular tiling (G′, P ′) of RN involving only translations, followed by a projection
from T ′ onto T .

Example 2 Let G =< t1, t2, r > and G′ =< t1, t2 >, where t1(X) = X + (1,−1), t2(X) =
X + (1, 1), and r(X1,X2) = (−X2,X1). Pick k = 4 and (g1, g2, g3, g4) = (r, r2, r3, id). Take
as fundamental tiles P = {X = (X1,X2); 1 6 X1 6 2, 0 6 X2 6 2 − X1} (solid line) and
P ′ = P ∪ r(P ) ∪ r2(P ) ∪ r3(P ) (broken line) (see Fig. 2).

X

X
2

1

t

t

1

2

Figure 2: A regular tiling of R2 with a triangular fundamental tile.

Assume that (H1) holds. Then we may define

AX +B := AX +B

for any X ∈ RN . Thus we may consider the dynamical system (ΣA,B) on H defined by

(2.9) (ΣA,B)

{

xk+1 = f(xk) := Axk +B,
x0 ∈ H.

The map f is called an affine transformation of H.
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Example 3 Let N = 1, and let G =< t, s > be the group spanned by the translation t(X) = X +2
and the symmetry s(X) = 2 − X. Set P = [0, 1]. Then (G,P ) constitutes a regular tiling of R.
Note that P is also a fundamental domain. Pick (A,B) = (2, 0) ∈ R2. (H1) and (H2) are satisfied
with G′ = {tu; u ∈ 2Z}, k = 2, g1 = s and g2 = s2 = id. Let us write the realization of (2.9) in P .
Obviously, AX ∈ P for 0 6 X < 1/2, while s(AX) = 2(1 −X) ∈ P for 1/2 6 X 6 1. Viewed in
P = [0, 1], the dynamics reads then

(2.10) xk+1 = h(xk)

where h is the familiar tent map (see Fig. 3)

x

y

y=h(x)

−1 0 1 2 3

10.50

1

x
s

t

Figure 3: A : Action of s and t; B : the tent map

h(x) =

{

2x if 0 6 x < 1
2 ,

2(1 − x) if 1
2 6 x 6 1.

It follows from Theorem 10 (see below) that (2.10) is chaotic on [0, 1].

When H = TN and B = 0, f is nothing else than an endomorphism of the topological group
(TN ,+), and f is onto (resp., an isomorphism) if and only if det A 6= 0 (resp., det A = ±1) (see
[35, Thm 0.15]). Let sp(A) denote the spectrum of the matrix A, that is the set of the eigenvalues
of A. A root of unity is any complex number of the form λ = exp(2πit), with t ∈ Q. To see whether
a dynamical system (ΣA,B) is chaotic, we need the following key result [35, Thm 1.11].

Proposition 4 Let f(x) = Ax+ b (b ∈ TN , A ∈ ZN×N with det A 6= 0) be an affine transforma-
tion of TN . Then the following conditions are equivalent:
(i) (ΣA,b) is one-sided topologically transitive;
(ii) (a) A has no proper roots of unity (i.e., other than 1) as eigenvalues, and

(b) (A− I)TN + Zb is dense in TN ;
(iii) f is ergodic; that is, f is measure-preserving (i.e. for any Borel set E ⊂ TN , m(f−1(E)) =

m(E), where m denotes the Lebesgue measure on TN), and the only Borel sets E ⊂ TN for
which f−1(E) = E satisfy m(E) = 0 or m(E) = 1.

Notice that (ii) reduces to “A has no roots of unity as eigenvalues” when b = 0. Indeed, it may be
seen that (A− I)TN is dense in TN if and only if (A− I) is invertible.

2.4 Endomorphism of TN

The first result in this chapter, which comes from [27], provides a necessary and sufficient condition
for ΣA,0 to be chaotic in TN .

Theorem 5 Let A ∈ ZN×N . Then (ΣA,0) is chaotic in TN if, and only if, det A 6= 0 and A has
no roots of unity as eigenvalues.
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Proof. Assume first that (ΣA,0) is chaotic. We first claim that A is nonsingular. Indeed, if
det A = 0, then the map f defined in (2.9) is not onto [35, Thm 0.15], i.e. ATN 6= TN . As ATN

is compact (hence equal to its closure), it is not dense in TN , hence we cannot find some state
x0 ∈ TN such that the sequence (xk) = (Akx0) is dense in TN , which contradicts (C2). Thus
det A 6= 0. On the other hand, since (ΣA,0) is one-sided topologically transitive, the matrix A has
no roots of unity as eigenvalues by virtue of Proposition 4.

Conversely, assume that det A 6= 0 and that A has no roots of unity as eigenvalues. As (C1)
is a consequence of (C2) and (C3) (see [1],[34, Thm 1.3.1]), we only have to establish the later
properties. (C2) follows from Proposition 4. To prove (C3) we need to prove two lemmas.

Lemma 6 Let A ∈ ZN×N be such that det A 6= 0, and pick any p ∈ N∗ with (p,detA) = 1 (i.e. p
and det A are relatively prime). Then the map T : x ∈ (Z/pZ)N 7→ Ax ∈ (Z/pZ)N is invertible.

Proof of Lemma 6. First, observe that the map T is well-defined. Indeed, if X,Y ∈ ZN fulfill
X − Y ∈ (pZ)N , then AX − AY ∈ (pZ)N so that AX and AY belong to the same coset in
(Z/pZ)N = ZN/(pZ)N . As (Z/pZ)N is a finite set, we only have to prove that T is one-to-one. Let
X,Y ∈ ZN be such that AX = AY in (Z/pZ)N (i.e., A(X − Y ) ∈ (pZ)N ). We aim to show that
X = Y in (Z/pZ)N (i.e., X − Y ∈ (pZ)N ). Set U = X − Y , and pick a vector Z ∈ ZN such that
AU = pZ. It follows that U = p

det A
ÃZ, where Ã ∈ ZN×N denotes the adjoint matrix of A (i.e.

the transpose of the matrix formed by the cofactors). Since U ∈ ZN , each component of the vector
pÃZ is divisible by det A. Since (p,det A) = 1, we infer the existence of a vector V ∈ ZN such
that ÃZ = (det A)V . Then X − Y = U = pV ∈ (pZ)N , as desired.

Lemma 7 Let A and p be as in Lemma 6, and let Ep := {0, (1p), ..., (
p−1
p )} ⊂ T. Then each point

x ∈ EN
p is periodic for (ΣA,0). As a consequence, the set of periodic points of (ΣA,0) is dense in

TN (i.e., (C3) is satisfied).

Proof of Lemma 7. First, observe that for any i, j ∈ {0, ..., p − 1}, i/p ≡ j/p (mod 1) if and only
if i ≡ j (mod p). We infer from Lemma 6 that the map T̃ : x ∈ EN

p 7→ Ax ∈ EN
p is well defined

and invertible. Pick any x ∈ EN
p . As the sequence (T̃ kx)k>1 takes its values in the (finite) set

EN
p , there exist two numbers k2 > k1 > 1 such that T̃ k1x = T̃ k2x. T̃ being invertible, we conclude

that Ak2−k1x = x (i.e., x is a periodic point). Finally, the set E = ∪{EN
p ; p > 1, (p,det A) = 1}

is clearly dense in TN (take for p any large prime number), and all its points are periodic. This
completes the proof of Lemma 7 and of Theorem 5.

For an affine transformation, we obtain a result similar to Theorem 5 when 1 6∈ sp(A).

Corollary 8 Let A ∈ ZN×N and b ∈ TN . Assume that 1 is not an eigenvalue of A. Then (ΣA,b)
is chaotic in TN if, and only if, det A 6= 0 and A has no roots of unity as eigenvalues.

Proof. Pick any B ∈ RN with B = b. As 1 6∈ sp(A), we may perform the change of variables

(2.11) x = r − (A− I)−1B,

which transforms (2.9) into

(2.12)

{

rk+1 = Ark,

r0 = x0 + (A− I)−1B.

Clearly, the conditions (C2) and (C3) are fulfilled for (ΣA,b) if, and only if, they are fulfilled for
(2.12). Therefore, the result is a direct consequence of Theorem 5.
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Corollary 9 Let G be defined by (2.7) for some basis (ui)
N
i=1 of RN . Let A ∈ ZN×N and B ∈ RN .

Assume that (2.8) holds and that 1 is not an eigenvalue of A. Then (ΣA,B) is chaotic in H = RN/G
if, and only if, det A 6= 0 and A has no roots of unity as eigenvalues.

Proof. From Corollary 8, we know that the dynamical system on TN

(2.13) zk+1 = f̃(zk) := U−1AUzk + U−1B

is chaotic if, and only if, det A 6= 0 and A has no roots of unity as eigenvalues. To prove that the
dynamical system on H = RN/G

(2.14) xk+1 = f(xk) := Axk +B

is chaotic under the same conditions, it is sufficient to prove that the maps f : H → H and
f̃ : TN → TN are topologically conjugate; i.e., there exists a homeomorphism h : H → TN such
that h ◦ f = f̃ ◦ h. Define h by h(X) = Z where Z = U−1X, X = G ·X is the class of X in H and
Z is the class of Z in TN . Note first that h is well defined and continuous. Indeed, if X ′ = X+UK
with K ∈ ZN , then Z ′ = U−1X ′ = U−1X +K = Z +K, so that h is well defined. On the other
hand, the map X ∈ RN 7→ U−1X ∈ TN is clearly continuous. Obviously, h is invertible with
h−1(Z) = X for X = UZ. h is therefore a homeomorphism from H onto TN . Let us check now
that h ◦ f = f̃ ◦ h. Pick any X ∈ RN . Then

h ◦ f(XG
) = h(AX +B

G
) = U−1(AX +B)

TN

= f̃(U−1X
TN

) = f̃ ◦ h(XG
)

and the result follows.
We are in a position to state and prove the main result of this chapter.

Theorem 10 Let (G,P ) be a regular tiling of Rn, and let (A,B) ∈ ZN×N × RN be such that both
the assumptions (H1) and (H2) are fulfilled. Assume in addition that det A 6= 0 and that A has no
roots of unity as eigenvalues. Then the discrete dynamical system in RN/G

(2.15) xk+1 = Axk +B

is chaotic.

Proof. Pick any fundamental domain T for (G,P ), and let G′ and T ′ be as in (H2). In addition to
(2.15), we shall consider the discrete dynamical system in RN/G′

(2.16) zk+1 = Azk +B.

For any given X0 ∈ RN , let x0 = X0
G
and z0 = X0

G′

. Clearly, if X ∼ X ′ (mod G′), then X ∼ X ′

(mod G). Therefore, one can define a map p : RN/G′ → RN/G by p(X
G′

) = X
G
. p is continuous

and onto. We need two claims.
Claim 1. xk = p(zk) for all k.

Indeed, this is true for k = 0, and if for some k > 0, xk = p(zk) (i.e. for some Xk ∈ RN , xk = Xk
G

and zk = Xk
G′

), then we have that

xk+1 = AXk +B
G
= p(AXk +B

G′

) = p(zk+1)

which completes the proof of Claim 1.
Claim 2. The image by p of any dense set in RN/G′ is a dense set in RN/G.

8



Let A ⊂ RN/G′ be a given dense set. Pick any X ∈ RN and any ε > 0. Since A is dense in RN/G′,

there exists Y ∈ RN such that Y
G′

∈ A and

d(X
G′

, Y
G′

) = inf
g∈G′

||Y − g(X)|| < ε.

It follows that
d(X

G
, Y

G
) = inf

g∈G
||Y − g(X)|| < ε

for G′ ⊂ G. Since Y
G
= p(Y

G′

) ∈ p(A) and the pair (X, ε) was arbitrary, this demonstrates that
p(A) is dense in RN/G. Claim 2 is proved.

Let us complete the proof of Theorem 10. To prove that (2.15) is chaotic, it is sufficient (see [1])
to check that the conditions (C2) and (C3) are fulfilled. We know from Corollary 9 that (2.16) is

chaotic. We may therefore pick X0 ∈ RN so that, setting z0 = X0
G′

, the sequence {zk}k>0 defined
by (2.16) is dense in RN/G′. By Claim 1 and Claim 2, the sequence {xk} defined by (2.15) and

x0 = X0
G

is dense in RN/G; that is, (C2) is fulfilled for (2.15). On the other hand, the set of
periodic points for (2.16) is dense in RN/G′, since (C3) is fulfilled for (2.16). By Claim 1, any
periodic point z0 for (2.16) gives rise to a periodic point x0 = p(z0) for (2.15). By Claim 2, the
set of periodic points for (2.15) is dense in RN/G; i.e., (C3) is fulfilled for (2.15). The proof of
Theorem 10 is complete.

Example 11 (i) Let G =< te1 , t2e2 , s > where te1(X) = X + (1, 0), te2(X) = X + (0, 2),
s(X1,X2) = (X1,−X2), and P = [0, 1]× [0, 1]. Pick G′ =< te1 , te2 >, k = 2, (g1, g2) = (s, id)

(see Fig. 4). Finally, pick A =

(

−2 0
0 3

)

and B = (0.5,−3.2). Note that [A,S] :=

AS − SA = 0, where S =

(

1 0
0 −1

)

is the matrix corresponding to the symmetry s. Then

(H1) and (H2) are satisfied, sp (A) = {−2, 3}, and by Theorem 10 the dynamical system (2.9)
is chaotic in H = R2/G.

X

X

1

2

1

1

e1

e2
t

2

t

Figure 4: G =< te1 , t2e2 , s >.
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(ii) Let G =< t2e1 , t2e2 , s1, s2 > where t2e1(X) = X + (2, 0), t2e2(X) = X + (0, 2), s1(X1,X2) =
(−X1,X2), s2(X1,X2) = (X1,−X2) = −s1(X1,X2), and P = [0, 1] × [0, 1]. Pick G′ =<
t2e1 , t2e2 >, k = 4, (g1, g2, g3, g4) = (s1, s2, s2 ◦ s1, id). (see Fig. 5). Finally, pick A =
(

0 −3
4 0

)

and B = (−0.2, 1.7). Note that AS = −SA, where S is as above. Then (H1)

and (H2) are satisfied, sp (A) = {±2i
√
3}, and by Theorem 10 the dynamical system (2.9) is

chaotic in H = R2/G.

X

X

1

2

1

1

e2
1

2e
2

t

t

Figure 5: G =< t2e1 , t2e2 , s1, s2 >.

2.5 Lyapunov exponents

Let M denote a compact differentiable manifold endowed with a Riemann metric < u, v >m, and
let f : M → M be a map of class C1. The following definition is borrowed from [13].

Definition 12 A point x ∈ M is said to be a regular point of f if there exist numbers λ1(x) >
λ2(x) > · · · > λm(x) and a decomposition

TxM = E1(x)⊕ · · · ⊕ Em(x)

of the tangent space TxM of M at x such that

lim
k→+∞

1

k
ln ||(Dxf

k)u|| = λj(x)

for all 0 6= u ∈ Ej(x) and every 1 6 j 6 m. (||v||2 :=< v, v >x ∀v ∈ TxM .) The numbers λj(x)
and the spaces Ej(x) are termed the Lyapunov exponents and the eigenspaces of f at the regular
point x.

Assume now that the group G is such that each isometry g ∈ G has no fixed point, i.e. g(X) 6= X
for all X ∈ RN . Then H = RN/G is a smooth flat Riemannian manifold. Before investigating the
Lyapunov exponents of an affine transformation on H, let us give a few examples.

Example 13 (i) H = TN , and more generally, H = RN/G where G is as in (2.7);

(ii) H = R2/G for G =< t2e1 , te2 , te1 ◦ s > where (e1, e2) is the canonical basis of R2 and
s(X1,X2) = (X1,−X2) (see Fig. 6). H is then the Klein bottle. The torus T2 and the
Klein bottle H are the only smooth manifolds obtained in dimension 2. In dimension 3, there
are 6 smooth manifolds (see [36, Section 3.5.5 p. 117]).
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Figure 6: The regular tiling of R2 associated with the Klein bottle.

Consider now an affine transformation f(X) = AX +B of H, the pair (A,B) fulfilling (H1).
Assume also that det A 6= 0. Then for any k > 1,

fk(X) = AkX +Ak−1B + · · ·+AB +B.

Pick a point X ∈
◦
P such that

AkX +Ak−1B + · · ·+AB +B ∈ ∪g∈Gg(
◦
P )

(note that such a property holds for almost every X ∈ RN ), and an isometry g ∈ G such that

g(AkX +Ak−1B + · · ·+AB +B) ∈
◦
P .

For ||U || sufficiently small, we also have that

g(Ak(X + U) +Ak−1B + · · ·+AB +B) ∈
◦
P .

Therefore (DXfk)U = GAkU , where G = Dg ∈ RN×N . Since G is an orthogonal matrix, we have

that ||GAkU || = ||AkU ||. Let µ1 > µ2 > · · · > µm > 0 denote the absolute values of the eigenvalues
of A, and let Ei(x) be the direct sum of the generalized eigenspaces (see [7]) associated with the
eigenvalues whose absolute value is µi, for each i 6 m. Then, using the Jordan decomposition of
A, we easily see that for any U ∈ Ej \ {0}

lim
k→+∞

1

k
ln ||AkU || = lnµj .

Observe now that if σ(A) does not intersect the circle {z ∈ C; |z| = 1}, then A has at least one
eigenvalue λ with |λ| > 1 (since the product of all the eigenvalues of A is det A ∈ Z \ {0}), hence
f admits at least one positive Lyapunov exponent. Therefore, we have proved the following

Proposition 14 Let (G,P ) be a regular tiling of RN such that any isometry g ∈ G has no fixed
point. Let (A,B) ∈ RN×N ×RN be such that (H1) is satisfied, det A 6= 0 and each eigenvalue λ of
A satisfies |λ| 6= 1, and let f : H = RN/G → H be defined by f(x) = Ax+ B. Then almost every
point x ∈ H is regular for f , with Lyapunov exponents lnµ1 > · · · > lnµm, where µ1 > · · · > µm

are the absolute values of the eigenvalues of A. Furthermore, lnµ1 > 0.

Notice that the existence of (at least) one positive Lyapunov exponent is often considered as a
characteristic property of a chaotic motion [33]. That property quantifies the sensitive dependence
on initial conditions.
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2.6 Equidistribution

In this section, H = TN . Let us consider a discrete dynamical system with an output

(2.17)

{

xk+1 = Axk +B
yk = Cxk

where x0 ∈ TN , A ∈ ZN×N , b ∈ TN and C ∈ Z1×N . It should be expected that the output yk inher-
its the chaotic behavior of the state xk. However, Devaney’s definition of a chaotic system cannot
be tested on the sequence (yk), since this sequence is not defined as a trajectory of a dynamical
system. Rather, we may give a condition ensuring that the sequence (yk) is equidistributed (hence
dense) in T for a.e. x0, a property which may be seen as an ersatz of (C2).

If X = (X1, ...,XN ), Y = (Y1, ..., YN ) are any given points in [0, 1)N and x = X , y = Y , then
we say that x < y (resp., x 6 y) if Xi < Yi (resp., Xi 6 Yi) for i = 1, ..., N . The set of points
z ∈ TN such that x 6 z < y will be denoted by [x, y). Let (xk)k>0 be any sequence in TN . For any
subset E of TN , let SK(E) denote the number of points xk, 0 6 k 6 K − 1, which lie in E.

Definition 15 [11] We say that (xk) is uniformly distributed modulo 1 (or equidistributed in TN)
if

lim
K→∞

SK([x, y))

K
= m([x, y)) =

N
∏

i=1

(Yi −Xi)

for all intervals [x, y) ⊂ TN .

The following result is very useful to decide whether a sequence is equidistributed or not.

Proposition 16 (Weyl criterion [11], [24]) The sequence (xk)k>0 is equidistributed in TN if,
and only if, for every lattice point p ∈ ZN , p 6= 0

1

K

∑

06k<K

e2iπp·xk → 0 as K → +∞.

The next result shows that under the same assumptions as in Corollary 8 the sequences (xk) and
(yk) are respectively equidistributed in TN and T for a.e. initial state x0 ∈ TN .

Theorem 17 Let A ∈ ZN×N , b ∈ TN and C ∈ Z1×N \ {0}. Assume that det A 6= 0 and that A
has no roots of unity as eigenvalues (hence ΣA,b is chaotic). Then for a.e. x0 ∈ TN the sequence
(xk) (defined in (2.17)) is equidistributed in TN , and the sequence (yk) = (Cxk) is equidistributed
in T.

Proof: By virtue of Theorem 4, the map f(x) = Ax + b is ergodic on TN . It follows then from
Birkhoff Ergodic Theorem (see e.g. [35, Thm 1.14]) that for any h ∈ L1(TN , dm) and for a.e.
x0 ∈ TN

1

K

∑

06k<K

h(fk(x0)) →
∫

TN

h(y) dm(y) as K → +∞.

Therefore, for every lattice point p ∈ ZN , p 6= 0, and for a.e. x0 ∈ TN

1

K

∑

06k<K

e2πip·f
k(x0) →

∫

TN

e2πip·y dm(y) = 0 as K → +∞.

As ZN \{0} is countable, the same property holds for a.e. x0 ∈ TN and all p ∈ ZN \{0}. Therefore,
we infer from Weyl criterion that the sequence (xk) = (fk(x0)) is equidistributed for a.e. x0 ∈ TN .
Pick any x0 ∈ TN such that (xk) is equidistributed, and let us show that the output sequence
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(yk) = (Cxk) is also equidistributed provided that C = (C1, ..., CN ) 6= (0, ..., 0). Indeed, for any
p ∈ Z \ {0}

1

K

∑

06k<K

e2πipyk =
1

K

∑

06k<K

e2πi(pC) xk → 0 as K → +∞,

hence the equidistribution of (yk) follows again by Weyl criterion.

Remark 18 For a regular tiling (G,P ) of RN , even if the sequence (xk) is equidistributed in H,
the output (yk) fails in general to be equidistributed in T. This is clear when one considers a regular
tiling of R2 with the triangle P = {X = (X1,X2); X1 > 0, X2 > 0, X1+X2 6 1} as fundamental
tile, and C = (1 0).

3 Synchronization and information recovering

The aim of this section is to suggest a chaos-based encryption scheme involving affine transforma-
tions on the homogeneous space H associated with some regular tiling of RN . We shall provide
conditions which guarantee a synchronization with a finite-time stability of the error despite the
inherent nonlinearity of the chaotic systems under study.

3.1 Encryption setup

Assume given a regular tiling (G,P ) of RN and a pair (A,B) ∈ RN×N×RN fulfilling the assumptions
of Theorem 10. For the sake of simplicity, assume further that RN/G′ = TN , so that T ′ = [0, 1)N .
Let ̟ : RN → T and ̟′ : RN → T ′ denote the projections on the fundamental domains of (G,P )
and (G′, P ′), respectively. Set for k ∈ N and X ∈ RN

(3.18) ̟k(X) =

{

̟′(X) if k 6∈ (N + 1)N;
̟(X) if k ∈ (N + 1)N.

At each discrete time k, a symbol mk ∈ R (the plaintext) of a sequence (mk)k>0 is encrypted
by a (nonlinear) encrypting function e which “mixes” mk and Xk and produces a ciphertext uk =
e(Xk,mk). We also assume given a decrypting function d such that mk = d(Xk, uk) for each
k. Next, the ciphertext uk is embedded in the dynamics (2.9). We shall consider the following
encryption

(3.19) (ΣA,B,M,C)

{

Xk+1 = ̟k{A(Xk +Muk) +B}
Yk = C(Xk +Muk)

which corresponds to an embedding of the ciphertext in both the dynamics and the output. In
(3.19), A ∈ ZN×N , M ∈ ZN×1, and C ∈ Z1×N are given matrices, and B ∈ RN . Yk ∈ R is the
output conveyed to the receiver through the channel.

From the definition of the decrypting function d, it is clear that to retrieve mk at the decryption
side we need to recover the pair (Xk, uk), which in turn calls for reproducing a chaotic sequence
(X̂k) synchronized with (Xk) (i.e., such that X̂k −Xk → 0). To this end, we propose a mechanism
based on some suitable unknown input observers, inspired from the ones given in [17, 18, 25, 27].
We stress that the gain matrices have to be Z-valued here.

For the encryption considered here, the decryption involves the following observer-like structure

(3.20) (Σ̂A,B,M,C)

{

X̂k+1 = ̟k{AX̂k + L(Yk − Ŷk) +B}
Ŷk = CX̂k
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where L ∈ ZN×1, X̂k ∈ RN and Ŷk ∈ R (X̂0 being an arbitrary point in RN ). Let X denote the

class of X modulo G′, i.e. in TN . Set ek = Xk − X̂k for all k > 0. Noticing that for all X ∈ RN

̟k(X) = ̟′(X) = X for 1 6 k 6 N,

we obtain by subtracting (3.20) from (3.19) that the error dynamics reads

(3.21) ek+1 = (A− LC)ek + (A− LC)Muk, 1 6 k 6 N.

Before proceeding to the design of the observers, we give a few definitions and a preliminary
result.

3.2 Definitions and preliminary results

Definition 19 A pair (A♭, C♭) is said to be in a companion canonical form if it takes the form

(3.22) A♭ =















−αN−1 1 0 · · · 0
−αN−2 0 1 · · · 0
...

...
...

. . .
...

−α1 0 0 · · · 1
−α0 0 0 · · · 0















, C♭ =
(

1 0 · · · 0 0
)

·

It is well known that the characteristic polynomial of A♭ reads χA♭(λ) = λN + αN−1λN−1 + · · · +
α1λ+ α0.

Definition 20 Two pairs (A,C) and (A♭, C♭) in ZN×N × Z1×N are said to be similar over Z if
there exists a matrix T ∈ ZN×N with det T = ±1 (hence T−1 ∈ ZN×N too) such that

A = T−1A♭T, C = C♭T.

The following result provides a sufficient condition for an observable pair (A,C) to admit a
Z-valued gain matrix L such that A− LC is Hurwitz.

Proposition 21 Let A ∈ ZN×N and C ∈ Z1×N be two matrices such that (A,C) is similar over Z
to a pair (A♭, C♭) ∈ ZN×N ×Z1×N in a companion canonical form. Let us denote by (−αN−1 · · · −
α0)′ the first column of A♭. Then there exists a unique matrix L ∈ ZN×1 such that the matrix A−LC
is Hurwitz (i.e., sp(A−LC) ⊂ {z ∈ C; |z| < 1}), namely L = T−1L♭ with L♭ = (−αN−1 · · · −α0)′.
Furthermore, (A− LC)N = 0.

Proof. Write A = T−1A♭T , C = C♭T , with (A♭, C♭) as in (3.22) and T ∈ ZN×N with det T = ±1.
For any given matrix L ∈ ZN×1, we define the matrix L♭ = (lN−1 · · · l0)′ by L♭ = TL. Then,
A− LC = T−1(A♭ − L♭C♭)T with

A♭ − L♭C♭ =















−αN−1 − lN−1 1 0 · · · 0
−αN−2 − lN−2 0 1 · · · 0
...

...
...

. . .
...

−α1 − l1 0 0 · · · 1
−α0 − l0 0 0 · · · 0















.

Its characteristic polynomial reads

χA♭−L♭C♭(λ) = λN + (αN−1 + lN−1)λN−1 + · · ·+ (α1 + l1)λ+ (α0 + l0).
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If L is such that A − LC is Hurwitz, then A♭ − L♭C♭ = T (A − LC)T−1 is Hurwitz too, hence we
may write χA−LC(λ) = χA♭−L♭C♭(λ) = λpχ(λ), where p ∈ {0, ..., N} and χ ∈ Z[λ] has its roots
λ1, ..., λN−p in the set {z ∈ C; 0 < |z| < 1}. Assume that p < N , and denote by q the constant

coefficient of χ. Then q 6= 0 (since χ(0) 6= 0), and |q| = ∏N−p
i=1 |λi| < 1, which is impossible, since

q ∈ Z. Therefore p = N and lj = −αj for any j ∈ {0, ..., N − 1} (hence L♭ and L are unique). On
the other hand

(3.23) A♭ − L♭C♭ =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















·

For this choice of L, χA−LC(λ) = λN and (A− LC)N = 0.
It should be emphasized that the above argument shows that a Z-valued matrix N is Hurwitz if
and only if it is nilpotent. In other words, the system νk+1 = N νk is asymptotically stable if and
only if it is finite-time stable.

We are now in a position to state the second main result of this chapter.

Theorem 22 Let (G,P ) be a regular tiling of RN , and let (A,B) ∈ ZN×N ×RN be such that (H1)
and (H2) are fulfilled with RN/G′ = TN . Assume given C ∈ Z1×N such that (A,C) is similar over
Z to a pair (A♭, C♭) in a companion canonical form. Then one can pick two matrices L ∈ ZN×1

and M ∈ ZN×1 so that (A− LC)M = 0 and CM = 1. Furthermore

Xk = X̂k and uk = Yk − Ŷk ∀k > N + 1.

Proof. Let T , A♭, C♭, L and L♭ be as in the proof of Proposition 21. Set M ♭ = (1 0 · · · 0)′ and M =
T−1M ♭. Then (A−LC)M = T−1(A♭−L♭C♭)T ·T−1M ♭ = 0 by (3.23), and CM = C♭T ·T−1M ♭ = 1.
On the other hand, it follows from (3.21) and the choice of M that

ek+1 = (A− LC)ek ∀k ∈ {1, ..., N}

hence eN+1 = (A − LC)Ne1 = 0. Since XN+1 and X̂N+1 belong to T ′ by construction, we have
that X̂N+1 = XN+1. To complete the proof, it is sufficient to prove the following
Claim. For any k > 0, X̂k = Xk implies X̂k+1 = Xk+1.
Indeed, using the fact that (A− LC)M = 0 and X̂k = Xk we obtain that

X̂k+1 = ̟k(AX̂k + LC(Xk +Muk − X̂k) +B)

= ̟k(AXk +AMuk +B)

= Xk+1.

This completes the proof of Theorem 22.

Remark 23 (i) The projection ̟k(x) allows to switch between the dynamics (2.15) and (2.16)
in R/G and R/G′, respectively. For a dynamics in TN only (G′ = G), one can replace ̟k(x)
by ̟′(x) (the projection onto [0, 1)N ).

(ii) The result in Theorem 22 remains true if we take ̟k(x) = ̟′(x) for k 6 N and ̟k(x) = ̟(x)
for k > N + 1. However, the definition of ̟k(x) in (3.18) guarantees that a finite time
synchronization occurs even if the output Yk is not transmitted at some times. Such a property
may be useful for the secured transmission of video sequences.
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(iii) The output Yk = C(Xk+Muk) may be replaced by Ỹk = h(Yk), where h : R → R is a nonlinear
invertible map. This renders the analysis of the dynamics of Yk much more complicated.

(iv) In practice, when H = TN , the matrices A,C,L and M may be constructed in the following
way. Pick any matrix T̂ = [T̂i,j] ∈ ZN×N with T̂i,j = 0 for i > j and T̂i,i = 1 for all i. We
set T = T̂ ′ T̂ . Note that det T̂ = det T = 1. Next, we pick a pair (A♭, C♭) in a companion
canonical form so that the roots of χA♭ do not belong to the set {0} ∪ {z ∈ C; |z| = 1}. Then
A,C,L and M are defined by

A = T−1A♭T, C = C♭T, L = T−1A♭(C♭)′, and M = T−1(C♭)′.

3.3 Numerical simulations

This section is borrowed from [26]. Assume H = T3 and consider the dynamical system (ΣA,b,M,C)
with

A =





−19 26 7
−51 65 17
152 −184 −47



 , C = (6 − 5 − 1), b = 0.

(ΣA,b) is chaotic by virtue of Theorem 5, since det A = 3 (hence det A 6= 0) and the eigenvalues of
A are -3, -0.4142, 2.4142 (A has no roots of unity as eigenvalues). The pair (A,C) is similar over
Z to the pair (A♭, C♭) in companion canonical form, where

A♭ =





−1 1 0
7 0 1
3 0 0



 , C♭ = (1 0 0) and T =





6 −5 −1
−5 10 3
−1 3 1



 .

According to Proposition 21, the unique matrix L ∈ ZN×1 such that A − LC is Hurwitz is L =
T−1L♭, with L♭ = (−1 7 3)T . We obtain L = (−2 − 6 19)T . The corresponding matrix M ∈ Z3×1

such that (A− LC)M = 0 and CM = 1 is M = (1 2 − 5)T .
The information to be masked is a flow corresponding to integers ranging from 0 to 255. The data
are scaled to give an input uk ranging from 0 to 1, and are embedded into the chaotic dynamics
of (ΣA,b,M,C). From a practical point of view, the transmitted signal yk cannot be coded with an

infinite accuracy and so it has to be truncated for throughput purpose. The observer (Σ̂A,b,M,C)
is used in order to recover the information. Numerical experiments bring out that the number of
digits of the conveyed output can actually be limited without giving rise to recovering errors. The
results reported in Fig. 7 show a perfect recovering for a number of digits of yk equal to 4 (this is the
minimum number required for perfect retrieving). The recovering error reaches zero after 3 steps, a
fact which is consistent with above theoretical results on finite time synchronization (N = 3). The
figure highlights the fact that even though the state reconstruction may not be perfect (residual
errors due to truncations), a perfect information reconstruction is nevertheless achieved.

Remark 24 Actually, for any system ΣA,B,M,C, the numerical computations can be performed in
an exact way, i.e. without rounding errors, provided that the number of digits is sufficiently large.

3.4 Concluding remarks

The message-embedding masking technique studied here does not originate from the conventional
cryptography (see [15] for a good survey). Nevertheless, it seems to be highly related to some
popular encryption schemes, the so-called stream ciphers [19]. Therefore, it is desirable that the
proposed scheme be robust against both statistical and algebraic attacks. On one hand, the ro-
bustness against statistical attacks follows from the chaotic behavior of the output. On the other
hand, the security against algebraic attacks rests on the difficulty to identify the parameters of the
system. The identification of the parameters is here a hard task for two reasons:
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Figure 7: A : error on the recovered information uk − ûk; B : state reconstruction error Xk − X̂k

(i) The particular structure of the encryption system (ΣA,B,M,C), that is the dimension of the
matrix A and the tiling of the space used, is assumed to be unknown;

(ii) The ciphertext uk actually results from a mixing between the plaintext mk and the state Xk

(uk = e(Xk,mk)). This generally results in a nonlinear dynamics (ΣA,B,M,C), rendering the
parameters hardly identifiable [12].

A real-time implementation has already been carried out on an experimental platform involving a
secured multimedia communication. (For details about the platform, see e.g. [16]).
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