-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

SElf-orgaNizing Structures for mAnagemenT In stock
Oriented Networks

Aline Carneiro Viana, Nathalie Mitton, Loic Schmidt, Massimo Vecchio

» To cite this version:

Aline Carneiro Viana, Nathalie Mitton, Loic Schmidt, Massimo Vecchio. SElf-orgaNizing Structures
for mAnagemenT In stock Oriented Networks. [Research Report] RR-7192, INRIA. 2010. inria-

00454109
HAL Id: inria-00454109
https://hal.inria.fr /inria-00454109
Submitted on 8 Feb 2010
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50112438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00454109
https://hal.archives-ouvertes.fr

%I 1NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

SElf-orgaNizing Structures for mAnagemenT In
stock Oriented Networks

Aline Carneiro Viana — Nathalie Mitton — Loic Schmidt — Massr¥ecchio

N° 7192
Février 2010

apport
derecherche

ISRN INRIA/RR--7192--FR+ENG

ISSN 0249-6399

INSTITUT NATIONAL

DE RECHERCHE centre de recherche
EN INFORMATIQUE ;‘(I N RIA LILLE - NORD EUROPE

ET EN AUTOMATIQUE

SElf-orgaNizing Structures for mAnagemenT In
stock Oriented Networks

Aline Carneiro Vianaﬁ, Nathalie Mitton , Loic Schmidt! , Massimo
Vecchio*

Theéme : Systémes et services distribués
Equipes-Projets ASAP et POPS

Rapport de recherche n° 7192 — Février 2010 —[17 pages

Abstract: This paper introduces SENSATION, a novel self-organizing stock
management structure. SENSATION is based on a double DHT mechanism
and is inspired from existing works such as SOLIST and Tribe. It proposes an
efficient unique structure which can be used for different purposes such as data
replication, distributed storing and request managements in stock management.
These features help in the scalability and reliability of new storing warehouse
management which tends to increase in scale and to be more and more inter-
connected. Results show that SENSATION provides interesting and promising
results in terms of reliability and scalability.

Key-words: DHT, RFID, Smart memory placement, EPCGlobal

This work has been partially supported by the FP7 European project ASPIRE
(http://fpT7-aspire.eu) and the regional project ICOM.

* INRIA Saclay - Ile de France
T INRIA Lille - Nord-Europe, Univ. Lille 1, CNRS

Centre de recherche INRIA Lille — Nord Europe
Parc Scientifiqgue de la Haute Borne

40, avenue Halley, 59650 Villeneuve d’Ascq
Téléphone : +33 3 59 57 78 00 — Télécopie : +33 3 59 57 78 50

Infrastructure de réseau auto-configurable pour
la gestion des stocks

Résumé : Ce papier introduit SENSATION, une structure auto-configurable
pour la gestion de stock. SENSATION utilise un mécanisme de double DHT et
s’inspire de travaux existant tels que SOLIST et Tribe. Dans ce rapport, nous
proposons une structure unique et efficace pouvant étre utilisée pour différents
objectifs tels que la réplication des données, 'enregistrement distribué et les
requétes pour la gestion des stocks. Ces caractéristiques améliorent le passage
a échelle et la fiabilité de la gestion d’entrepots dont le nombre tend a grandir
et & étre de plus en plus interconnectés. Les resultats de SENSATION sont
prometteurs en terme de fiabilité et de passage a ’échelle.

Mots-clés : DHT, RFID, Placement mémoire efficace, EPCGlobal

SENSATION

Contents

‘1 Introduction

2 Case stud]

3 Preliminaries
3.1 Indirect routing

‘3.2 DHT Mechanisms‘

4 Related works

41 SOLIST . . oo
4.2 Content Addressable Network (CAN)
4.3 Tribeo

5 SENSATION

5.1 Solution overview
5.2 Mapping of the virtual coordinate system
5.3 Examplé

‘6 Simulation

7 Conclusion

RR n°® 7192

4 A. C. Viana & N. Mitton & L. Schmidt & M. Vecchio

1 Introduction

Nowadays, trade industries are growing up and need more and more the sup-
port of technology for managing their goods, for both logistic and traceability
concerns. Ordinary applications such as inventories need the support of new
technologies to fit the scalability of companies. More and more servers and
databases are deployed to store information and connected in networks to be-
come accessible from every place. These databases are now supplied through
the reading of bar-codes or RFID tags hold by objects. Shelves equipped by
readers even consist in database themselves and can be connected to database
network. Even mobile RFID readers can be directly connected to the network
and transfers useful data.

Although the networking architecture might be general, it is desirable that
the communication infrastructure takes application requirements into account.
Here, we narrow our focus to applications of stock management with a large
amount of products to be controlled in different geographic sites communicating,
and a need for limited communication overhead and reliable data storing. The
network should be standard compliantE to be connected to an EPC2 network
(e.g. which respects the EPC standards).

In order to identify products to be controlled, they are equipped with iden-
tifiers (RFID, bar code, etc.). To perform the identification, traceability and
inventory actions, the network is composed of database servers, routers, and
two kinds of readers: either fixed (as a smart shelf) or mobile. Mobile readers
can read and store data without being connected to the network, and so trans-
fer data when connected. In this case, routers or fixed readers act as gateways
towards databases.

The first motivation is the scalability and reliability of such a network. In-
deed, the number of entities can increase heavily and sets the need of large scale
communications without overloading the network. Data have to be duplicated
for ensuring reliability but in a smart way in order to avoid memory overhead
and facilitate at the same time the query routing. Secondly, the different char-
acteristics of stock management requests, coupled with the need of scalability,
require a specific network infrastructure management. Different granularities for
the different diffusion primitives are needed, such as broadcast (“Count number
of this specific product”), k-cast (“Is there a quantity x of this product”) or any-
cast (“Give me the price of this product”). At last, due to the mobility of some
readers, the structure of the network has to organize itself and adapt at every
modification in a transparent and local way.

In this paper, we propose SENSATION a reliable k-level structure for dis-
tributed redundant memory placement. This structure allows to smartly store
data and fast request to be processed by limiting bandwidth overhead. This
unique structure allow performing different operations: (i) distributed stor-
ing to allow scalability by reducing memory overhead, (ii) data replication to
ensure data reliability and (7ii) efficient request management for answering
requests in a smart scalable way which limit traffic and flooding overhead. This
is achieved through the use of two distributed hash tables. The first one allows
to reach the correct level, i.e. the level corresponding to the specific object

1RFID relative standards are established by EPC Global.
2http://www.epcglobalinc.org/

INRIA

SENSATION 5

targeted by the request while the second one allows to reach the proper corre-
spondent in this layer. For instance, if the request is "What is the price of a
blue trouser 7", the first DHT directs the request towards the layer responsible
for trousers while the second one then directs the request towards a node aware
of the price of blue trousers. Results show that for a low replication level (3),
only 25% of data are lost when more than 70% of servers fail. The remaining
of this paper is organized as follows. Section [2 describes the case studies we
are focusing on. It is worth noting that SENSATION may find several appli-
cations in stock management but we describe a specific case study in order to
illustrate more easyly the behavior of SENSATION. Section [3]sets background
works useful for the understanding of SENSATION. Section [4]describes the rel-
ative works useful in the construction of SENSATION while Section [5] explains
in details how we use them in SENSATION. Section 6] presents SENSATION
performance results. At last Section 7 concludes that work by prospecting some
future works.

2 Case study

Our case study is represented by a wide area stock management application. It
can be, for instance, a distributor with several warehouses spread all over one or
more countries; in each warehouse the servers and the databases are supposed to
be connected, thus forming a network. Such an organization may need several
tools at different levels.

In order to have a glimpse on these different tools, let us firstly consider
an user located in one warehouse: he may need to draw an inventory (i) of the
whole set of all warehouses, or (7i) of a particular warehouse located in a specific
area, or evenly (i) of products laying in a small area of a specific warehouse.
Moreover, the inventory may target either (i) a kind of product (e.g. “inven-
tory of every trouser”), or (ii) products in a specific place (e.g. “inventory of
everything located in Paris”), or (iii) even both (e.g. “inventory of every trouser
located in Paris”). Oun its side, the application has to handle different granu-
larity requests. Finally, requests can be of different natures, possibly requiring
different mechanisms for their diffusion: consider, for instance, (i) broadcast
queries (“how many items of the specific product do I have?”), (ii) k-cast queries
(“do I have at least k items of this product?”), and (i) anycast queries (“give
me the price of this product”).

With a plain database network infrastructure, in all the abovementioned
situations, every reader and/or database has to be queried (i.e. the network
is flooded). Upon answers, some filters may be applied and/or data are aggre-
gated. This normally introduces a non—negligible latency and causes a network
overload, which actually is not necessary. Indeed, (i) for broadcast queries,
only databases storing information about the articles being enumerated should
be contacted; (i) a k-cast query should be delivered as soon as k products
have been found; finally, (i7) an unicast query may be answered after having
contacted only one server. Essentially, these are the features we are to give
SENSATION, in order to ensure scalability and high quality of service.

A second, equally important, concern in this case study is enabling a tunable
fault—tolerance level. In order to add some reliability to data, it is necessary
to include a degree of redundancy (i.e. provide one or more alternate servers

RR n°® 7192

6 A. C. Viana & N. Mitton & L. Schmidt & M. Vecchio

in which to store the same data). The main issues here are to decide where,
how and how many times to replicate data. Indeed, in most cases, data are
simply replicated in one or more backup servers, which are eventually used in
the case that the primary server is experimenting a failure. On the other hand,
SENSATION replicates efficiently data and takes advantage of this replication
by routing requests towards the closest server storing the information thus de-
creasing the routing overhead.

3 Preliminaries

3.1 Indirect routing

Providing a scalable and efficient location service in the context of self-organizing
systems is a non—trivial problem, due to the spontaneity of networks. This
requires a dynamic association between identification and location of a node,
and the specification of a mechanism to manage this association. Furthermore,
there is the need for minimizing the control message overhead for routing or
location discovery. An efficient solution is to perform an indirect routing [7].

A routing operation is referred as indirect when it is performed in two steps:
(i) first locate the target and then (i) communicate with the target. This allows
the network to decouple the location of a node from the location itself. With
this approach, the information can be totally distributed, which is important
for achieving scalability in large scale networks.

Distributed Hash Tables (DHT) represent the basis of indirect routing. Ba-
sically, they provide a general mapping between any information and a loca-
tion establishing then a location-independent routing layer. They use a virtual
addressing space V. Partitions of this virtual space are assigned to nodes in
the network. As a basic example, consider Fig. [1I where the addressing space
V = [0, 30[is shared among 3 nodes 1, j, k. In the figure, node i is assigned parti-
tion ¢(2) = [20, 30[, node j gets partition ¢(j) = [10, 20[and node k is responsible
for q(k) = [0, 10[. The idea is to use a hash function to first distribute node lo-
cation information among rendezvous points. This same hash function is known
by every node. Each information is hashed into a key (hash(v) = key, € V)
of this virtual addressing space V and then stored in the node(s) responsible
for the partition of the virtual space. Yet, in Fig. @7 node k has a content
C' to register. By applying hash(C') = 25 it gets the key of C, which is within
the partition of node i. So, node k registers C' in node i. Usually, node k also
stores the location of C' (i.e. it registers its own address). Later, when a node
j is looking for content C, it applies the same hash function, obtaining the
same result (i.e. hash(C) = 25) thus knowing that it has to contact node i
(cf. Fig. . Upon the request, node i answers node j with the information
previously registered (Fig. . If this information is the location of C, then
node j gets the address of node k and can then directly communicate with k.

3.2 DHT Mechanisms

Node Arrival: When a node u enters the network, it has to join the DHT
overlay. To do so, u retrieves the way to contact a DHT node v that is used
as an entry point to the DHT. Then, u is assigned a partition in the logical

INRIA

SENSATION 7

c c
| Nk Node k

| Nodkek . PK=0.10] 1 p0 = 0.10f
. PK) =[0.10] Hash(C) = 25 Hash(C) = 25
@ Hash(C) = 25
& e S d
@) Nodej Node i Nodej Node i
Nodej @ Node i

P() =[10,20 p(i) = [20,30 P() = [10,20 p(i) = [20,30
P() =[10,20f p(i) = 20,30 Hash(C) = 25

(a) (b) (c)

c|

Figure 1: (a) Node k stores content C', and registers information about C' on
node ¢ which is its rendezvous node. (b) Lookup phase of node j to contact the
rendezvous node of C. (¢) Lookup answer with information about C.

address space{§ . Routing information in the system is then updated to reflect the
presence of u. Finally, u retrieves all (key, value) pairs under its responsibility
from the node that stored them previously.

Node Failure: When a node fails, the application data that it used to store is
lost unless the DHT uses replication to keep multiple copies on different nodes.
Some DHTs follow the simpler soft—state approach which does not guarantee
persistence of data. Data items are pruned from the DHT unless the application
refreshes them periodically. Therefore, a node failure leads to a temporary loss
of application data until the data is refreshed.

Node Departure: DHT implementations often require departing nodes to
notify the system before leaving. This allows other nodes to copy application
data from the leaving node and to immediately update their routing information
leading to improved routing efficiency.

4 Related works

Because of page restrictions, we only focus on literature works useful to SEN-
SATION.

4.1 SOLIST

SOLIST [2| presents a structured overlay network and provides an efficient x-cast
suite for wireless sensor networks. SOLIST identifies a set of basics functional-
ities widely used in distributed applications and propose an efficient implemen-
tation of this suite in a multi-layer structured network. The aim here is to give
a type to each sensor and to group them depending on this type either static
(heterogeneous sensors) or dynamic (battery state, sensor data, etc.). A layer
is composed by all sensors of the same type. Fig.[2]lshows a SOLIST multi-layer
projection. To be included in the overlay of the proper type t it belongs to,
or to perform a query about type t, a given sensor has to contact at least one
node from the corresponding layer. To find out such a close node, SOLIST
proceeds in two steps. The first step consists in contacting an entry point for

3Depending on the DHT implementation, u may choose arbitrarily partitions on its own
or it determines one based on the current state of the system.

RR n°® 7192

8 A. C. Viana & N. Mitton & L. Schmidt & M. Vecchio

this layer. The entry point will not necessary belong to the correct layer but
is aware of the closest sensor that belongs to that layer. The second step thus
consists in contacting that contact node. Proceeding in two steps allows always
reaching the closest node thus limiting energy, bandwidth and time spendings.
To identify entry points and contact nodes, SOLIST uses hash functions.

4.2 Content Addressable Network (CAN)

CAN [5] introduces the notion of multi-dimensional identifier spaces by which
routing efficiency is greatly improved compared to linear neighbor traversal in
a single dimension. The average path length in a system with n nodes and d
dimensions scales as O(d(n7)). Partition assignment: In CAN, cach data
item is assigned an identifier of the form < x,y, z > for d = 3. Each node is said
to own a zone. CAN ensures that the entire space is divided into non-overlapping
zones.Because a key represents a point P in the identifier space, (key,value)
pairs are stored on the node owning the zone which covers P. A new node
n joining a CAN system sends a Join message to node d which is the current
node responsible for the zone where n lays. Then, d splits its zone in half and
assigns one half to n (cf. Fig. W) Finally, d transfers the keys to n for which
it has become responsible. Routing over the CAN overlay: For routing
purposes, a CAN node stores information only about its immediate neighbors.
Two nodes in a d-dimensional space are considered neighbors if their coordinates
overlap in one dimension and are adjacent to each other in d — 1 dimension. For
instance, in Fig. W, nodes N1 and N6 are neighbors unlike nodes N5 and
N6 which are not neighbors. If the local node does not own the zone of the
destination, it forwards the message to its neighbor with the coordinates closest
to the destination (Fig. . In a d-dimensional space equally partitioned into
n zones, this procedure results in an average of O((d/4)(n)) routing steps.
This expresses that increasing the number of dimensions significantly reduces
the average route length.

Node Failure: The zones of failing or leaving nodes must be taken over by alive
nodes to maintain a valid partitioning of the identifier space. A node detects
the failure of a neighbor when it ceases to send update messages. Through
an efficient message advertising, the neighboring node with the smallest zone

N y ENR
: Lo,

Figure 2: Projection of 3 groups of nodes (A, B and e) into three layers.

INRIA

SENSATION 9

N4 N7
N4
N5 11\11 N2 NS A
N3 ! N3 N1
ewl]
K[hES /
N6 N6

(a) Route from node N1 to a key (b) New node N7 arrives in N1’s
K with coordinates (z,y) in zone. N1 shares its with NT.
a two-dimensional CAN topol- Updated neighbor set of N1 :
ogy. Neighbor set of N1 : NT7,N2, N6, N5.
N2, N6, N5.

Figure 3: CAN mechanisms illustration.

volume merges the deserted zone with its own zone if possible. Alternatively, it
temporarily manages both zones.

Node Departure: When a node [deliberately leaves a CAN system, it notifies
a neighbor n whose zone can be merged with {’s zone. If no such neighbor exists,
[chooses the neighbor with the smallest zone volume. It then copies the contents
of its hash table to the selected node so this data remains available.

4.3 Tribe

Tribe [6] has been designed for large scale self-organizing networks. Without
any central control entity or positioning mechanism, Tribe creates a topology
that is a logical network representation, and describes the relative location of
the nodes according to their neighborhood in the physical network.

Partition assignment: When a node arrives in the network, it receives a
control region which will serve for two purposes: node identification and routing.
A new node u in the network receives the control region from its neighbors which
control region is the largest. This latter one gives half part of its region to the
new node v and becomes its parent node. Tribe thus builds a tree as illustrated
by links between nodes on Fig.

Routing in the Tribe structure: The routing operation needs to be per-
formed to reach a node responsible for a given key returned by the hash func-
tion, i.e. either when a node needs to register an information or to find it.
Let p(u) = [p,pP| be the control region of node u. When node u entered
the network, it has been assigned the virtual space pini¢(u) = [pg,pf. [where
PP < pi_m since from then, v may have shared its initial space with its children.
When node u needs to reach the node responsible for a key key € V), it proceeds
as follows.

o If key € p(u), u can answer the request.

o If key & pinit(u), then forwards to its parent.

RR n°® 7192

10 A. C. Viana & N. Mitton & L. Schmidt & M. Vecchio

@ 0-pO)= (22,50 @
A=p(a) =[0, 151 A0 & ST

P00, 70

8-p(B) = (1530 C-pC)= (7, 15 -pE) (1522 C-pO)=1. 18

A-Pp(A)=[0, 30 B - p(B) = [15,300

() (b) (c) (d)

Figure 4: Tribe virtual space sharing. (a) node A is alone and responsible for
the whole virtual space V = [0,30[. (b) Node B pops up (b) and gets half of A
partition. (c) Node C appears, A gives again half of its partition. (d) Node D
arrives, B shares its partition since it has a larger partition than node A.

o If p < key < pf , then forwards to its child v such that key € pinit(v).

Every node reiterates this process till reaching the node responsible for the key.

5 SENSATION

5.1 Solution overview

SENSATION aims at proposing a self-organizing structure to manage data dy-
namism in a stock oriented network deployed over several geographic sites. It
aims at answering stock management requests which may concern either a prod-
uct, or a family of products or a geographical site.

To do so, in SENSATION, data are assigned a type like in SOLIST [2]. This
type may be a product kind (e.g. type = trousers) or a location (e.g. type
= Warehouse A) all addressed with no distinctions. Each type is associated
to a layer. To address requests concerning a family of products or a larger
geographical area, requests will be sent to a collection of layers. Indeed, if a
request aims at drawing an inventory of sport articles and that sport articles
family includes bikes and rackets, independent requests are sent to the racket
layer and to the bike layer and aggregated afterwards. Similarly, if a request
concerns every warchouse in Lille and that there are 2 warehouses in Lille,
independent requests are sent to warehouse A layer and warehouse B layer.

Each layer ¢ is composed of an overlay network composed of nodes and links.
Nodes are databases and servers detaining information relative to type ¢, e.g
every server or database storing data about trousers. When joining the overlay
network of a layer ¢, a database A will be assigned a virtual space partition
together with “neighbors”, e.g. other database from the layer to which A is
connected to. Note that since this is a logical network, this link may not be
direct in the physical underlying network. SENSATION uses Tribe [6] to assign
the space partition to databases and to create links. Although Tribe may be
directly applied within a layer, the setting up of the SOLIST-like architecture
needs some adaptation. In SENSATION, this first basis space needs to be
defined and databases need to detain coordinates which allow locating them in
this space. We use CAN [1] in this purpose.

The structure is then used for three purposes: (i) Distributed storing: every
database which has fresh data of a given type t, firstly retrieves the correspond-
ing responsible node for the type ¢. Through the responsible node it can enter

INRIA

SENSATION 11

the Tribe t-layer, in order to reach the database responsible for storing its data,
by using Tribe routing; (i7) Replication: any level of replication can be im-
posed to SENSATION. Indeed, once the Tribe layer is reached, just applying
different hash functions to the item ID to store would change the server respon-
sible for the storing. (iii) Efficient request management: thanks to the use
of several layers, a request will not be flooded in the whole network but only on
nodes concerned by the request. Resources and latency are saved. The first step
which consists in reaching the proper layer allows this node selection. Then, the
use of Tribe within an overlay facilitates the request management. Indeed, the
tree-like structure of Tribe is useful to aggregate counting requests in each level
of the tree and stop flooding in enough nodes have been reached.

5.2 Mapping of the virtual coordinate system

The virtual structure has to include all nodes of all sites of the stock oriented
network. Considering a national scale, sites represent the cities where a store is
located. Thus, the lookup structure will be divided in NC cells, being each cell
corresponding to a site.

In the following, each cell (or city) is assigned a coordinate (X¢, Y¢) repre-
senting its relative position in the virtual system, along the x and y dimensions.
More in details, the cell located in the bottom left corner of the grid has a
coordinate equal to (0,0), the next ones have coordinates equal to (1,0) and
(0,1) along the x and y dimensions respectively, and so on. Finally, each cell
is logically divided into T square areas, where 7' is maximum number of cate-
gories (which as mentioned could be types of goods or sites) supported by the
application, and should be a perfect square number. Each square represents a
virtual location in the cell, with relative coordinate (X, Yr) within a cell; each
location acts as an entry point for a different type in the logical cell (square
of coordinates (X7, Yr) in cell i and square of coordinates (Xr,Yr) in cell j
are entry points for the same layer(s)). Fig. [5] clarifies this concept; here the
geographical area is divided into 3 x 3 virtual cells and each cell is divided into
16 sites: each site in the cell represents a different entry point for the 16 man-
aged types: this means that the application can manage up to 16 types, being
each type represented by an integer value within 0 and 15. For the sake of
simplicity in the following we will consider virtual grids divided into the same
number of cells along the x and y dimensions. This assumption does not limit
the applicability of the approach, since one can build a grid with some unused
cells.

By construction, we have exactly T entry-points within each cell, one for
each type managed by the application This means that whenever an action
has to be performed (insertion, lookup, ...) on an item of type p, a requesting
user u has firstly to reach the p entry point within the cell he belongs to. By
contacting the server database which is responsible of the requested type p
(which actually is the server responsible of p entry point), u can reach the layer
p (in the following we will say that “u is in the layer p”), so he can reach the
server which has actually stored the item, by using Tribe. The critic point is
how to share the virtual space represented by the entry-point set. We simply

4Note that there may be less than T entry points. If a position is empty, the closest server
handles the role of the entry point for this empty position.

RR n°® 7192

12 A. C. Viana & N. Mitton & L. Schmidt & M. Vecchio

propose to share the entry-points set among the servers in a cell, by using CAN.
For this reason, at a steady state the servers in a cell share the entry-points so
as each of them is responsible of an non-overlapping partition of the DHT, being
the DHT the entry-point set®. For this, we use a bi-dimensional congruential
mapping function in order to determine the entry point of type p in the cell
(X¢,Ye) (in the following it will be denoted as ep,()XC’YC)), which is:

epXe¥e) = (Xepz()xc,yc>7yepz()xc,yc)) "
1
- (mod(p, d) + X¢ - d, EJ +Ye -d)

where d = VT, L%J is the integer division between p and d and mod(p, d) is the

remainder after this division. Finally, once epg)XC’YC) is computed, the request

can be routed (using CAN) towards the requested entry point p. Once reached
the right layer, Tribe is used for finding the node storing the item.

Virtual coordinate assignment: To be inserted in the structure, databases
needs coordinates which are assigned by the user who arbitrarily assigns to each
new node (database) a unique geographic position in the grid. On the basis
on the assigned site, a unique I'D in the virtual system is generated as a bit
sequence containing information about the virtual cell coordinates (X¢, Ye) and
the relative position within the cell (X7, Yr):

ID = |bin(Xc,nbC)|bin(Ye, nbC)|bin(X 1, nbT) |bin(Yr, nbT)|

where bin(z,n) is the binary integer representation of x over n bits, nbC' = w,

nbl = % and | represents a string concatenation. To better understand this
translation from a virtual site into a unique address, let us consider an example in
which a user plugs a new database to the network in the geographical coordinate
(7,11) of a grid of NC = 9 cells. If T' = 16, the resulting virtual 1D is 8-bits long: 2
bits being used for codifying each field. From Fig.[5]it is clear that coordinate (7,11)
belongs to cell (1,2) and to square 3,3 in that cell. Thus, ID = 01]10|11|11 (01, being
the binary representation of X¢, 10 the binary representation of Yo and 11 the binary
representation of X7 and Y7, on 2 bits each).

Figure 5: Adding a node. Cell coordinates are reported in the bottom and left
sides of the x and y dimensions, resp.

5This is one of the main differences between SOLIST and SENSATION.

INRIA

SENSATION 13

Adding a server: When a server u wants to join the infrastructure it has to (i) obtain
a portion of the entry-point set (i.e. joining CAN) and (i) obtain a portion of the
Tribe addressing space in all the layers obtained by CAN and corresponding to the
objects it has to register (i.e. join Tribe). To better clarify this, let us consider a server
u wanting to join the infrastructure. The nearest CAN node v already in the structure
has to give u a portion of the entry-points it currently manages. Let consider, for
instance that u receives an entry-points set P = 1,2,7,8. This means that u will be
the entry point for any request of access layers 1,2,7,8 within the cell, so that u has
also to join the same layers in Tribe. In other words, it has to obtain a portion of the
Tribe addressing space in each of the mentioned layers.

Adding items: When an item of type 7 has to be stored in the infrastructure, the
server which is currently managing the entry-point 7 is contacted by using CAN (note
that this operation is purely local, in the sense that the responsible node of type i is
local to the cell). Since this server is also registered in the Tribe i-layer, the request
can be forwarded using Tribe. Notice that, when the right Tribe layer is reached,
any level of replication of the data can be imposed, in order to increase the fault—
tolerance. Just applying different hash functions to same item ID, in fact, would
result in a different server managing the hashed ID (and so the storing server). The
only constrain to impose to have a level of replication of h is that the hash functions
set h has to be known to all servers. With this technique a tunable fault tolerance
level can be introduced. Moreover, this technique let the application further diminish
the overhead cost introduced by Tribe, when querying. This aspect will be clearer in
the next paragraph.

Lookup phase: When a query has to be answered, firstly the responsible node of
the requested type is contacted, by using CAN. This phase is common to the adding
phase. Once in the right layer, in dependence on the type of query a different scheme
is used. In particular, for unicast, the request is routed using Tribe until the server
managing the requested hashed ID is reached. This server is the responsible of directly
providing the answer to the asking user. When a replication level h is imposed, we
know that actually the item (if it was added) was stored h times in the layer. For
this reason, it is less expensive (from a latency and communication overhead point of
view) computing the hash function h times and reach the tribe node at the minimum
distance from the contact node. This nice feature of SENSATION is analyzed in the
simulation experiments.

5.3 Example

Let us assume that a database B wishes to draw an inventory of trousers. To respond
to it, by running SENSATION, B first contacts the closest entry point of the type
‘trousers’. To identify this latter one, B applies Eq.[1] and CAN (which returns the
relative location of the proper entry point corresponding to trousers layer in every
cell). It determines the closest one ep;. Then, B contacts ep; and gets the location
of the nearest node C' managing trousers, called here contact node (Fig.[6). Note
that ep; knows node C since this latter one has registered at node ep; by also using
Eq.[1} The counting request is then sent to C. Since C has previously joined the layer
corresponding to trousers, it can forward the message to all nodes managing trousers
that have previously registered in this layer. The counting request will be sent in
broadcast mode in the overlay and the answer will contain the number of trousers in
the entire network. Another request is to know if a product is existent (here, trousers).
As previously, node B contacts the closest entry point for the type ’trousers’. If the
entry point returns a node id, the existence is proved. Otherwise, the entry point
returns NOoT FOUND and there are no trousers.

If a user wants to know if there are at least 10 trousers to ensure a command, he
still contacts the closest entry point, which in turn sends the nearest contact node C

RR n°® 7192

14 A. C. Viana & N. Mitton & L. Schmidt & M. Vecchio

® ® ® ¥ =
Piq P13 eP1(s) 10)

.\D

eP 1) €P1(a) EPy(e) €P1g)

P2(2) P2 P2() Pa(e)

© Node B computes the coordinates of the nearest entry pgjyt (ep) which returns the nearest node
identifier and coordinates belonging to the layer
© Node B contacts node C, which is the nearest node in the ligh-t-layer

Figure 6: Node B retrieving the nearest node of LiGH-trousers-LAYER.

identity. User sends a k = 10-cast request to C, which forwards the request in the
overlay, in decreasing k with the number of trousers it manages, to the next node of
the same layer according to the broadcast algorithm. This next node does the same
thing (decrease k and forward the request with the new k) until £ = 0. When the user
receives an answer, he knows if there are enough trousers without flooding the whole
network.

A query may also concern a geographical location. In such a case, the same
mechanism is applied on the type ’Lille’ if the query wishes to set an inventory of
Lille warehouse, for instance.

6 Simulation

An exhaustive performance analysis is performed to analyze the routing cost of re-
quests, the robustness at various replication levels and the distribution of the infor-
mation in SENSATION.

Testbed: In each cell 10 servers are uniformly randomly placed (so a total of 640
servers) is a square universe divided into 64 cells of equal size over the Matla software.
After having inserted the servers, items are added in the following way: 100 items
of type ¢ are inserted from randomly extracted servers, where ¢ € [1,400]. Each
experiment was performed 30 times and results were averaged.

Overhead: After the registration phase, each registered item is queried by a server.
This action (which is actually what we have denoted as unicast query) in a classical
database network should not have any cost, since the information is stored in the local
server. On the other side, using SENSATION, the entry point of the requested type
has to be contacted (routing with CAN); once the responsible node is reached, Tribe
is used to locate the server which is actually storing the requested item. Fig.[8 shows
the overhead introduced by CAN for reaching the requested entry points. For the
sake of readability a histogram is shown: it can be easily seen that more than 35% of
the entry points can be contacted with a routing cost of 2 hops, which is a very low
overhead. Note that this overhead is independent on the replication level introduced
in Tribe layers.

Dealing with node failures: To evaluate SENSATION robustness, a percentage of
failing servers varying within 0 and 100% is considered. Note that, when a server is
experimenting a failure, the items registered there are unavailable (it is a database

Shttp://www.mathworks.fr/

INRIA

SENSATION 15

TYPES=202 CELLS=82 SERVERInCELL=10 ITEMperTYPE=100

replication level 1
replication level 2
-replication level 3
-replication level 4
replication level 5
----replication level 6
replication level 7
replication level 8
replication level 9
----replication level 10

INFORMATION LOSS(%)
o
3

4of
30

20

10

0 P
0 10 20 30__40 50 60 70 80 0 100

SERVER FAILURES(%)
(a) Percentage of lost information.
TYPES=207 CELL 0 ITEMperTYPE=100

100/ -

o

80|

70r

----replication level 1
replication level 2
replication level 3
replication level 4
replication level 5
----replication level 6
----replication level 7
replication level 8
----replication level 9
----replication level 10

a
=3

SUCCESSFUL UNICAST(%)
<] g

30 40 Sb 60 70
SERVER FAILURES(%)

(b) successful unicast queries.

TYPES=202 CELLS=82 SERVERInCELL=10 ITEMperTYPE=100

f -

' | - replication level 1
----replication level 2
---replication level 3
---replication level 4
replication level 5
---replication level 6
replication level 7
replication level 8
---replication level 9

---replication level 10

FAILED BROADCAST (%)

30 - 40 50 60 70 80 90 160
SERVER FAILURES(%)

(c) Percentage of failing broadcast queries.

Figure 7: Performance of SENSATION varying the replication level in Tribe
and the percentage of failing servers.

RR n°® 7192

16 A. C. Viana & N. Mitton & L. Schmidt & M. Vecchio

TYPES=207 CELLS=8% SERVERInCELL=10 ITEMperTYPE=100
35 T T T T T T T

6 8 10 1é 1‘4 16 18
NUMBER OF HOPS

Figure 8: Overhead in CAN.

failure), while the routing in the layers is still possible. It means that during the
failure the information is not available, but CAN and Tribe can react to the failure
and auto-organize again. Fig. m shows, for different replication levels and different
loss regimes the percentage of information lost (this is equivalent of showing the failure
rate of unicast queries). It can be noticed that, with a level of replication equal to
1 the loss of information is linear. Indeed, the information is uniformly distributed
as the number of failures. Moreover, as expected, increasing the level of replication
in the Tribe layers increases the reliability of SENSATION. With a low replication
level equal to 2, when 50% of servers are down, only 25% of data are lost. This same
amount of losses is even achieved when 70% of servers are down with a replication
level equal to 3. In addition, this is worth noting that this reflects the worst scenario
since in these simulations, failures appear randomly while in realistic scenario, when
a server fails, its closest servers are more likely to fail rather than other ones in the
network. Since data are spread randomly, in realistic scenario, data losses will indeed
be less numerous.

Request performance: Fig. W plots the percentage of successful unicast queries,
at different replication levels and loss regimes. Results show that, unicast queries are
pretty well managed by SENSATION with a sufficiently low order of replication and
even at relatively high loss regime. This has a simple explication: let us assume a
replication level of k. Information about an item is lost if and only if the k servers in
which the item was stored are simultaneously experimenting a failure; otherwise, after
the re-organization the item is registered again. Lost are only temporary. Unfortu-
nately, this behavior is not to be expected in broadcast queries. Indeed, a broadcast
query, in fact, can be correctly served (i.e. produce the right answer) if and only if all
the items of the requested type are present in any of the k servers in which they were
registered. As a consequence, just the disappearing of an item of the given type (the
item on which the unicast query is failing) produces a failure of the broadcast query.
Nevertheless, as shown by Fig. @, SENSATION well resists to these failures.

7 Conclusion

We have proposed SENSATION, a novel self-organizing stock management structure.
SENSATION is based on existing works proposed for wireless sensor networks and

INRIA

SENSATION 17

adapts them to another context. It proposes an efficient unique structure which can
be used for different purposes such as data replication, distributed storing and request
managements. These features help in the scalability and reliability of new storing
warehouse management which tends to increase in scale and to be more and more
interconnected. Results show that SENSATION provides interesting and promising
results in terms of reliability and scalability. Next steps would be to study in more
details the cost of replication towards the gain in reliability. In addition, some real
implementations and tests should be performed to complete the full analysis.

References

[1] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking up
data in P2P systems. Communications of the ACM, 46(2):43-48, February 2003.

[2] Y. Busnel, M. Bertier, and A.M Kermarrec. Solist: A lightweight multi-overlay
structure for wireless sensor networks. Research Report RR-6404, INRIA, 2007.

[3] J. P. Hubaux, Th. Gross, J. Y. Le Boudec, and M. Vetterli. Towards self-organized
mobile ad hoc networks: the terminodes project. IEEE Communications Magazine,
39(1):118-124, January 2001.

[4] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris. A scalable
location service for geographic ad hoc routing. In Proceedings of ACM Mobicom,
Boston, MA, August 2000.

[5] S.Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of ACM Sigcomm, pages 161-172, August
2001.

[6] A. C. Viana, M. Dias de Armorim, S. Fdida, and J. Ferreira de Rezende. In-
direct routing using distributed location information. In In Proceedings of the
First IEEE International Conference on Pervasive Computing and Communica-
tions (PERCOM ’03), page 224, Washington, DC, USA, 2003. IEEE Computer
Society.

[7] Y. Xue, B. Li, and K. Nahrstedt. A scalable location management scheme in
mobile ad-hoc networks. In Proceedings of IEEE Conference on Local Computer
Networks (LCN).

RR n°® 7192

/<

Centre de recherche INRIA Lille — Nord Europe
Parc Scientifigue de la Haute Borné0, avenue Halley - 59650 Villeneuve d’Ascq (France)

Centre de recherche INRIA Bordeaux — Sud Ouest : Domaine thifage- 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble — Rhdne-Alpes : 655, @&vele 'Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Nancy — Grand Est : LORIA, Techtegdé Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les¢yabedex
Centre de recherche INRIA Paris — Rocquencourt : Domaine de&edau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes — Bretagne AtlantiqueSARCampus universitaire de Beaulieu - 35042 Rennes Cedex
Centre de recherche INRIA Saclay — lle-de-France : ParcyQusiversité - ZAC des Vignes : 4, rue Jacques Monod - 9189&@&edex
Centre de recherche INRIA Sophia Antipolis — Méditerran2804, route des Lucioles - BP 93 - 06902 Sophia Antipolis &ede

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Ledbay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

	Introduction
	Case study
	Preliminaries
	Indirect routing
	DHT Mechanisms

	Related works
	SOLIST
	Content Addressable Network (CAN)
	Tribe

	SENSATION
	Solution overview
	Mapping of the virtual coordinate system
	Example

	Simulation
	Conclusion

