
HAL Id: inria-00455415
https://hal.inria.fr/inria-00455415

Submitted on 10 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reverse-engineering in spiking neural networks
parameters: exact deterministic parameters estimation

Horacio Rostro-Gonzalez, Juan Carlos Vasquez, Bruno Cessac, Thierry
Viéville

To cite this version:
Horacio Rostro-Gonzalez, Juan Carlos Vasquez, Bruno Cessac, Thierry Viéville. Reverse-engineering
in spiking neural networks parameters: exact deterministic parameters estimation. [Research Report]
RR-7199, INRIA. 2010, pp.41. �inria-00455415�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50111458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00455415
https://hal.archives-ouvertes.fr

a ppo r t

d e r e c he rc he

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
1

9
9

--
F

R
+

E
N

G

Thème BIO

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Reverse-engineering in spiking neural networks

parameters: exact deterministic parameters

estimation

Horacio Rostro-González, Juan Carlos Vasquez-Betancur, Bruno Cessac, Thierry Viéville

N° 7199

September 2009

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Reverse-engineering in spiking neural networks

parameters: exact deterministic parameters estimation

Horacio Rostro-González∗, Juan Carlos Vasquez-Betancur∗, Bruno
Cessac∗, Thierry Viéville†

Thème BIO — Systèmes biologiques
Équipes-Projets NeuroMathComp & Cortex

Rapport de recherche n° 7199 — September 2009 — 41 pages

Abstract: We consider the deterministic evolution of a time-discretized network with
spiking neurons, where synaptic transmission has delays, modeled as a neural network
of the generalized integrate-and-fire (gIF) type. The purpose is to study a class of algo-
rithmic methods allowing one to calculate the proper parameters to reproduce exactly
a given spike train, generated by an hidden (unknown) neural network.

This standard problem is known as NP-hard when delays are to be calculated. We
propose here a reformulation, now expressed as a Linear-Programming (LP) problem,
thus allowing us to provide an efficient resolution. This allows us to “reverse-engineer”
a neural network, i.e. to find out, given a set of initial conditions, which parameters
(i.e., synaptic weights in this case), allow to simulate the network spike dynamics.

More precisely we make explicit the fact that the reverse-engineering of a spike
train, is a Linear (L) problem if the membrane potentials are observed and a LP problem
if only spike times are observed. Numerical robustness is discussed. We also explain
how it is the use of a generalized IF neuron model instead of a leaky IF model that
allows us to derive this algorithm.

Furthermore, we point out how the L or LP adjustment mechanism is local to each
unit and has the same structure as an “Hebbian” rule. A step further, this paradigm
is easily generalizable to the design of input-output spike train transformations. This
means that we have a practical method to “program” a spiking network, i.e. find a set
of parameters allowing us to exactly reproduce the network output, given an input.

Numerical verifications and illustrations are provided.

Key-words: Spiking neural networks, Discretized integrate and fire neuron models
and computing with spikes.

∗ INRIA NeuroMathComp http://www-sop.inria.fr/neuromathcomp
† INRIA Cortex http://cortex.loria.fr

Reverse-engineering in spiking neural networks

parameters: exact deterministic parameters estimation

Résumé : Nous considérons l’évolution déterministe d’un réseau de neurones à im-
pulsion, du type intègre-et-tire généralisé (gIF) où des poids synaptiques incluent des
délais. Le but est d’étudier un groupe de méthodes algorithmiques qui permettent de
calculer de manière appropriée les paramètres afin de reproduire de manière exacte un
train d’impulsions (spike train) donné, généré par un réseau inconnu.

Inclure les délais comme des paramètres a estimer conduit à un problème NP-
complet. Nous proposons une re-formulation correspondant à un problème de pro-
grammation linéaire (LP) donnant ainsi une solution efficace au problème. De cette
façon retrouver les paramètres (i.e. poids synaptiques) à partir d’un ensemble de
données, ce qui nous permet de simuler la dynamique de ce réseau de neurones à im-
pulsion.

De manière plus précise on explicite le fait que la reverse-engineering d’un train
d’impulsions est un problème linéaire (L) si le potentiel de la membrane est observé et
un problème LP dans le cas où seulement les impulsions sont connues. Le modèle gIF
est utilisé ici. Les problèmes de robustesse numérique sont discutés.

De plus nous signalons comment le mécanisme d’ajustement dans le problème L
ou LP se fait de manière locale en chaque unité avec une structure semblable à une
règle du type Hebbien. En poussant le raisonnement, ce paradigme est facilement
généralisable à la conception des transformations sur trains d’impulsions entrée/sortie.
Nous obtenons une méthode pratique pour programmer un réseau de neurones, i.e.
trouver un ensemble de paramètres qui nous permet de reproduire de manière exacte la
sortie d’un réseau à parir d’une entrée donné.

Mots-clés : Réseau de neurones à impulsion, modèle de neurones intègre et tire à
temps discret, calcul avec spikes

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation3

1 Introduction

Neuronal networks have tremendous computational capacity, but their biological com-
plexity make the exact reproduction of all the mechanisms involved in these networks
dynamics essentially impossible, even at the numerical simulation level, as soon as the
number of neurons becomes too large. One crucial issue is thus to be able to reproduce
the “output” of a neuronal network using approximated models easy to implement nu-
merically. The issue addressed here is “Can we program an integrate and fire network,
i.e. tune the parameters, in order to exactly reproduce another network output, on a
bounded time horizon, given the input”.

Calculability power of neural network models

The main aspect we are interesting here is the calculability of neural network models.
It is known that recurrent neural networks with frequency rates are universal approx-
imators [37], as multilayer feed-forward networks are [23]. This means that neural
networks are able to simulate dynamical systems1, not only to approximate measur-
able functions on a compact domain, as originally stated (see, e.g., [37] for a detailed
introduction on these notions). Spiking neuron networks can be also universal approx-
imators [30].

Theoretically, spiking neurons can perform very powerful computations with pre-
cise timed spikes. They are at least as computationally powerful as the sigmoidal neu-
rons traditionally used in artificial neural networks [29, 31]. This results has been
shown using a spike-response model (see [33] for a review) and considering piece-
wise linear approximations of the potential profiles. In this context, analog inputs
and outputs are encoded by temporal delays of spikes. The authors show that any
feed-forward or recurrent (multi-layer) analog neuronal network (à-la Hopfield, e.g.,
McCulloch-Pitts) can be simulated arbitrarily closely by an insignificantly larger net-
work of spiking neurons. This holds even in the presence of noise [29, 31]. These
results highly motivate the use of spiking neural networks, as studied here.

In a computational context, spiking neuron networks are mainly implemented through
specific network architectures, such as Echo State Networks [25] and Liquid Sate Ma-
chines [32], that are called “reservoir computing” (see [47] for unification of reservoir
computing methods at the experimental level). In this framework, the reservoir is
a network model of neurons (it can be linear or sigmoid neurons, but more usually
spiking neurons), with a random topology and a sparse connectivity. The reservoir is
a recurrent network, with weights than can be either fixed or driven by an unsuper-
vised learning mechanism. In the case of spiking neurons (e.g. in the model of [34]),
the learning mechanism is a form of synaptic plasticity, usually STDP (Spike-Time-
Dependent Plasticity), or a temporal Hebbian unsupervised learning rule, biologically
inspired. The output layer of the network (the so-called “readout neurons”) is driven by
a supervised learning rule, generated from any type of classifier or regressor, ranging
from a least mean squares rule to sophisticated discriminant or regression algorithms.
The ease of training and a guaranteed optimality guides the choice of the method. It
appears that simple methods yield good results [47]. This distinction between a readout

1As an example see the very interesting paper of Albers-Sprott using this property to investigate the
dynamical stability conjecture of Pales and Smale in the field of dynamical systems theory [3] or route to
chaos in high dimensional systems [2]

RR n° 7199

4 NeuroMathComp

layer and an internal reservoir is indeed induced by the fact that only the output of the
neuron network activity is constrained, whereas the internal state is not controlled.

Learning the parameters of a neural network model

In biological context, learning is mainly related to synaptic plasticity [21, 16] and
STDP (see e.g., [42] for a recent formalization), as far as spiking neuron networks are
concerned. This unsupervised learning mechanism is known to reduce the variability
of neuron responses [7] and is related to the maximization of information transmission
[43] and mutual information [15]. It has also other interesting computational properties
such as tuning neurons to react as soon as possible to the earliest spikes, or segregate
the network response in two classes depending on the input to be discriminated, and
more general structuring such as emergence of orientation selectivity [22].

In the present study, the point of view is quite different: we consider supervised
learning, since “each spike matter”, i.e., in the special case of a feed-forward sweep of
visual activity in response to a brief visual presentation [22, 18]; we want, not only to
statistically reproduce the spiking output, but also to reproduce it exactly.

The motivation to explore this track is twofold. On one hand we want to better
understand what can be learned at a theoretical level by spiking neuron networks, tun-
ing weights and delays. The key point is the non-learnability of spiking neurons [52],
since it is proved that this problem is NP-complete, when considering the estimation of
both weights and delays. Here we show that we can “elude” this caveat and propose an
alternate efficient estimation, inspired by biological models.

We also have to notice, that the same restriction apply not only to simulation but,
as far as this model is biologically plausible, also holds at the biological level. It is
thus an issue to wonder if, in biological neuron networks, delays are really estimated
during learning processes, or if a weaker form of weight adaptation, as developed now,
is considered.

On the other hand, the computational use of spiking neuron networks in the frame-
work of reservoir computing or beyond [38], at application levels, requires efficient
tuning methods not only in “average”, but in the deterministic case. This is the reason
why we must consider how to exactly generate a given spike train.

Approximating neural dynamics

In [35] the authors propose 2 variants of the IF model for the approximation of spike
trains, the first variant correspond to a nonlinear IF model where the parameters depend
on the instantaneous membrane potential, for the second variant it is based in the Spike
Response Model and it depends on the time elapsed since the las spike time. The model
is able to have a spike coincidence between 70 and 80% for random current input and
73% for random conductance injection. At the numerical level they present a technique
for the parameters optimization based on spike trains in the full conductance-based
model. This technique consist in minimizing the distance between the original spike
train and the estimated spike train using the downhill simplex method. In a first instance
the reader could be find that the work in [35] and the work presented in this paper is
solved by the same way, but there is a very important difference; the work presented
here use the simplex method in order to solve a Linear Programming problem and find
the exact deterministic parameters estimation. The results showed below verify that
our model have a 100% spike trains coincidence on artificial and biological data.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation5

What is the paper about

In this paper we detail the proposed methods in three steps: first, discussing the neural
model considered here; then, detailing the family of estimation problems correspond-
ing to what is called reverse-engineering and discussing the related computational prop-
erties; finally, making explicit how a general input/output mapping can be “compiled”
on a spiking neural network thanks to the previous developments.

In the subsequent section, numerical verifications and illustrations are provided,
before the final discussion and conclusion.

2 Problem position: Discretized integrate and fire neu-

ron models.

Let us consider a normalized and reduced “punctual conductance based generalized
integrate and fire” (gIF) neural unit model [19] as reviewed in [36]. The model is
reduced in the sense that both adaptive currents and non-linear ionic currents are no
more explicitly depending on the potential membrane, but on time and previous spikes
only (see [12] for a development).

Here we follow [8, 13, 12] after [39] and review how to properly discretize a gIF
model. The precise derivation is not re-given here, except for one innovative aspect,
whereas the method is only sketched out (see [13, 12] for details).

Time constrained continuous formulation. Let v be the normalized membrane po-
tential, which triggers a spike for v = 1 and is reset at v = 0. The fire regime (spike
emission) reads v(t) = 1 ⇒ v(t+) = 0. Let us write ω̃t = {· · · tni · · · }, the list
of spike times tni < t. Here tni is the n-th spike-time of the neuron of index i. The
dynamic of the integrate regime reads:

dv

dt
+

1

τL

[v − EL] +
∑

j

∑

n

ρj

(
t − tnj

)
[v − Ej] = im(ω̃t),

Here, τL and El are the membrane leak time-constant and reverse potential, while
ρj(s) and Ej are the spike responses and reversal potentials for excitatory/inhibitory
synapses and gap-junctions. Furthermore, ρj(s) is the synaptic or gap-junction re-
sponse, accounting for the connection delay and time constant; shape showed in Fig.
1.

Delays

Wei
ghts

Figure 1: ρj(s) profil

Finally, im() is the reduced membrane current, including simplified adaptive and
non-linear ionic current (see [12] for details).

The dynamic of the integrate regime thus writes:

RR n° 7199

6 NeuroMathComp

dv

dt
+ g(t, ω̃t) v = i(t, ω̃t),

so that knowing the membrane potential at time t, the membrane potential at time
t + δ, writes:

v(t + δ) = ν(t, t + δ, ω̃t) v(t) +
∫ t+δ

t
ν(s, t + δ, ω̃s) i(s, ω̃s) ds,

log(ν(t0, t1, ω̃t0)) = −
∫ t1

t0
g(s, ω̃s) ds.

The key point is that temporal constraints are to be taken into account [10]. Spike-
times are bounded by a refractory period r, r < dn+1

i , defined up to some absolute
precision δt, while there is always a minimal delay dt for one spike to influence an-
other spike, and there might be (depending on the model assumptions) a maximal inter-
spike interval D such that either the neuron fires within a time delay < D or remains
quiescent forever). For biological neurons, orders of magnitude are typically, in mil-
liseconds:

r δt dt D

1 0.1 10−[1,2] 10[3,4]

Network dynamics discrete approximation. Combining these assumptions and the
previous equations allows one (see [13] for technical details) to write the following
discrete recurrence equation for a sampling period δ:

Vi[k] = γi Vi[k − 1] (1 − Zi[k − 1]) +

N∑

j=1

D∑

d=1

Wijd Zj [k − d] + Iik, (1)

where Vi[k] = vi(k δ) and Zi[k] = ξ[1,+∞[(Vi[k]), where ξ is the indicatrix function,
ξA(x) = 1 if x ∈ A and 0 otherwise.

Let us discuss in detail how (1) is derived from the previous equations.
The term (1−Zi[k]) implements the reset mechanism, since this term is equal to 0

when Vi[k] ≥ 1. The interesting technical point is that this equation entirely specifies
the integrate and fire mechanism.

The γi ≡ ν(t, t + δ, ω̃t)|t=k δ term takes into account the multiplicative effects of
conductances. The numerical analysis performed in [13] demonstrates that, for numer-
ical values taken from bio-physical models, considering here δ ≃ 0.1ms, this quantity
related to the contraction rate, is remarkably constant, with small variations within the
range:

γi ∈ [0.965, 0.995] ≃ 0.98,

considering random independent and identically distributed Gaussian weights. It has
been numerically verified that taking this quantity constant over time and neurons does
not significantly influence the dynamics. This the reason why we write γi as a con-
stant here. This corresponds to a “current based” (instead of “conductance based”)
approximation of the connections dynamics.

The additive current

Iik ≡

∫ t+δ

t

ν(s, t + δ, ω̃s)

(

im(ω̃s) +
EL

τL

)

ds

∣
∣
∣
∣
∣
t=k δ

≃ δ γi

(

im(ω̃t) +
EL

τL

)∣
∣
∣
∣
t=k δ

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation7

accounts for membrane currents, including leak. The right-hand size approximation
assume γi is constant. Furthemore, we have to assume that the additive currents are
independent from the spikes. This means that we neglect the membrane current non-
linearity and adaptation.

On the contrary, the term related to the connection weights Wijd is not straightfor-
ward to write and requires to use the previous numerical approximation. Let us write:

Wij [k − kn
j] ≡ Ej

∫ t+δ

t
ν(s, t + δ, ω̃t) ρj

(
t − tnj

)
ds

∣
∣
∣
t=k δ,tn

j =kn
j δ

≃ Ej δ γi ρj

(
t − tnj

)∣
∣
t=k δ,tn

j =kn
j δ

,

assuming ν(s, t + δ, ω̃t) ≃ γi as discussed previously. This allows us to consider the
spike response effect at time tnj = kn

j δ as a function only of k − kn
j . The response

Wij [d] vanishes after a delay D, τr = D δ, as stated previously. We assume here
that δ < δt i.e. that the spike-time precision allows one to define the spike time as
kn

j , tnj = kn
j δ (see [13, 12] for an extensive discussion). We further assume that only

zero or one spike is fired by the neuron of index j, during a period δ, which is obvious
as soon as δ < r.

This allows us to write Wijd = Wij [d] so that:

∑n
j=1 Wij [k − kn

j] =
∑D

d=1

∑n
j=1 Wij [d]ξ{kn

j }(k − d)

=
∑D

d=1 Wij [d]ξ{k1
j ··· ,k

n
j ,··· }(k − d)

=
∑D

d=1 Wijd Zj [k − d]

since Zj [l] = ξ{k1
j ··· ,k

n
j ,··· }(l) is precisely equal to 1 on spike time and 0 otherwise,

which completes the derivation of (1).

Counting the model’s degrees of freedom. Let us consider a network of N units,
whose dynamics is defined by (1), generating a raster of the form schematized in Fig. 2.

D

T

N

Figure 2: Schematic representation of a raster of N neurons observed during a time
interval T after an initial conditions interval D (in red). This example corresponds to a
periodic raster, but non-periodic raster are also considered. See text for further details.

In order to determine the dynamics of the neural network, we require the knowledge
of the initial condition. Here, due to the particular structure of equation (1) with a

RR n° 7199

8 NeuroMathComp

delay D, the initial condition is the piece of trajectory Vi[k], k ∈ {0, D{. The notation
k ∈ {0, D{ stands for 0 ≤ k < D.

If the neuron i has fired at least once, the dependence in the initial condition is
removed thanks to the reset mechanism. This means that its state does not depend on
Vi[0] any more, as soon as spikes are known. We thus can further assume Vi[0] = 0,
for the sake of simplicity.

The dynamics is parametrized by the weights Wijd thus N ×N ×D values. Here it
is assumed that the γi are known and constant, while Iik are also known, as discussed
below.

When the potential and/or spikes are observed during a period of T samples, N×T
numerical/binary values are measured.

3 Methods: Weights and delayed weights estimation

With the assumption that Vi[0] = 0 discussed previously, (1) writes:

Vi[k] =

N∑

j=1

D∑

d=1

Wijd

τik∑

τ=0

γτ Zj [k − τ − d] + Iikτ (2)

writing Iikτ =
∑τik

τ=0 γτ Ii(k−τ) with:
τik = k − arg minl>0{Zi[l − 1] = 1},

the derivation of this last form being easily obtained by induction from (1). Here τik is
the delay from the last spiking time, i.e., the last membrane potential reset. If no spike,
we simply set τik = k.

This equation shows that there is a direct explicit linear relation between spikes and
membrane potential. See [8] for more detailed about the one-to-one correspondence be-
tween the spike times and the membrane potential trajectory that defined by (1) and (2).
Here, we use (2) in a different way.

Let us now discuss how to retrieve the model parameters from the observation
of the network activity. We propose different solutions depending on the paradigm
assumptions.

Retrieving weights and delayed weights from the observation of spikes

and membrane potential

Let us assume that we can observe both the spiking activity Zi[k] and the membrane
potential Vi[k]. Here, (2) reads in matrix form:

Ci wi = di (3)

with:

Ci =

.

. . .
∑τik

τ=0 γτZj [k − τ − d] . . .
.

 ∈ RT−D×N D,

di = (. . . Vi[k] − Iikτ . . .)t ∈ RT−D,
wi = (. . . Wijd . . .)t ∈ RN D.

writing u
t the transpose of u.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation9

Here, Ci is defined by the neuron spike inputs, di is defined by the neuron mem-
brane potential outputs and membrane currents, and the network parameter by the
weights vector wi.

More precisely, Ci is a rectangular matrix with:

• N D columns, corresponding to product with the N D unknowns Wijd, for j ∈
{1, N} and d ∈ {1, D},

• T − D rows, corresponding to the T − D measures Vi[k], for k ∈ {D,T}, and,

• T − D × N D coefficients corresponding to the raster, i.e. the spikes Zj [k].

The weights are thus directly defined by a set of linear equalities for each neuron. Let
us call this a Linear (L) problem.

The equation defined in (3), concerns only the weights of one neuron of index i. It is
thus a weight estimation local to a neuron, and not global to the network. Furthermore,
the weight estimation is given by the observation of the input Zi[k] and output Vi[k].
These two characteristics correspond to usual Hebbian-like learning rules architecture.
See [21] for a discussion.

Given a general raster (i.e., assuming Ci is of full rank min(T − D,N D)):

• This linear system of equations has always solutions, in the general case, if:

N >
T − D

D
= O

(
T

D

)

⇔ D >
T

N + 1
= O

(
T

N

)

⇔ D (N +1) > T. (4)

This requires enough non-redundant neurons N or weight profile delays D, with
respect to the observation time T . In this case, given any membrane potential
and spikes values, there are always weights able to map the spikes input onto the

desired potential output.

• On the other hand, if N D ≤ T − D, then the system has no solution in the
general case. This is due to the fact that we have a system with more equations
than unknowns, thus with no solution in the general case. However, there is
obviously a solution if the potentials and spikes have been generated by a neural
network model of the form of (1).

If Ci is not of full rank, this may correspond to several cases, e.g.:

• Redundant spike pattern: some neurons do not provide linearly independent
spike trains.

• Redundant or trivial spike train: for instance with a lot of bursts (with many
Zj [k] = 1) or a very sparse train (with many Zj [k] = 0). Or periodic spike
trains.

Regarding the observation duration T , it has been demonstrated in [8, 13] that the
dynamic of an integrate and fire neural network is generically2 periodic. This however
depends on parameters such as external current or synaptic weights, while periods can
be larger than any accessible computational time.

2Considering a basic leaky integrate and fire neuron network the result is true except for a negligible set
of parameters. Considering an integrate and fire neuron model with conductance synapses the result is true,
providing synaptic responses have a finite memory.

RR n° 7199

10 NeuroMathComp

In any case, several choices of weights wi (in the general case a D (N + 1) − T
dimensional affine space) may lead to the same membrane potential and spikes. The
problem of retrieving weights from the observation of spikes and membrane potential
may thus have many solutions.

The particular case where D = 1 i.e. where there is no delayed weights but a simple
weight scalar value to define a connection strengths is included in this framework.

Retrieving weights and delayed weights from the observation of spikes

Let us now assume that we can observe the spiking activity Zi[k] only (and not the
membrane potentials) which corresponds to the usual assumption, when observing a
spiking neural network.

In this case, the value of Vi[k] is not known, whereas only its position with respect
to the firing threshold is provided:

Zi[k] = 0 ⇔ Vi[k] < 1 and Zi[k] = 1 ⇔ Vi[k] ≥ 1,

which is equivalent to write the condition:

eik = (2Zi[k] − 1) (Vi[k] − 1) ≥ 0.

If the previous condition is verified for all time index k and all neuron index i, then
the spiking activity of the network exactly corresponds to the desired firing pattern.

Expanding (2), with the previous condition allows us to write, in matrix form:

ei = Ai wi + bi ≥ 0 (5)

writing:

Ai =

.

. . . (2 Zi[k] − 1)
∑τjk

τ=0 γτZj [k − τ − d] . . .
.

 ∈ RT−D×N D,

bi = (. . . (2 Zi[k] − 1) (Iikτ − 1) . . .)t ∈ RT−D,
wi = (. . . Wijd . . .)t ∈ RN D,
ei = (. . . (2 Zi[k] − 1) (Vi[k] − 1) . . .)t ∈ RT−D,

thus Ai = Di Ci where Di is the non-singular RT−D×T−D diagonal matrix with
D

kk
i = 2Zi[k] − 1 ∈ {−1, 1}.

The weights are now thus directly defined by a set of linear inequalities for each

neuron. This is therefore a Linear Programming (LP) problem. See [17] for an intro-
duction and [6] for the detailed method used here to implement the LP problem.

Furthermore, the same discussion about the dimension of the set of solutions ap-
plies to this new paradigm except that we now have to consider a simplex of solution,
instead of a simple affine sub-space.

A step further, 0 ≤ eik is the “membrane potential distance to the threshold”.
Constraining the eik is equivalent to constraining the membrane potential value Vi[k].

It has been shown in [8] how:

|e|∞ = min
i

inf
k≥0

eik (6)

can be interpreted as a “edge of chaos” distance, the smallest |e| the higher the dynam-
ics complexity, and the orbits periods.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation11

On the other hand, the higher eik, the more robust the estimation. If eik is high,
sub-threshold and sup-threshold values are clearly distinct. This means that numerical
errors are not going to generate spurious spikes or cancel expected spikes.

Furthermore, the higher |e|∞ the smaller the orbits period [8]. As a consequence,
the generated network is expected to have rather minimal orbit periods.

In the next paper, in order to be able to use an efficient numerical implementation,
we are going to consider a weaker but more robust norm, than |e|∞:

|ei|1 =
∑

k

eik (7)

We are thus going to maximize, for each neuron, the sum, thus, up to a scale factor, the
average value of eik.

Let us now derive a bound for eik. Since 0 ≤ Vi[k] < 1 for sub-threshold values
and reset as soon as Vi[k] > 1, it is easily bounded by:

V min
i =

∑

jd,Wijd<0

Wijd ≤ Vi[k] ≤ V max
i =

∑

jd,Wijd>0

Wijd

and we must have at least V max
i > 1 in order for a spike to be fired while V min

i ≤ 0
by construction. These bounds are attained in the high-activity mode when either all
excitatory or all inhibitory neurons fire. From this derivation, emax > 0 and we easily
obtain:

emax = max
i

(1 − V min
i , V max

i − 1)

0 < eik ≤ emax

thus an explicit bound for eik.
Collecting all elements of the previous discussion, the present estimation problem

writes:
max
ei,wi

∑

k

ek, with, 0 < eik ≤ emax, and, ei = Ai wi + bi (8)

which is a standard bounded linear-programming problem.
The key point is that a LP problem can be solved in polynomial time, thus is not

a NP-complete problem, subject to the curse of combinatorial complexity. In practice,
this LP problem can be solved using one of the several LP solution methods proposed
in the literature (i.e., Simplex Method, which is, in principle, NP-complete in the worst
case, but in practice, as fast as, when not faster, than polynomial methods).

Retrieving signed and delayed weights from the observation of spikes

In order to illustrate how the present method is easy to adapt to miscellaneous paradigms,
let us now consider the fact that the weight emitted by each neuron have a fixed sign,
either positive for excitatory neurons, or negative for inhibitory neurons. This addi-
tional constraint, known as the “Dale principle” [40], is usually introduced to take into
account the fact, that synaptic weights signs are fixed by the excitatory or inhibitory
property of the presynaptic neuron.

Although we do not focus on the biology here, it is interesting to notice that this
additional constraint is obvious to introduce in the present framework, writing:

Wijd = Sijd W •
ijd, with Sijd ∈ {−1, 1}, and W •

ijd ≥ 0

RR n° 7199

12 NeuroMathComp

thus separating the weight sign Sijd which is a-priory given and the weight value W •
ijd

which now always positive.
Then, writing:

A
•ijkd = Aijkd Sijd

the previous estimation problem becomes:

max
ei,w

•

i

∑

k

ek, with, 0 < eik ≤ emax, 0 ≤ W •
ijd ≤ 1, and, ei = A

•
i w

•
i + bi (9)

which is still a similar standard linear-programming problem.

Retrieving delayed weights and external currents from the observa-

tion of spikes

In the previous derivations, we have considered the membrane currents Iik as inputs,
i.e. they are known in the estimation. Let us briefly discuss the case where they are to
be estimated too.

For adjustable non-stationary current Iik, the estimation problem becomes trivial.
An obvious solution is Wijd = 0, Iik = 1 + a (Zi[k] − 1/2) for any a > 0, since
each current value can directly drive the occurrence or inhibition of a spike, without
any need of the network dynamics.

Too many degrees of freedom make the problem uninteresting: adjusting the non-
stationary currents leads to a trivial problem.

To a smaller extends, considering adjustable stationary currents Ii also “eases” the
estimation problem, providing more adjustment variables. It is obvious to estimate not
only weights, but also the external currents, since the reader can easily notice that yet
another linear-programming problem can be derived.

This is the reason why we do not further address the problem here, and prefer to
explore in details a more constrained estimation problem.

Considering non-constant leak when retrieving parametrized de-

layed weights

For the sake of simplicity and because this corresponds to numerical observations, we
have assumed here that the neural leak γ is constant. The proposed method still works
if the leak varies with the neuron and with time i.e. is of the form γit, since this is
simply yet another input to the problem. The only difference is that, in (2) and the
related equations, the term γτ is to be replaced by products of γit.

However, if γ is a function of the neural dynamics, γ ≡ γ(ωt
−∞), thus of Wijd, the

previous method must be embedded in a non linear estimation loop. Since we know
from [13] that this dependency is numerically negligible in this context, we can propose
the following loop:

1. Fix at step t = 0, γ0
it ≡ γ(ω0

−D), to initial values.

2. k- Estimate the weights Wijd, given leaks γk
it at k = 0, 1, ...

3. k- Re-simulate the dynamics, given the weights and to obtain corrected values
γ̃k

it.

4. k- Smoothly modify γk+1
it = (1 − υ) γk+1

it + υ γ̃k
it

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation13

5. k + 1 Repeat step 2, k- for k + 1, the convergence of this non-linear relaxation
method being guarantied for sufficiently small υ. See [50] for an extended dis-
cussion about this class of methods.

This shows that considering models with leaks depending on the dynamics itself is
no more a LP-problem, but an iterative solving of LP-problems.

Retrieving parametrized delayed weights from the observation of

spikes

In order to further show the interest of the proposed method, let us now consider that
the profile of the weights is fixed, i.e. that

Wijd = W ◦
ij ατ (d) with, e.g., α(d) = d

τ
e−

d
τ

thus the weights is now only parametrized by a magnitude W ◦
ij , while the temporal

profile is known.
Here ατ (d) is a predefined synaptic profile, while τ is fixed by biology (e.g., τ =

2 ms for excitatory connections and τ = 10ms for inhibitory ones). Let us note that
the adjustment of τ would have been a much more complex problem, as discussed
previously in the non-parametric case.

This new estimation is defined by:

ei = A
◦
i w

◦
i + bi > 0 (10)

writing:

A
◦
i =

.

. . . (2 Zi[k] − 1)
∑

d

∑τjk

τ=0 γτZj [k − τ − d]α(d) . . .
.

 ∈ RT−D×N

w
◦
i = (. . . Wij . . .)t ∈ RN

thus a variant of the previously discussed mechanisms.
This illustrates the nice versatility of the method. Several other variants or combi-

nations could be discussed (e.g. parametrized delayed weights from the observation of
spikes and potential, ..), but they finally leads to the same estimations.

About retrieving delays from the observation of spikes

Let us now discuss the key idea of the paper.
In the previous derivations, we have considered delayed weights, i.e. a quantitative

weight value Wijd at each delay d ∈ {1, D}.
Another point of view is to consider a network with adjustable synaptic delays.

Such estimation problem may, e.g., correspond to the “simpler” model:

Vi[k] = γi Vi[k − 1] (1 − Zi[k − 1]) +

n∑

j=1

Wij Zj [k − dij] + Iik,

where now the weights Wij and delays dij are to estimated.
As pointed out previously, the non-learnability of spiking neurons is known [52],

i.e. the previous estimation is proved to be NP-complete. We have carefully checked in
[52] that the result still apply to the present setup. This means that in order to “learn”
the proper parameters we have to “try all possible combinations of delays”. This is

RR n° 7199

14 NeuroMathComp

intuitively due to the fact that each delay has no “smooth” effect on the dynamics but
may change the whole dynamics in a unpredictable way.

We see here that the estimation problem of delays dij seems not compatible with
usable algorithms, as reviewed in the introduction.

We propose to elude this NP-complete problem by considering another estimation
problem. Here we do not estimate one delay (for each synapse) but consider connec-
tion weights at several delay and then estimate a weighted pondering of their relative
contribution. This means that we consider a weak delay estimation problem.

Obviously, the case where there is a weight Wij with a corresponding delay dij ∈
{0, D} is a particular case of considering several delayed weights Wijd (corresponding
to have all equal weights to zero except at dij , i.e., Wijd = if d = dij then Wij else 0).

We thus do not restrain the neural network model by changing the position of the
problem, but enlarge it. In fact, the present estimation provides a smooth approximation
of the previous NP-complete problem.

We can easily conjecture that the same restriction also apply of the case where the
observation of spikes and membrane potential is considered.

We also have to notice, that the same restriction apply not only to simulation but,
as far as this model is biologically plausible, also true at the biological level. It is thus
an issue to wonder if, in biological neural network, delays are really estimated during
learning processes, or if a weaker form of weight adaptation, as discussed in this paper,
is considered.

4 Methods: Exact spike train simulation

4.1 Introducing hidden units to match any raster

Position of the problem

Up to now, we have assumed that a raster Z̄i[k], i ∈ {1, N}, k ∈ {1, T} is to be
generated by a network whose dynamics is defined by (1), with initial conditions
Z̄j [k], j ∈ {1, N}, k ∈ {1, D} and Vj [0] = 0. In the case where a solution exists,
we have discussed how to compute it.

We have seen that a solution always exists, in the general case, if the observation
period is small enough, i.e., T < O(N D). Let us now consider the case where T ≫
O(N D).

In this case, there is, in general, no solution. This is especially the case when the
raster has not been generated by a network given by (1), e.g., in the case when the raster
is random.

What can we do then ? For instance, in the case when the raster is entirely random
and is not generated by a network of type (1) ?

The key idea, borrowed from the reservoir computing paradigm reviewed in the
introduction, is to add a reservoir of “hidden neurons”, i.e., to consider not N but
N + S neurons. The set of N “output” neurons is going to reproduce the expected
raster Z̄i[k] and the set of S “hidden” neurons to increase the number of degree of
freedom in order to obtain T < O((N + S) D), thus being able to apply the previous
algorithms to estimate the optimal delayed weights. Clearly, in the worst case, it seems
that we have to add about S = O(T/D) hidden neurons. This is illustrated in Fig. 3.

In order to make this idea clear, let us consider a trivial example.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation15

S

N

D

T
Figure 3: Schematic representation of a raster of N output neuron observed during
a time interval T after an initial conditions interval D, with an add-on of S hidden
neurons, in order increase the number of degree of freedom of the estimation problem.
See text for further details.

Sparse trivial reservoir

Let us consider, as illustrated in Fig. 4, S = T/D + 1 hidden neurons of index i′ ∈
{0, S} each neuron firing once at ti′ = i′ D, except the last once always firing (in order
to maintain a spiking activity), thus:

Zi′ [k] = δ(i′ D − k), 0 ≤ i′ < S, ZS [k] = 1

Let us choose:
WSS1 > 1

Wi′S1 = 1−γ

1−γ
t
i′

−1/2

Wi′i′1 < − γ
2 t

i′−γT

γT (1−γ
t
i′)

< 0

Wi′j′d = 0 otherwise

with initial conditions Zi′ [k] = 0, i′ ∈ {0, S{ and ZS [k] = 1, k ∈ {1, D}, while
Ii′k = 0.

A straight-forward derivation over equation (1) allows us to verify that this choice
generates the specified Zi′ [k]. In words, as the reader can easily verify, it appears that:

• the neuron of index S is always firing since (though WSS1) a positive internal
loop maintains its activity;

• the neurons of index i′ ∈ {0, S{, whose equation writes:

Vi′ [k] = γ Vi′ [k − 1] (1 − Zi′ [k − 1]) + Wi′S1 + Wi′i′1 Zi′ [k − 1]

is firing at ti′ integrating the constant input Wi′S1;

• the neurons of index i′ ∈ {0, S{, after firing is inhibited (though Wi′i′1) by a
negative internal loop, thus reset at value negative low enough not to fire anymore
before T . We thus generate Zi′ [k] as expected.

RR n° 7199

16 NeuroMathComp

Figure 4: Schematic representation of a sparse trivial set of hidden neurons, allowing
to generate any raster of length T .

Alternatively, the use of the firing neuron of index S can be avoided by introducing
a constant current Ii′k = Wi′S1.

However, without the firing neuron of index S or some input current, the sparse
trivial raster can not be generated, although T < O(N D). This comes from the fact
that the activity is too sparse to be self-maintained. This illustrates that when stating
that “a solution exists, in the general case, if the observation period is small enough,
i.e., T < O(N D)”, a set of singular cases, such as this one, was to be excluded.

The hidden neurons reservoir raster being generated, it is straight-forward to gen-
erate the output neuron raster, considering:

• no recurrent connection between the N output neurons, i.e., Wijd = 0, i ∈
{1, N}, j ∈ {1, N}, d ∈ {1, D},

• no backward connection from the N output neurons to the S hidden neurons i.e.,
Wi′jd = 0, i′ ∈ {0, N{, j ∈ {1, N}, d ∈ {1, D},

• but forward excitatory connections between hidden and output neurons:

Wij′d = (1 + ǫ) Z̄i[j
′ D + d] for some small ǫ > 0

yielding, from (1) :
Vi[k] =

∑n
j′=1

∑D
d=1 Wij′d Zj′ [k − d]

=
∑n

j′=1

∑D
d=1(1 + ǫ) Z̄i[j

′ D − d] δ(j′ D − (k − d))

= (1 + ǫ) Z̄i[k])

setting γ = 0 for the output neuron and Ii′k = 0, so that Zi[k] = Z̄i[k], i.e., the
generated spikes Zi[k] correspond to the desired Z̄i[k], as expected.

The linear structure of a network raster

The previous construction allows us to state: given any raster of N neurons and obser-

vation time T , there is always a network of size N +T/D +1 with weights delayed up

to D, which exactly simulates this raster. What do we learn from this fact ?
This helps to better understand how the reservoir computing paradigm works: Al-

though it is not always possible to simulate any raster plot using a “simple” integrate

and fire model such as the one defined in (1), adding hidden neurons allows to embed

the problem in a higher-dimensional space where a solution can be found.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation17

This results is induced by the fact that we have made explicit, in the previous sec-
tion, that learning the network weights is essentially a linear (L or LP) problem. With
this interpretation, a neuron spiking sequence is a vector in this linear space, while a
network raster is a vector set. Designing a “reservoir” simply means choosing a set of
neurons which spiking activity spans the space of expected raster. We are going to see
in the next section that this point of view still holds in our framework when considering
network inputs.

This linear-algebra interpretation further explains our “trivial sparse” choice: We
have simply chosen a somehow canonical orthonormal basis of the raster linear space.
One consequence of this view is that, given a raster, any other raster which is a linear

combination of this raster can be generated by the same network, by a little variation
in the weights. This is due to the fact that a set of neurons defining a given raster cor-
responds to the set of vectors spanning the linear space of all possible raster generated
by this network. Generating another raster corresponds to a simple change of generat-
ing vectors in the spanning set. This also allows us to define, for a given raster linear
space, a minimal set of generating neurons, i.e. a vector basis. The “redundant” neu-
rons are those which spiking sequence is obtained by feed-forward connections from
other neurons.

We must however take care of the fact the numerical values of the vector are binary
values, not real numbers. This is a linear space over a finite field, whereas its scalar
product is over the real numbers.

On optimal hidden neuron layer design

In the previous paragraph, we have fixed the hidden neuron spiking activity, choosing
a sparse ad-hoc activity. It is clearly not the only one solution, very likely not the best
one.

Given N output neurons and S hidden neurons, we may consider the following
question: which are the “best” weights W and the hidden neuron activity Zj′ [k] allow-
ing to reproduce the output raster.

By “best”, we mean optimal weights estimation with the smaller number of hidden
neurons in order to estimate a given spike dynamics. In that case, instead of having to
solve a LP-problem, as specified in (8), we have to consider a much more complicated
problem now:

• not a linear but bi-linear problem (since we have to consider the products of
weights to estimate with spike activity to estimate, as readable in (1);

• not a standard linear programming problem with real values to estimate, but a
mixed integer programming problem with both integer values to estimate.

This has a dramatic consequence, since such problem is known as being NP-hard,
thus not solvable in practice, as discussed previously for the estimating of delays.

This means that we can not consider this very general question, but must propose
heuristics in order to choose or constraint the hidden neuron activity, and then estimate
the weights, given the output and hidden neuron’s spikes, in order to still consider a
LP-problem.

Let us consider one of such heuristic.

RR n° 7199

18 NeuroMathComp

A maximal entropy heuristic

Since we now understand that hidden neuron activity must be chosen in order to span as
much as possible the expected raster space, and since we have no a-priori information
about the kind of raster we want to reproduce, the natural idea is to randomly choose
the neuron activity with a maximal randomness.

Although it is used here at a very simple level, this idea is profound and is related to
random sampling and sparse approximation of complex signal in noise (see [45, 46] for
a didactic introduction), leading to greedy algorithms and convex relaxation [44, 24].
Since inspired by these elaborated ideas, the proposed method is simple enough to be
described without any reference to such formalisms.

In this context, maximizing the chance to consider a hidden neuron with a spik-
ing activity independent from the others, and which adds new independent potential
information, simply corresponds to choose the activity “as random as possible”. This
corresponds to a so called Bernouilli process, i.e., simply to randomly choose each
spike state independently with equi-probability.

Since we want to simulate the expected raster with a minimal number of hidden
neuron, we may consider the following algorithmic scheme:

1. Starts with no hidden but only output neurons.

2. Attempts to solve (8) on hidden (if any) and output neurons, in order to obtain
weights which allows the reproduction of the expected raster on the output neu-
rons.

3. If the estimation fails, add a new hidden neuron and randomly draw its spiking
activity

4. Repeat step 2 and 3 until an exact reproduction of the expected raster is obtained

Clearly, adding more and more random points to the family of generating elements
must generate a spanning family after a finite time, since randomly choosing point in an
affine space, there is no chance to always stay in a given affine sub-space. This means
that we generate a spanning family of neuron after a finite time, with a probability of
one. So that the algorithm converges.

What is to be numerically experimented is the fact we likely obtain a somehow
minimal set of hidden neurons or not. This is going to be experimented in section 6.

5 Application: Input/Output transfer identification

Let us now describe the main practical application of the previous algorithmic devel-
opment, which is to “program” a spiking network in order to generate a given spike
train or realize a given input/output spike train function.

In the present context, this means finding the “right” or the “best” spiking network
parameters in order to map an input’s set onto an output’s set.

From (2) we can write the following equation in order to have a system input/output:

Vi[k] =

No+S∑

j=1

D∑

d=1

Wijd

τik∑

τ=0

γτZj [k − τ − d]

︸ ︷︷ ︸

output + hidden

+

Ni∑

l=1

D∑

d=1

W ′
ild

τik∑

τ=0

γτZ ′
l [k − τ − d]

︸ ︷︷ ︸

input

+

τik∑

τ=0

γτIi[k−τ]

(11)

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation19

All variables have been previously defined, observing the equation we can see that it is
divided in 3 parts, the first part correspond to output and hidden activity in the system,
in the output we will find the activity estimated by the function established from the
inputs given, the hidden layer is described below; the second part correspond to the
input dynamics, it is basically a spike trains containing all data that will be processed
in the function, and finally the third part in the equation correspond to the external
current.

From (11) we can deduce a LP problem, where W and W ′ are the parameters
(delayed weights) to estimate.

AiWi + BiW
′
i + ci > 0

thus:

Ai =

.

. . . (2Zi[k] − 1)
∑τik

τ=0 γτZj [k − τ − d]
.

 ∈ RNS(T−D)×(N+Nh)D

Bi =

.

. . . (2Zi[k] − 1)
∑τik

τ=0 γτZ ′
l [k − τ − d]

.

 ∈ RNS(T−D)×NiD

ci = (. . . (2Zi[k] − 1)(
∑τik

τ=0 γτ
I i[k − τ] − 1) . . .)t ∈ RNS(T−D)

On the number of hidden neurons

The number of hidden neurons necessary to do the matching between any input and
any output could be calculated knowing the number of unknowns in the Linear Pro-
gramming system (weights), the available number of equations (spike constraints) and
the number of constraints (since we constraint all block of N × D initial conditions to
be the same).

To summarize the system has solutions in the general case with N = Ni+No+S.
In order to estimate the number of hidden neurons S we solve the the last LP problem
in terms of NS , T , D and N and we have:

S ≥
T × NS

D
+ (NS − 1) − Ni − No

Here NS correspond to the number of samples to teach the system to learn the function.

What is pointed out here, is the fact that the previous formalism does not only apply
to the simulation of a unique, input less, fully connected network, but is applicable to
a much wider set of problems.

In order to make this explicit, let us consider the following specification of spiking
neural networks with units defined by the recurrent equation (1).

connectivity We now assume a partially connected network with a connection graph
K, i.e., some connections weights can be zero.

input current We consider that any neurons can be driven by an input current Iik,
defining an “analog” input.

input spikes We have also to consider that the network can also be driven by external
incoming spikes.

RR n° 7199

20 NeuroMathComp

output neurons We consider that a subset of neurons are output neurons, with read-

out state that must be constrained, as defined in (5). Other neurons are hidden
neurons.

As discussed previously, the best heuristics is to randomly generate the hidden
neuron required activity.

weighted estimation We further consider that depending on neuron and time the esti-
mation requirement is not homogeneous, whereas there are times and neurons for
which the importance of potential to threshold distance estimation differs from
others. This generalized estimation is obvious to introduce in our formalism,
defining:

|ei|1,Λ =
∑

k

Λik eik,Λik ≥ 0 (12)

for some metric Λ.

We further consider a “supervised learning paradigm” is the following sense. We
now consider a family of L input current or spikes vectors:

I
l = (. . . I l

ik . . .)t ∈ RN×T−D,

to be mapped on family of output spike trains:

Z
l = (. . . Zi[k]l . . .)t ∈ RN×T−D,

given initial states:

Z
l
0 = (. . . Zi[k]l . . .)t ∈ RN×D, k ∈ {0, D{,

for l ∈ {0, L{. We would like to find the correct weights w allowing to perform this
input/output mapping. The estimation problem is in fact strictly equivalent to (5), by
concatenating the input information (except the initial states). This reads:

Ai =

.

. . . (2 Zi[k]l − 1)
∑0

τ=τjk
γτZj [k − τ − d]l . . .

.

 ∈ RL (T−D)×N D,

bi = (. . . (2 Zi[k]l − 1) (I l
ikτ − 1) . . .)t ∈ RL (T−D).

This formalism, thus allows us to find an exact input/output mapping, adding hid-
den neurons in order to have enough degree of freedom to obtain a solution.

Example: IO transfer identification of the “OR” Function

In oder to illustrate the parameters estimation in a input-output system we will consider
a simple “OR” function. Therefore we have only one spike as output if at least one
neuron fire a spike in the precedent time. We have chosen the “OR” function because
it has a trivial solution and we can observe the evolution on the weights. The system is
training with NS inputs and theirs respective outputs, where each output is the “OR”
function calculated on each input raster; finally is tested with a different input (not used
in the learning phase), the output of this input is calculated with the weights estimated
using the Eq. (11), here the distance between the estimated output with the weights
obtained and the expected output is calculated.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation21

-1

 0

 1

 2

 3

 4

 5

 6
 0 10 20 30 40 50

N
eu

ro
ns

Time

RasterIn

Figure 5: This figure show an Input-Output spike train, the purple lines are the spike
times for the input neurons, the black ones are the spike times for the output neuron,
which is determined by the or function from the inputs and the red ones are the initial
conditions used to estimate the parameters.

5.1 Application: approximate Input/Output transfer identification

Let us finally discuss how to apply the previous formalism to approximate transfer
identification. We consider, in our context, deterministic alignment metrics defined on
spike times [49, 48].

Using alignment metric. In this context, the distance between two finite spike trains
F , F ′ is defined in terms of the minimum cost of transforming one spike train into
another. Two kinds of operations are defined:

• spike insertion or spike deletion, the cost of each operation being set to 1

• spike shift, the cost to shift from tni ∈ F to t
′m
i ∈ F ′ being set to |tni − t

′m
i |/τ

for a time constant τ ≥ 1.

Although computing such a distance seems subject to a combinatorial complexity,
it appears that quadratic algorithms are available, with the same complexity in the
discrete and continuous case.

For small τ , the distance approaches the number of non-coincident spikes, since
instead of shifting spikes has a lower cost than insert/delete non-coincident spikes, the
distance being always bounded by the number of spikes in both trains.

For high τ , the distance basically equals the difference in spike number (rate dis-
tance), while for two spike trains with the same number of spikes, there is always a
time-constant τ large enough for the distance to be equal to

∑

n |tni − t
′n
i |/τ .

It appears that the LP algorithms in initial phase [17, 6] which attempt to find
an initial solution before optimizing it, generates a divergence between the obtained
and expected raster, this divergence being zero if a solution exists. Furthermore, this
divergence can be related to the present alignment metric, for high τ , and on-going
work out of the scope of this subject develops this complementary aspect.

RR n° 7199

22 NeuroMathComp

When considering spike trains, an approach consists summing the distances for
each alignment spike-to-spike. Another point of view is to consider that a spike can
“jump”, with some cost, from one spike in F to another spike in F ′. The related
algorithmic complexity is no more quadratic but to the power of the number of spikes
[4].

This family of metrics include aligments not only on spike times, but also on inter-
spike intervals, or metrics which are sensitive to patterns of spikes, etc... They have
been fruitfully applied to a variety of neural systems, in order to characterize neuronal
variability and coding [48]. For instance, in a set of neurons that act as coincidence
detectors with integration time (or temporal resolution) τ , spike trains have other post-
synaptic effects if they are similar w.r.t. this metric. Furthermore, this metric gener-
alizes to metric with causality (at a given time, the cost of previous spikes alignment
decreases with the obsolescence of the spike) and non-linear shift’s costs [10].

Application to approximate identification. Our proposal is to re-visit the maximal
entropy heuristic algorithm defined previously and consider having a correct identifi-
cation, if the distance between the expected and obtained raster is not zero but lower

than some positive threshold.
This allows us to not only address:
The exact estimation problem, i.e. to find an exact input/output mapping if and only

if there is one, but also the approximate estimation problem, i.e. to find an approximate
input/output mapping that minimizes a given distance.

This however, is a trivial strategy because the alignment distance is not used to
find the optimal solution, but only to check wether this solution is acceptable. The
reason of such a choice is easy to explain: alignment metrics, as it, are highly non-
differentiable with respect to the network parameters. Therefore variational methods,
considering. e.g., the criterion gradient in order to drive the parameters value towards
a local optimum do not apply here.

Several alternatives exist. One considers the spike time defined by the equation
VW(tni) = θ, where V is the membrane potential, θ is the firing threshold, and W are
the network parameters to adjust [38]. From the implicit function theorem it is obvious
to relate locally dW and dtni , thus derive a parameter gradient with respect to the spike
times. However, such method is numerically ill-defined, since the threshold value θ is
not significant, but only a modeling trick.

Another alternative is to consider convolution metrics [11], in order to relate the
spike train to a differentiable signal, thus in a context where variational methods can
be applied. One instantiation of this idea considers an abstract specification of the
input/output methods, using piece-wise linear SRM models [21]. This algebraic sim-
plification allows us to implement variational methods [51, 27] in order to specify the
network input/output relations. Such methods, however, are restrained to a given neu-
ronal model and to a given coding (temporal coding in this case) of a continuous in-
formation using spike times. Such methods must thus be generalized in order to be
applied in the present context.

When the present method fails, it still provides an approximate solution with a
“maximal” number of correct spikes, by the virtue of the (8) minimization mechanism.
Each “false” state corresponds to eik < 0 (i.e. either a spurious spike or a missing
spike), and it is an easy exercise to relate this to a particular alignment metric. We
conjecture that this is a interesting track in order to generalize the present work, from
exact estimation, to exact or approximate estimation.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation23

6 Results

6.1 Retrieving weights from the observation of spikes and mem-

brane potential

In a first experiment, we consider the linear problem defined in (3) and use the singular
value decomposition (SVD) mechanism [20] in order to obtain a solution in the least-
square sense. Here the well-established GSL3 library SVD implementation is used.

This allows us to find:

• if one or more solution, the weights of minimal magnitude |wi|
2 =

∑

jd W 2
ijd;

• if no exact solution, the solution which minimizes
∑

k(Vi[k] − Ṽi[k])2 where
Ṽi[k] is the membrane potential predicted by the estimation.

The master and servant paradigm.

We have seen that, if D (N + 1) > T , i.e., if the observation time is small enough for
any raster there is a solution. Otherwise, there is a solution if the raster is generated
by a model of the form of (1). We follow this track here and consider a master/servant
paradigm, as follows:

1. In a first step we randomly choose weights and generate a “master” raster.

2. The corresponding output raster is submitted to our estimation method (the “ser-
vant”), while the master weights are hidden. The weights are taken from a normal
distribution N (0, σ2

N
) with 70% excitatory connections and 30% for inhibitory

one. The standard deviation σ ∈ [1, 10] has been chosen in order to obtain an
interesting dynamics, as discussed in [8].

The algorithm defined in (4) or in (8) has a set of spikes as input for which we are sure
that a solution exists. Therefore it can be used and leads to a solution with a raster
which must exactly correspond to the master input raster.

Note that this does not mean that the servant is going to generate the raster with the
same set of weights, since several solutions likely exist in the general case. Moreover,
except for the paradigm (4),the master and servant potential Vi[k] are expected to be
different, since we attempt to find potentials which distance to the threshold is maximal,
in order to increase the numerical robustness of the method.

This is going to be the validation test of our method. As an illustration we show
two results in Fig. 6 and Fig. 7 for two different dynamics. The former is “chaotic” in
the sense that the period is higher than the observation time.

In the non trivial case in Fig. 6, it is expected that only one weight’s set can generate
such a non-trivial raster, since, as discussed before, we are in the “full rank” case, thus
with a unique solution. We observe the same weights for both master and servant in
this case, as expected. This would not the case for simpler periodic raster, e.g. in Fig. 7,
where the weight’s estimation by the servant differs from the master’s weights, since
several solutions are possible.

Retrieving weights from the observation of spikes and membrane potential has been
introduced here in order to explain and validate the general method in a easy to explain
case. Let us now turn to the more interesting cases where only the observation of spikes
are available.

3http://www.gnu.org/software/gsl

RR n° 7199

24 NeuroMathComp

Figure 6: A “chaotic” dynamics with 30 neurons fully connected within network, ini-
tial conditions D = 3 and observation time T = 100, using both excitatory (70%) and
inhibitory (30%) connections, with σ = 5 (weight standard-deviation). After estima-
tion, we have checked that master and servant generate exactly the same raster plot,

thus only show the servant raster, here and in the next figures.

Figure 7: A “periodic” (58.2 periods of period 5) dynamics with 20 neurons fully
connected within network and observation time T = 300, using both excitatory (70%)
and inhibitory (30%) connections, with σ = 1. Again the master and servant rasters
are the same.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation25

6.2 Retrieving weights from the observation of spikes

In this setup we still use the master / servant paradigm, but now consider the LP
problem defined previously. The numerical solutions are derived thanks to the well-
established improved simplex method as implemented in GLPK4.

As an illustration we show two results in Fig. 8 and Fig. 9 for two different dynam-
ics.

Figure 8: Example of rather complex “chaotic” dynamics retrieved by a the LP esti-
mation defined in (8) using the master / servant paradigm with 50 neurons fully con-
nected, initial conditions D = 3 and observation time T = 200, used here to validate
the method.

Interesting is the fact that, numerically, the estimated weights correspond to a par-
simonious dynamics in the sense that the servant raster period tends to be minimal:

• if the master raster appears periodic, the servant raster is, with same period;

• if the master raster appears aperiodic (i.e., “chaotic”) during the observation in-
terval, the servant raster is periodic with a period close (but not always identical)
to the observation time T . This is coherent with the theoretical analysis of such
networks [8, 13], ans is futher investigated in a next paper.

6.3 Retrieving delayed weights from the observation of spikes

In this next setup we still consider the same master/servant paradigm, for N = 50
units, with a leak γ = 0.95 and an external current I = 0.3, but in this case the master
delayed weight profile has the standard form shown in Fig. 10.

4http://www.gnu.org/software/glpk

RR n° 7199

26 NeuroMathComp

Figure 9: Example of periodic dynamics retrieved by a the LP estimation defined in (8)
using the master / servant paradigm, here a periodic raster of period 30 is observed
during 8.3 periods. (N = 30, T = 300 and D = 3) As expected from by the theory,
the estimated dynamics remains periodic after the estimation time, thus corresponding
to a parsimonious estimation.

Figure 10: Weights distribution (positive and negative) used to generate delayed
weights, with D = 10.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation27

In the case of trivial dynamics, it is observed that the estimated servant weights
distribution is sparse as illustrated in Fig. 11. However, as soon as the dynamics is
non trivial, the proposed algorithm uses all delayed weight parameters in order to find
an optimal solution, without any correspondence between the master initial weight
distribution and the servant estimated weight distribution. This is illustrated in Fig. 13,
where instead of the standard profiles shown in Fig. 10, a “Dirac” profile has been used
in the master, while the estimated weights are distributed at all possible delays. In order
to complete this illustration an non trivial dynamics is shown in Fig. 12.

Figure 11: An example of trivial dynamics obtained with excitatory weights profiles
shown in the top-left view (master weight’s profile), with N = 30, γ = 0.98, D = 10
T = 70. The estimated weights profile (servant weight’s profile) is shown in the
top-right view. To generate such trivial periodic raster, shown in the bottom view,
only weights with a delay equal to the period have not zero values. This corresponds
to a minimal edge of the estimation simplex, this parsimonious estimation being a
consequence of the chosen algorithm.

On the complexity of the generated network

Here we maximize (7) which is in relation with (6). The latter was shown to be a
relevant numerical measure of the network complexity [8, 13]. We thus obtain, among
networks which generate exactly the required master, the “less complex” network, in
the sense of (7). A very simple way to figure out how complex is the servant network
is to observe its generated raster after T , i.e., after the period of time where it matches
exactly the required master’s raster. They are indeed the same before T .

After T , in the case of delayed weights, we still observe that if the original raster is
periodic, the generated raster is still periodic with the same period.

If the original raster is aperiodic, for small N and T , we have observed that the gen-
erated master is still periodic, as illustrated in Fig. 14. We however, have not observed
any further regularity, for instance changes of regime can occur after the T delay, huge
period can be observed for relatively small numbers of N and T , etc.. Further investi-
gating this aspect is a perspective of the present work.

RR n° 7199

28 NeuroMathComp

Figure 12: An example of non-trivial dynamics,with N = 30, γ = 0.98, D = 10 T =
100. Profiles corresponding to the master’s excitatory profiles are superimposed in the
top-left figure, those corresponding to the master’s inhibitory profiles are superimposed
in the top-left figure. The estimated raster is shown in the bottom view. This clearly
shows that, in the absence of additional constraint, the optimal solution corresponds to
wide distribution of weight’s profiles.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation29

Figure 13: In this figure we show that whatever be the weights and delays in the master
(left), with N = 20, γ = 0.98, D = 10 T = 100, the estimator use all the weights and
delays for calculate the raster, in order to obtain an optimal solution.

RR n° 7199

30 NeuroMathComp

T
(a)

T
(b)

Figure 14: Two examples of observation of the raster period, on the slave network,
observing the raster after the time T where it matches the master raster (shown by an
arrow in the figure). (a) With N = 20, γ = 0.98, σ = 5, D = 5, T = 50, a periodic
regime of periode P = 1 is installed after a change in the dynamics. (b) With N = 20,
γ = 0.98, σ = 5, D = 5, T = 50, a periodic regime of periode P = 1 corresponds to
the master periodic regime.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation31

6.4 Retrieving delayed weights from the observation of spikes, us-

ing hidden units

In this last set of numerical experiments we want to verify that the proposed method in
section 4 is “universal” and allows one to evaluate the number of hidden neurons to be
recruited in order to exactly simulate the required raster. If it is true, this means that
we have here available a new “reservoir computing” mechanism.

Considering Bernoulli distribution

We start with a completely random input, drawn from a uniform Bernoulli distribution.
This corresponds to an input with maximal entropy. Here the master/servant trick is no
more used. Thus, the raster to reproduce has no chance to verify the neural network
dynamics constraints induced by (1), unless we add hidden neurons as proposed in
section 4.

As observed in Fig. 15, we obtain as expected an exact reconstruction of the raster,
while as reported in Fig. 16, we need an almost maximal number of hidden neurons for
this reconstruction, as expected since we are in a situation of maximal randomness,

Considering correlated distributions

We now consider a correlated random input, drawn from a Gibbs distribution [14,
9]. To make it simple, the raster input is drawn from a Gibbs distribution, i.e. a
parametrized rank R Markov conditional probability of the form:

P ({Zi[k], 1 ≤ i ≤ N}|{Zi[k − l], 1 ≤ i ≤ N, 1 ≤ l < R}) = 1
Z

exp (Φλ({Zi[k − l], 1 ≤ i ≤ N, 0 ≥ l > −R}))
where Φλ() is the related Gibbs potential parametrized by λ and Z a normalization
constant.

This allows to test our method on highly-correlated rasters. We have chosen a
potential of the form:

Φλ(Z|k=0) = r
∑N

i=1 Zi[0] + Ct

∑N
i=1

∏R
l=0 Zi[l] + Ci

∏R
l=0 Zi[0]

thus with a term related to the firing rate r, a term related to temporal correlations Ct,
and a term related to inter-unit correlation Ci.

We obtain a less intuitive result in this case, as illustrated in Fig. 17: event strongly
correlated (but aperiodic) rasters are reproduced only if using as many hidden neurons
as in the non-correlated case. In fact we have drawn the number S of hidden neurons
against the observation period T randomly selecting 45000 inputs and have obtained
the same curve as in Fig. 16.

This result is due to the fact that since the raster is aperiodic, non predictable
changes occur in the general case, at any time. The raster must thus be generated
by a maximal number of degrees of freedom, as discussed in the previous sections.

In order to further illustrate this aspect, we also show in Fig. 18 how a very sparse
raster is simulated. We again obtain a solution with the same ratio of hidden neurons.
Clearly the number of hidden neurons could have been less, as discussed in the previous
sections. This shows that the algorithm is very general, but not optimal in terms of
number of hidden neurons.

Considering biological data

As a final numerical experiment, we consider two examples of biological data set bor-
rowed from [1] by the courtesy of the authors. Data are related to spike synchronization

RR n° 7199

32 NeuroMathComp

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15: Finding the expected dynamics from a raster with uniform distribution. (a),
(c), (e) and (g) correspond to different raster with Bernoulli Distribution in addition (b),
(d), (f) and (h) show the raster calculated by the methodology proposed. The red lines
correspond to initial conditions (initial raster), the black ones are the spikes calculated
by the method and the blues ones are the spikes in the hidden layer obtained with a
Bernoulli Distribution. We can also observe that the number of neurons in the hidden
layer increases, 1 by 1, between (b), (d), (f) and (h), this is because the observation
time T is augmented by 4, as predicted. Here N = 5, γ = 0.95, D = 3; in (a)(b)
T = 15 with S = 0, in (c)(d) T = 19 with S = 1, in (e)(f) T = 23 with S = 2, in
(g)(h) T = 27 with S = 3, while S correspond to the number of neurons in the hidden
layer, detailed in the text.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation33

0 100 200 300 400 500
Observation time

0

10

20

30

40

50

60

70

80

90

H
id

d
e
n
 n

e
u
ro

n
s

30 40 50 60 70 80 90 100 110
Observation time

0

1

2

3

4

5

H
id

d
e
n
 n

e
u
ro

n
s

Figure 16: Relationship between the number of hidden neurons S and the observation
time T , here N = 10, T = 470, D = 5, γ = 0.95 for this simulation. The right-view
is a zoom of the left view. This curves shows the required number of hidden neurons,
using the proposed algorithm, in order to obtain an exact simulation. We observe that
S = T

D
− N , thus that an almost maximal number of hidden neuron is required. This

curve has been drawn from 45000 independent randomly selected inputs.

Figure 17: Raster calculated, by the proposed method, from a highly correlated Gibbs
distribution. Here r = −1, Ct = −0.5 and Ci = −1. The other parameters are
N = 4, γ = 0.95, D = 3, T = 330 with S = 106. The red lines correspond to initial
conditions (initial raster), the black ones are the input/output spikes and the blues ones
are the spikes in the hidden layer.

RR n° 7199

34 NeuroMathComp

Figure 18: Raster calculated, by the proposed method, from a very sparse raster, with
N = 30, γ = 0.95, D = 3, T = 100 and S = 23. The hidden neurons derived by
the present algorithm simply allow to maintain the network activity in order to fire the
sparse spikes at the right time. Color codes are the same as previously.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation35

in a population of motor cortical neurons in the monkey, during preparation for move-
ment, in a movement direction and reaction time paradigm. Raw data are presented
trial by trial (without synchronization on the input), for different motion directions and
the input signal is not represented, since meaningless for the purpose. Original data
resolution was 0.1ms while we have have considered a 1ms scale here.

What is interesting here is that we can apply the proposed method on non-stationary
rasters, qualitatively very different, such as a very sparse raster, similar to the one
shown in Fig. 18, a raster with two activity phases (presently movement preparation
and execution) in Fig. 19 and a raster with a rich non-stationary activity in Fig. 20.
In fact a dozen of such data sets have been tested, with the same result: exact raster
reconstruction, with the same hidden unit ratio.

Figure 19: Raster calculated, by the proposed method, from a biological data set, with
N = 50, γ = 0.95, D = 3 T = 391 and S = 80. From [1] by the courtesy of the
authors.

RR n° 7199

36 NeuroMathComp

Figure 20: Raster calculated, by the proposed method, from a biological data set, with
N = 50, γ = 0.95, D = 5 T = 291 and S = 8. From [1] by the courtesy of the
authors.

On the computation time

Since the computation time is exclusively the LP problem resolution computation time
we have simply verify that we roughly obtain what is generaly observed with this al-
gorithm, i.e. that the computation time order of magnitude is:

O (S T)
when N ≪ T , which is the case in our experimenation. On a standard laptop computer,
this means a few seconds.

6.5 Input/Output estimation

In this section we present results on the Input/Output matching, the objective is to
find the parameters (delayed weights) for a transfer function and demonstrate that the
methodology proposed in this work is also capable to learn certain functions in order
to approximate input-output functions.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation37

-1

 0

 1

 2

 3

 4

 5

 6
 0 20 40 60 80 100

N
eu

ro
ns

Time

RasterIn

-1

 0

 1

 2

 3

 4

 5

 6
 0 20 40 60 80 100

N
eu

ro
ns

Time

RasterIn

Figure 21: Input-Output dynamics matching, the purple lines represent the input dy-
namics, the black ones are the or function of the inputs, it means that if at least one of
the input neurons fire a spike in t the output fire a spike in t + 1, finally the red ones
represent the initial conditions. Ni = 5, No = 1, D = 0, T = 100 and S = 6. Exact
matching (diff = 0).

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

N
eu

ro
ns

Time

RasterIn

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

N
eu

ro
ns

Time

RasterOut

Figure 22: Input-Output dynamics matching, the purple lines represent the input dy-
namics, the black ones are the or function of the inputs, it means that if at least one of
the input neurons fire a spike in t the output fire a spike in t + 1, finally the red ones
represent the initial conditions. Ni = 10, No = 1, D = 0, T = 100 and S = 10.
Approximate matching (diff = 2).

 0

 2

 4

 6

 8

 10

 12

 14

 16
 0 50 100 150 200 250 300

N
eu

ro
ns

Time

RasterIn

 0

 2

 4

 6

 8

 10

 12

 14

 16
 0 50 100 150 200 250 300

N
eu

ro
ns

Time

RasterOut

Figure 23: Input-Output dynamics matching, the purple lines represent the input dy-
namics, the black ones are the or function of the inputs, it means that if at least one of
the input neurons fire a spike in t the output fire a spike in t + 1, finally the red ones
represent the initial conditions. Ni = 15, No = 1, D = 0, T = 300 and S = 15.
Approximate matching (diff = 21).

RR n° 7199

38 NeuroMathComp

7 Conclusion

Considering a deterministic time-discretized spiking network of neurons with connec-
tion weights having delays, we have been able to investigate in details to which extend
it is possible to back-engineer the networks parameters, i.e., the connection weights.
Contrary to the known NP-hard problem which occurs when weights and delays are
to be calculated, the present reformulation, now expressed as a Linear-Programming
(LP) problem, provides an efficient resolution and we have discussed extensively all
the potential applications of such a mechanism, including regarding what is known as
reservoir computing mechanisms, with or without a full connectivity, etc..

At the simulation level, this is a concrete instantiation of the fact rasters produced
by the simple model proposed here, can produce any rasters produced by more realistic
models such as Hodgkin-Huxley, for a finite horizon. At a theoretical level, this prop-
erty is reminiscent of the shadowing lemma of dynamical systems theory [26], stating
that chaotic orbits produced by a uniformly hyperbolic system can be approached arbi-
trary close by periodic orbits.

At the computational level, we are here in front of a method which allows to “pro-
gram” a spiking network, i.e. find a set of parameters allowing us to exactly reproduce
the network output, given an input. Obviously, many computational modules where
information is related to “times” and “events” are now easily programmable using the
present method. A step further, if the computational requirement is to both consider
“analog” and “event” computations, the fact that we have studied both the unit ana-
log state and the unit event firing reverse-engineering problems (corresponding to the
L and LP problems), tends to show that we could generalize this method to networks
where both “times” and “values” have to be taken into account. The present equations
are to be slightly adapted, yielding to a LP problem with both equality and inequality
constraints, but the method is there.

At the modeling level, the fact that we do not only statistically reproduce the spik-
ing output, but reproduce it exactly, corresponds to the computational neuroscience
paradigm where “each spike matters” [22, 18]. The debate is far beyond the scope
of the present work, but interesting enough is the fact that, when considering natural
images, the primary visual cortex activity seems to be very sparse and deterministic,
contrary to what happens with unrealistic stimuli [5]. This means that it is not a non-
sense to address the problem of estimating a raster exactly.

As far as modeling is concerned, the most important message is in the “delayed
weights design: the key point, in the present context is not to have one weight or
one weight and delay but several weights at different delays”. We have seen that this
increase the computational capability of the network. In other words, more than the
connection’s weight, the connection’s profile matters.

Furthermore, we point out how the related LP adjustment mechanism is distributed
and has the same structure as an “Hebbian” rule. This means that the present learning
mechanism corresponds to a local plasticity rule, adapting the unit weights, from only
the unit and output spike-times. It has the same architecture as another spike-time
dependent plasticity mechanism. However, this is supervised learning mechanisms,
whereas usual STDP rules are unsupervised ones, while the rule implementations is
entirely different.

To which extends this LP algorithm can teach us something about how other plas-
ticity mechanisms is an interesting perspective of the present work. Similarly, better
understanding the dynamics of the generated networks is another issue to investigate,
as pointed out previously.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation39

We consider the present approach as very preliminary and point out that it must be
further investigated at three levels:

i optimal number of hidden units: we have now a clear view of the role of these
hidden units, used to span the linear space corresponding to the expected raster,
as detailed in section 4. This opens a way, not only to find a correct set of
hidden units, but a minimal set of hidden units. This problem is in general NP-
hard, but efficient heuristics may be found considering greedy algorithms. We
have not further discussed this aspect in this paper, because quite different non
trivial algorithms have to be considered, with the open question of their practical
algorithmic complexity. But this is an ongoing work.

ii approximate raster matching: we have seen that, in the deterministic case us-
ing, e.g., alignment metric, approximate matching is a much more challenging
problem, since the distance to minimize are not differentiable, thus not usable
without a combinatorial explosion of the search space. However, if we consider
other metric (see [38, 10] for a review), the situation may be more easy to man-
age, and this is to be further investigated.

iii application to unsupervised or reinforcement learning: though we deliberately
have considered, here, the simplest paradigm of supervised learning in order
to separate the different issues, it is clear that the present mechanism must be
studied in a more general setting of, e.g., reinforcement learning [41], for both
computational and modeling issues. Since the specification is based on a vari-
ational formulation, such a generalization considering criterion related to other
learning paradigms, seems possible to develop.

Though we are still far from solving the three issues, the present study is completed
in the sense that we not only propose theory and experimentation, but a true usable
piece of software5.

5 Source code available at http://enas.gforge.inria.fr.

RR n° 7199

40 NeuroMathComp

References
[1] A. Riehle A, F. Grammont, M. Diesmann, and S. Grn. Dynamical changes and temporal precision of synchronized

spiking activity in monkey motor cortex during movement preparation. J. Physiol (Paris), 94:569–582, 2000.

[2] D. J. Albers and J. C. Sprott. Routes to chaos in high-dimensional dynamical systems : A qualitative numerical study.
Physica D, 223:194–207, 2006.

[3] D. J. Albers and J. C. Sprott. Structural stability and hyperbolicity violation in high-dimensional dynamical systems.
Non linearity, 19:1801–1847, 2006.

[4] Dmitriy Aronov. Fast algorithm for the metric-space analysis of simultaneous responses of multiple single neurons.
Journal of Neuroscience Methods, 124(2), 2003.

[5] P. Baudot. Nature is the code: high temporal precision and low noise in V1. PhD thesis, Univ. Paris 6, 2007.

[6] Robert E. Bixby. Implementing the simplex method: The initial basis. J. on Computing, 4(3), 1992.

[7] S. M. Bohte and M. C. Mozer. Reducing the variability of neural responses: A computational theory of spike-timing-
dependent plasticity. Neural Computation, 19(2):371–403, 2007.

[8] B. Cessac. A discrete time neural network model with spiking neurons. rigorous results on the spontaneous dynamics.
J. Math. Biol., 56(3):311–345, 2008.

[9] B. Cessac, H.Rostro-Gonzalez, J.C. Vasquez, and T. Viéville. Statistics of spikes trains, synaptic plasticity and gibbs
distributions. In Neurocomp 2008, 2008.

[10] B. Cessac, H.Rostro-Gonzalez, J.C. Vasquez, and T. Viéville. To which extend is the ”neural code” a metric ? In
Neurocomp 2008, 2008.

[11] B. Cessac, H. Rostro, J.-C. Vasquez, and T. Viéville. To which extend is the “neural code” a metric ? In Deuxième

conférence française de Neurosciences Computationnelles, 2008.

[12] B. Cessac and T. Viéville. Introducing numerical bounds to improve event-based neural network simulation. Frontiers

in neuroscience, 2008. submitted.

[13] B. Cessac and T. Viéville. On dynamics of integrate-and-fire neural networks with adaptive conductances. Frontiers

in neuroscience, 2(2), jul 2008.

[14] J.R. Chazottes, E. Floriani, and R. Lima. Relative entropy and identification of gibbs measures in dynamical systems.
J. Statist. Phys., 90(3-4):697–725, 1998.

[15] G. Chechik. Spike-timing-dependent plasticity and relevant mutual information maximization. Neural Computation,
15(7):1481–1510, 2003.

[16] L.N. Cooper, N. Intrator, B.S. Blais, and H.Z. Shouval. Theory of Cortical Plasticity. World Scientific Publishing,
2004.

[17] Richard B. Darst. Introduction to Linear ProgrammingApplications and Extensions. Marcel Dekker Ltd, New-York,
1990.

[18] A. Delorme, L. Perrinet, and S. Thorpe. Network of integrate-and-fire neurons using rank order coding b: spike timing
dependant plasticity and emergence of orientation selectivity. Neurocomputing, 38:539–545, 2001.

[19] Alain Destexhe. Conductance-based integrate and fire models. Neural Computation, 9:503–514, 1997.

[20] F.R. Gantmatcher. Matrix Theory. Chelsea, New-York, 1977.

[21] W. Gerstner and W. M. Kistler. Mathematical formulations of hebbian learning. Biological Cybernetics, 87:404–415,
2002.

[22] R. Guyonneau, R. vanRullen, and S.J. Thorpe. Neurons tune to the earliest spikes through stdp. Neural Computation,
2004. In review.

[23] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural

Networks, 2:359–366, 1989.

[24] M. J. Strauss J. A. Tropp, A. C. Gilbert. Algorithms for simultaneous sparse approximation. part i: Greedy pursuit.
Signal Processing, 86:572–588, 2006.

[25] H. Jaeger. Adaptive nonlinear system identification with Echo State Networks. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, NIPS*2002, Advances in Neural Information Processing Systems, volume 15, pages 593–600. MIT
Press, 2003.

[26] A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems. Kluwer, 1998.

INRIA

Reverse-engineering in spiking neural networks parameters: exact deterministic parameters estimation41

[27] P. Kornprobst, T. Vieville, S. Chemla, and O. Rochel. Modeling cortical maps with feed-backs. In 29th European

Conference on Visual Perception, page 53, aug 2006.

[28] J.W. Pillow L. Paninski and E.P. Simoncelli. Maximum likelihood estimation of a stochastic integrate-and-fire neural
encoding model. J. Neurophysiol, 92:959–976, 2004.

[29] W. Maass. Fast sigmoidal networks via spiking neurons. Neural Computation, 9:279–304, 1997.

[30] W. Maass. On the relevance of time in neural computation and learning. Theoretical Computer Science, 261:157–178,
2001. (extended version of ALT’97, in LNAI 1316:364-384).

[31] W. Maass and T. Natschlager. Networks of spiking neurons can emulate arbitrary hopfield nets in temporal coding.
Neural Systems, 8(4):355–372, 1997.

[32] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new framework for neural
computation based on perturbations. Neural Computation, 14(11):2531–2560, 2002.

[33] Wolfgang Maass and Christopher M. Bishop, editors. Pulsed Neural Networks. MIT Press, 2003.

[34] Hélène Paugam-Moisy, Régis Martinez, and Samy Bengio. Delay learning and polychronization for reservoir com-
puting. Neurocomputing, 71:1143–1158, 2008.

[35] T. J. Lewis R. Jolivet and W. Gerstner. Generalized integrate-and-fire models of neuronal activity approximate spike
trains of a detailed model to a high degree of accuracy. J. Neurophysiol, 92:959–976, 2004.

[36] M. Rudolph and A. Destexhe. Analytical integrate and fire neuron models with conductance-based dynamics for event
driven simulation strategies. Neural Computation, 18:2146–2210, 2006.

[37] Anton Maximilian Schäfer and Hans Georg Zimmermann. Recurrent neural networks are universal approximators.
Lecture Notes in Computer Science, 4131:632–640, 2006.

[38] Benjamin Schrauwen. Towards Applicable Spiking Neural Networks. PhD thesis, Universiteit Gent, Belgium, 2007.

[39] H. Soula and C. C. Chow. Stochastic dynamics of a finite-size spiking neural networks. Neural Computation, 19:3262–
3292, 2007.

[40] P. Strata and R.Harvey. Dale’s principle. Brain Res. Bull., 50:34950, 1999.

[41] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA,
1998.

[42] T. Toyoizumi, J.-P. Pfister, K. Aihara, and W. Gerstner. Optimality model of unsupervised spike-timing dependent
plasticity: Synaptic memory and weight distribution. Neural Computation, 19:639–671, 2007.

[43] Taro Toyoizumi, Jean-Pascal Pfister, Kazuyuki Aihara, and Wulfram Gerstner. Generalized bienenstock-cooper-munro
rule for spiking neurons that maximizes information transmission. Proceedings of the National Academy of Science,
102:5239–5244, 2005.

[44] J. A. Tropp. Algorithms for simultaneous sparse approximation. part ii: Convex relaxation. Sparse approximations in

signal processing, 86:589–602, 2006.

[45] Joel A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, 50:2231–
2242, 2004.

[46] Joel A. Tropp. Just relax: Convex programming methods for subset selection and sparse approximation. Technical
report, Texas Institute for Computational Engineering and Sciences, 2004.

[47] D. Verstraeten, B. Schrauwen, M. DHaene, and D. Stroobandt. An experimental unification of reservoir computing
methods. Neural Networks, 20(3):391–403, 2007.

[48] J.D. Victor. Spike train metrics. Current Opinion in Neurobiology, 15(5):585–592, 2005.

[49] J.D. Victor and K.P. Purpura. Nature and precision of temporal coding in visual cortex: a metric-space analysis. J

Neurophysiol, 76:1310–1326, 1996.

[50] T. Viéville, D. Lingrand, and F. Gaspard. Implementing a multi-model estimation method. The International Journal

of Computer Vision, 44(1), 2001.

[51] T. Viéville and O. Rochel. One step towards an abstract view of computation in spiking neural-networks. In Interna-

tional Conf. on Cognitive and Neural Systems, 2006.

[52] Jiřı́ Šı́ma and Jiřı́ Sgall. On the nonlearnability of a single spiking neuron. Neural Computation, 17(12):2635–2647,
2005.

RR n° 7199

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Problem position: Discretized integrate and fire neuron models.
	Methods: Weights and delayed weights estimation
	Methods: Exact spike train simulation
	Introducing hidden units to match any raster

	Application: Input/Output transfer identification
	Application: approximate Input/Output transfer identification

	Results
	Retrieving weights from the observation of spikes and membrane potential
	Retrieving weights from the observation of spikes
	Retrieving delayed weights from the observation of spikes
	Retrieving delayed weights from the observation of spikes, using hidden units
	Input/Output estimation

	Conclusion

