
HAL Id: inria-00456531
https://hal.inria.fr/inria-00456531

Submitted on 15 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling the Variability Space of Self-Adaptive
Applications

Gilles Perrouin, Franck Chauvel, Julien Deantoni, Jean-Marc Jézéquel

To cite this version:
Gilles Perrouin, Franck Chauvel, Julien Deantoni, Jean-Marc Jézéquel. Modeling the Variability Space
of Self-Adaptive Applications. 2nd Dynamic Software Product Lines Workshop (SPLC 2008, Volume
2), 2008, Limerick, Ireland, Ireland. pp.15–22. �inria-00456531�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50110524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00456531
https://hal.archives-ouvertes.fr

Modeling the Variability Space of Self-Adaptive Applications∗

Gilles Perrouin

IRISA (INRIA & Université de Rennes 1)

Campus de Beaulieu

F-35042 RENNES (FRANCE)

Gilles.Perrouin@irisa.fr

Franck Chauvel

VALORIA & Université de Bretagne Sud

Centre de Recherche Yves Coppens

Campus de Tohannic

56017 VANNES Cedex (FRANCE)

Franck.Chauvel@univ-ubs.fr

Julien DeAntoni, Jean-Marc Jézéquel

IRISA (INRIA & Université de Rennes 1)

Campus de Beaulieu

F-35042 RENNES (FRANCE)

{Julien.DeAntoni,Jezequel}@irisa.fr

Abstract

Modeling self-adaptive applications is a difficult task

due to the complex relationships they have with their en-

vironments. Designers of such applications strive to model

accurately a few (re)-configuration possibilities deemed to

be the most relevant with respect to environmental changes.

This deliberate restriction of the variability space is cum-

bersome and may unnecessarily reject interesting (re)-

configuration possibilities. We employ software product-

line techniques to properly cover the whole variability

space of a self-adaptive application. This variability space

is partitioned across three dimensions. Functional variabil-

ity is modeled through a feature diagram whose features

are realized by a set of components to be deployed on a

platform. Topological variability is modeled via an UML

collaboration excluding irrelevant configurations. Platform

variability is modeled through constraints to be satisfied by

configurations. For each dimension, we exhibit properties

capturing the environment. Our modeling approach is il-

lustrated on a web-server example.

1. Introduction

The fast emergence of dynamic environments (such as

mobile systems, web-services, peer-to-peer networks) re-

quires more flexibility from software systems running in

these environments. This specificity raises new develop-

ment challenges. One emerging possibility to address these

∗This work has been partially supported by the DiVA STREP project.

challenges consists in including self-adaptation capabilities

into the application. So-called self-adaptive systems ob-

serve their environment and accordingly adapt their inter-

nal configuration in order to reach some quality objectives

[4, 19, 14].

However, due to the lack of specific methods and tools,

engineers often have to design a set of possible architec-

tural configurations and associate to each of them a pos-

sible state of the environment. To do so, they restrict the

variability space of the self-adaptive application in a dras-

tic way. However, a self-adaptive application has a complex

relationship with its environment which impacts application

functionalities, performances and depends on the abilities of

the platform on which the application is running. Trying to

capture this relationship directly in a few architectural con-

figurations is inherently difficult and exposes engineers to

the risk of overlooking important environmental states and

thus missing interesting architectural configurations.

We believe that designers should properly model the

variability space of a self-adaptive application first. This

enables designers to hold all cards before modeling archi-

tectural configurations of the application. The contribution

of this paper is a modeling process supporting the definition

of variability spaces. Each variability space is defined with

respect to one of the following dimensions: functional,

platform and topological. The first dimension is defined via

a feature model that defines variability across application

functionalities. These functionalities are then related

to a set of components gathered in a repository. It is

important to notice that rather than modeling exhaustively

architectural configurations in the topological space, we

only constrain them via a UML collaboration so that

irrelevant configurations can be excluded during the design

process. Finally, we illustrate how platform variability can

be modeled through non-functional properties.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the web-server that will be used as a run-

ning example. Section 3 defines our modeling process while

Section 4 formalizes the models offered. Section 5 high-

lights some related work. Finally, Section 6 wraps up with

conclusions and outlines future research directions.

2. Motivating Example

Let us consider a simple web server architecture that pro-

cesses HTTP requests such as the Apache Web Server or

the Microsoft IIS solution. In such architectures, various

quality properties can be identified: security level, response

time, memory footprint, relevance of the response, etc. Ob-

jectives that must be reached for each of these properties

depend on the environment state and can depend on each

other. For instance, reaching a good security level is im-

portant but the required filters increases the web server re-

sponse time. Classical non adaptive approaches make trade-

offs between these properties. In some cases, it could be

better to increase the security level according to the number

of malicious requests detected in the environment whereas

in other cases, decreasing it in order to achieve a minimum

response time is preferable. From an architectural perspec-

tive, one emerging solution is to allow the architecture to be

adapted with respect to the environment state. Nowadays, to

describe self-adaptive applications, designers define an ar-

bitrary number of possible architectural configurations and

associate each of them to a particular state of the environ-

ment [4, 19, 14].

For instance, considering the aforementioned security

level issue, the solution consists in choosing a threshold

on the number of malicious requests that triggers a spe-

cific adaptation. This adaptation is often a configuration

switch or a hardcoded number of configuration adaptations.

Considering all the environment variables influencing the

system, this can lead us to specify a large number of con-

figurations or adaptations. To highlight this, we identified

some architectural modifications linked with specific envi-

ronment states in our HTTP web server:

1. Filter such as SQL code detectors, or undesired

URL detectors can be deployed when the number

of malicious requests increases, or when the kind of

retrieved content change. The introduction of such

Filter in the architecture increases the web server

security level, but also increases its response time

and the system used memory. Different kinds of

filters can be identified, for instance, it exists URL

filters, SQL filters, ...

2. It can be decided to use secured or unsecured

Receiver depending on the number of malicious re-

quest. The use of secured receiver increases the

security level but also the response time.

3. A cache can be deployed when the density of re-

quests increases in order to reduce the response time.

Because some request responses are taken from the

cache, this can lead to a response which is not the

freshest one. In consequence, deploying a cache also

decreases the relevance of the response quality. More-

over, different kinds of Caches, that use different al-

gorithm can be identified. For instance, one can iden-

tify the MRU (Most Recently Used) Cache, the LRU

(Last Recently Used) Cache or the LFU (Last Fre-

quently Used) Cache .

4. Several StorageServers can be deployed in the

overall architecture. They contribute to improve rel-

evance of the response quality provided by the web

server and to reduce its response time. However,

they negatively impact memory usage. There ex-

ist various kinds of StorageServers depending

on the way information is stored. For instance, one

can identify RDBMS (Relational DataBase Manage-

ment System) based StorageServer or file based

StorageServer Moreover, when various servers

are deployed, different dispatching policies [17] might

be applied :

• A basic load balancing algorithm may be used to

dispatch requests fairly among the various data

servers.

• Performance hints might also be used to dispatch

requests to the best server, such as the one with

the shorter response time for instance.

• The data contained in requests may be also used

as a criteria to dispatch requests to servers. A

server which stores all the large video files, could

receive all the request referring to video files.

From a designer point of view, we intuitively extract a

primary configuration as well as a number of adaptation

rules from the previously identified architectural variations.

The primary configuration, suitable the majority of the time

(i.e. linked to the environment state assumed to be the most

frequent one) uses at the same time one unsecured receiver

two dataServers, an URL filter and a MRU cache

(see figure 1).

When the load of the server is increasing with non ma-

licious requests beyond a specific threshold, the size of the

cache is replaced with a bigger one and a SQL filter

2

UnSecure
Receiver

URL
Filter

Analyser
Round
Robbin

Dispatcher

RDBMS
StorageServer

RDBMS
StorageServer

MRU
Cache

HTTPServer

Figure 1. One possible configuration for the
Web server

is added to the application. This adaptation leads to better

response time. Aside, when there is not enough free mem-

ory, then the new configuration can decide to use at most

one StorageServer.

This example highlights the fact that a designer iden-

tifies a finite number of configurations from a number of

adaptation rules (or configuration switching rules). In the

above scenarios, we have overviewed three configurations,

each linked to a specific environment state defined through

human-chosen thresholds. However, in the above example,

the identified architectural variation points and their related

variants define more than 72 possible architectural config-

urations. Naturally, if we consider an arbitrary number of

servers, filters, receivers, etc, the number of induced con-

figurations may become quickly very high. As a result, the

designer may overlook one particular configuration which

may be optimal for some environment state.

Our approach proposes to avoid enumerating configu-

rations with respect to the environment states, by model-

ing first the variability space of a self-adaptive application.

Our approach also takes into account the various architec-

ture topologies which can be built from a given selection of

components. We outline our approach in the next section.

3. Approach Overview

As explained, most of self-adaptive systems are currently

designed in an ad-hoc manner using low-level and scripts

or APIs. We claim that a systematic identification of vari-

ation points and of their related variants helps to cope with

the complexity of self-adaptive systems. We identify three

distinct spaces of variability in the development process of

self-adaptive systems, which must be clearly defined to get

an efficient description of self-adaptation. Figure 2 depicts

these three variability spaces.

3.1. Functional Variability Space

First, the designer must identify the set of features which

are used in the system and their related variants. The key

point of self-adaptive systems is that they might involve sev-

eral variants of the same feature and the final system must

use the relevant variants with respect to changes in its en-

vironment. Organizing and reasoning about features must

be achieved using features diagrams since they aim to ex-

press variability points and their related variants. Figure 2

shows a possible feature diagram for a Web server and the

associated variability space (depicted as a question mark).

Reasoning on those diagrams enable the computation of the

Functional variability Space that is to say the set of possible

feature configurations.

3.2. Platform Variability Space

A single feature diagram is not enough to be efficiently

used to design self-adaptive software. Features are only ab-

stractions of software pieces: A single component (i.e.. a

runnable artefact) commonly implements a set of abstract

features and a single feature might be implemented by sev-

eral components. In Figure 2, the component which imple-

ments a feature are shown thank to an arrow which con-

nects a feature to a component. Thus, in order to fill the gap

between the abstract feature diagram and the set of legacy

components, the designer must describe the relationship be-

tween each feature and the legacy components which im-

plement it. The relationship builds the second space of vari-

ability, so-called Platform variability Space and is shown

as the second question mark on Figure 2. Moreover, a spe-

cific execution platform cannot only be described by a set

of available components. It might also entail some specific

constraints on ressources: memory, CPU, bandwidth, etc.

Those constraints must be taken into account to compute

and define the platform variability space.

3.3. Topological Variability Space

The topological variability space relates to a set of par-

ticular configurations which might be deployed at runtime,

that is to say the set of bindings between the selected com-

ponents (See Figure 2). In the web server example, a SQL

Filter can be inserted after the receiver, after the analyzer,

after the dispatcher, etc ... In existing literature [20, 6, 7],

such configurations are fixed and are not computed at run-

time. Contradictorily, we do not describe any configuration.

However, we offer the possibility to the self-adaptive appli-

cation architect to express some constraints on the topol-

ogy of the configuration. These constraints may concern

the relationships between elements (i.e. a receiver should

be connected to a storage server) or to enforce specific ar-

chitectural patterns to take into account during design. We

call topological invariants this kind of constraints.

3

Feature Diagram System

Cache DispatcherReceiver Analyzer

Platform Component Repository

C1 C2 C3 C4 CX

Secured UnSec MRU LRU

Platform Specific Constraints

(Bandwidth, Memory, CPU, ...)

1. What is the set
of possible

feature combinations?

2. What is the set of
possible components

combination
for a given platform?

?

?

implementimplement

C1

C2

C3 C4

C5 C1

C3

C4 C5

Configuration #1 Configuration #2

?
3. What is the set of

possible configurations
 for a given component

selection?

F
u

n
c

ti
o

n
a

l
S

p
a

c
e

P
la

tf
o

rm
 S

p
a

c
e

T
o

p
o

lo
g

ic
a

l
S

p
a

c
e

D
E

V
E

L
O

P
M

E
N

T
 P

R
O

C
E

S
S

RR LC

[1..1][1..1][1..1]

.....C5

Figure 2. Defining the variability space of self-adaptive systems

HTTPServer

Receiver Filter AnalyzerCacheStorageServer Dispatcher

[0..*][0..*][1..*] [0..*] [0..*]

Round Robin Least Connected

[1..1]

MRU LRUFRU

[1..1]

URL SQL

[1..1]

unSecured Secured

[1..1]

RDBMS FILE

[1..1]

Figure 3. Feature Diagram for HTTPServer

4. Models

4.1. Overview

Functional space. To model the functional space of a

self-adaptive architecture, we use a feature diagram [9]

which is a popular technique to represent variability in

product-lines. As noted by Schobbens et al [15], there are

many variants of feature modeling notations. We chose to

use the notation proposed by Czarnecki et al. [2] because it

offers to model variability in terms of cardinality amongst

features. They distinguish two kinds of cardinality; the

first kind, called feature cardinality relates to how many in-

stances of a feature are allowed in a product. We use feature

cardinality to set how many components realizing this par-

ticular feature can be involved in a configuration. The sec-

ond kind of cardinality, called group cardinality, enables to

specify how many children can be selected for a given fea-

ture. As demonstrated by Schobbens et al [15] it is rather a

concise way to model variability operators; for example the

alternative (xor) operator is represented by group cardinal-

ity [1..1], or operator by [0..1] etc.

In this space, we mainly focus on functionality. This means

that we do not model variations of feature that would ac-

tually corresponds to variations in non-functional proper-

ties of a component. For example, the size of a cache (big,

4

small, medium) will not be modeled but variations in their

functionality (such as the algorithm they implement) have

to be modeled in the feature diagram. Figure 3 shows the

resulting feature diagram for HTTPServer. The root fea-

ture identifies the modeled application. Our application is

mandatorily constituted by at least a one component imple-

menting the Receiver feature which may support secu-

rity or not. There is at least one storage server which can

persist their data using RDBMS or files. Other features are

optional.

Platform space. In order to model our components, we

used an high abstraction ADL (Architecture Description

Language) express in terms of components, ports and inter-

faces. This way, models expressed in this ADL can be eas-

ily translated in terms of UML 2.0 components [13] but also

in terms of other component models. Since we are mainly

concerned by the overall topology of the architecture and

not internal component properties, components are consid-

ered as black-boxes. Connection between components are

made through their ports. To each component is associated

a sequence of costs which help the designer to determine if

they can fit to a particular platform when defining the topo-

logical space. They take the form of non-functional prop-

erties covering issues such as bandwidth, memory or CPU

usage. These properties are expressed in the same terms that

platform-specific constraint to ease the allocation.

Topological space. Topological invariants are modeled

via a UML collaboration. When N components are in a

same collaboration, it signifies that there exists at least one

path in the configuration that links together one instance of

each of the N participants. Figure 4 depicts the topolog-

ical invariant for our example. It specifies the following

constraint: “For each StorageServer Component, there

must exist a path1 to a Receiver Component”.

StorageServerReceiver

Figure 4. Topological Invariant for
HTTPServer

Mapping features onto components. We do not seek to

establish a one-to-one mapping between feature and compo-

nents. This is due to the strict separation between the func-

tional and platform spaces. Therefore several components

can implement the same feature but with possibly different

1By ”path“, one should understand a connection with possibly interca-

lated Components

sequence of costs. We have defined the following rules for

the mapping:

• Mappings can only be established from leaf features

(i.e. features having no child) to components defined

in the the platform space,

• A given component cannot implement two features.

Although it is technically possible to do so, this raises

the issue of assigning costs to a given component. For

example, in Figure 2, considering C3 both as an un-

secured receiver and a MRU cache prevent the assign-

ment of the memory attribute globally: is the mem-

ory value concerns one feature, all ? This would force

components’ designers to set those values for each fea-

ture therefore taking into account components’ inter-

nals which contradicts our “black box” approach on

components (see above).

Mappings are given in the form of tuples in which

the first element represents the feature name and the sec-

ond the set of components implementing it. For ex-

ample, the Analyzer feature will be mapped as follows:

<Analyzer,{C4,C5}>.

4.2. Formalization

In order to safely use the proposed models, it is impor-

tant to ensure that the topological space is bounded. If the

topological space is bounded, it signifies that the number of

solutions that can be inferred from the models is finite. To

prove that the topological space is bounded, a formal proof

is given below.

First, we start by formally defining the notion of config-

uration, component and port. A component is noted Comp

and corresponds to a finite number of ports, each noted P

(Cf definition (1).

Comp = {P1, P2, ..., Pp},∀p ∈ N
∗ − {∞} (1)

To each port is associated a cardinality specifying the num-

ber of possible connectors that can be attached to it. So a

port is defined in (2) by a couple of positive or null integers.

P = {Cmin,Cmax},∀Cmin,Cmax ∈ N − {∞} (2)

A connector (noted Con) is a bidirectional link between two

ports and is so defined in (3) as a couple of ports:

Con = {P1, P2} (3)

A configuration Cf is a couple of sets. The first one is a set

of components and the second one is a set of connectors.

5

We define a configuration Cf as stated below: (see 4):

Cf = { (4a)

{Comp1, Comp2, ..., Compn}, (4b)

{Con1, Con2, ..., Conq} (4c)

} ∀n ∈ N
+∗, q ∈ N

+ (4d)

∧ ∀i ∈ [1; q], Coni = {pi1, pi2} where pi1 6= pi2
(4e)

∧ pj1 ∈ Cj1 ∧ Cj1 ∈ {Comp1, ..., Compn} (4f)

∧ pj2 ∈ Cj2 ∧ Cj2 ∈ {Comp1, ..., Compn} (4g)

∧ ∀j ∈ [1, n], k ∈ [1, p], l ∈ [1, q], (4h)

∀Pk ∈ Compj ,∃Pk ∈ Conl (4i)

∧ ∀c ∈ [1, p], d ∈ [1, q], (4j)

∃ (Set(Con) ≤ (Cmax ∈ Pc) (4k)

∧ Set(Con) ≥ (Cmax ∈ Pc)) (4l)

where Set(Con) =

d=q∑

d=0

(Conj ∧ (Pc ∈ Cond))

(4m)

∧ ∀a, b ∈ [1, q], a 6= b ⇒ Cona 6= Conb (4n)

Informally, a configuration is the union of a non-empty set

of components ((4b) and (4d)) and a possibly empty set of

connectors (((4c) and (4d))) where each connector is a cou-

ple of nonidentical Ports ((4e)) belonging to a component

of the configuration ((4f) and (4g)). Moreover, there are

not two identical connectors in a configuration ((4n)) and

each port of each component is connected ((4h) and (4i)).

Finally, the number of connectors referencing a given port

depends on the port’s cardinality ((4j) to (4m)).

We now define a component repository, Rc, as a set of

nonidentical components:

Rc = {Comp1, Comp2, ...Compm},∀m ∈ N
∗

∧ ∀i, j ∈ N
∗, i 6= j ⇒ Compi 6= Compj

(5)

By considering our modeling of the system, a configuration

is a set of components where each Component belongs to

a component repository. Consequently, a set of all possible

configurations noted Set(Cf) is made up of components

from a specific component repository. Considering a com-

ponent repository noted Rc1, we define the set of all possi-

ble configurations as follows:

Set(Cf) = {

{α1.Comp1, α2.Comp2, ..., αn.Compm}

{Con1, Con2, ..., Conq}

} ∀m ∈ N
∗, q ∈ N

∧ ∀i ∈ [1; q],∃Coni = {pi1, pi2} where pi1 6= pj2

∧ pi1 ∈ Compi1 ∧ αi1 6= 0

∧ pi2 ∈ Compi2 ∧ αi1 6= 0

∧ ∀j ∈ [1, n], k ∈ [1, p], l ∈ [1, q],

∀Pk ∈ Compj ,∃Pk ∈ Conl

∧ ∀c ∈ [1, p], d ∈ [1, q],

∃ (Set(Con) ≤ (Cmax ∈ Pc)

∧ Set(Con) ≥ (Cmax ∈ Pc))

where Set(Con) =

d=q∑

d=0

(Conj ∧ (Pc ∈ Cond))

∧ ∀a, b ∈ [1, q], a 6= b ⇒ Cona 6= Conb

∧ αi ∈ N∀i ∈ [1, m]

∧ ∀k ∈ [1, m], Compk ∈ Rc1

(6)

Informally, a possible configuration is made up with the

set of all available components in the component reposi-

tory Rc1. Each of these components can be used 0 or more

times depending on the associated value of α. Moreover, a

possible configuration must conform to the definition given

in (4). Consequently, the set of possible configurations is

the binomial combination of K possible components in a

component repository that contains M components. Since

alpha can be greater than 1, the number of possible sets of

components is a combination where repetition are allowed

and order is discarded. For each set of components, there

exists various possible sets of connectors. In the follow-

ing definition, NbP (Comp) is the number of ports of the

component Comp. Consequently, the number of possible

configurations denoted Size(Set(Cf)) is given by (7):

Size(Set(Cf)) =M+K−1 CK ∗

NbPCf−1∏

i=1

(NbPCf − i)2

where NbPCf =

K∑

j=0

(NbP (Compj))

∧ ∀j, Compj ∈ Cf

(7)

From definition (6), it appears that the configuration can be

composed of an infinite number of components if the value

of a given α tends to ∞. Moreover, it can yield an infinite

number of possibilities if m tends to ∞. In these cases,

6

the set of possible configurations can also be infinite. To

avoid working on an unbounded number of configurations,

we have to add a constraint such that both m and αi∀i ∈
[1, m] can not tend to infinity. for this purpose, we make the

assumption that the size of a configuration is limited (this

assumption fits a great majority of self-adaptive systems).

Formally, the size of a configuration Cf is noted Size(Cf)
and the size of a component is noted Size(Comp) and is

strictly greater than 0. We consider here that a connector

does not use memory space. From definition (6) we obtain:

Size(Cf) =

m∑

i=1

(αi.Size(Compi))

∧ ∀i ∈ [1, m], Size(Compi) > 0

(8)

The constraint on the size of the configuration is then:

m∑

i=1

(αi.Size(Compi)) ≤ S (9)

In (9), because Size(Comp) > 0, if
∑m

i=1
(αi) increases,

then Size(Cf) increases. Consequently, bounding the size

of the configuration bounds the number of component in-

volved in a configuration. Regarding to the number of

possible configurations defined by (7), it implies that the

number of possible components noted K is bounded. For

a constant K, Size(Set(Cf)) increase when M increase.

Consequently, M must be bounded to ensure that the first

term of (7), i.e. M+K−1CK , is bounded. Moreover, be-

cause the number of ports in a component is strictly fi-

nite, NbPCf defined in (7) is bounded. Consequently,

considering that there are not two identical connectors in

a unique configuration and because all ports in the con-

figuration must be connected, the second term of (7), i.e.∏NbPCf−1

i=0
(NbPCf − i)2 is also bounded.

As a result, this formalization ensures that, if the number

of components in the component repository is bounded, if

the number of ports for each component is also bounded,

and if we restrict the configuration to use a finite amount

of memory, then the number of possible configurations is

finite.

5. Related Work

The general problem of mapping feature to the archi-

tecture have been addressed by several works. Kang et al

[10] extends the FODA [9] approach with general guide-

lines to model the architecture. Sochos et al [16] provides

a two-step approach in order to map architectural elements

(implemented as plugins) with features. From one feature

model, a sequence of transformations is performed in oder

to ease the mapping by ordering and defining dependencies

between features. Then, a one-to-one mapping between fea-

tures and plugins is made. Czarnecki et al [1] propose a de-

tailed approach to map features on various model including

UML class and activity diagrams.

However, the above works were not meant to build

Dynamic Software Product Lines (DSPLs), therefore the

barely provides means to consider environmental proper-

ties and platform variability. Van Gurp et al [20] early dis-

cussed the notion of variability at various levels of abstrac-

tion (from requirements to runtime) motivating the need

to define and organize variability mechanisms across these

levels. However they do not provide specific modeling so-

lutions in the case of DSPLs.

Gomaa et al [6, 7] proposed a UML-based profile and a

process to model DSPLs. In particular they handle reconfig-

uration as a sequence of patterns on a fully designed archi-

tecture. Our approach differs in that we do not seek to de-

termine all the possible configurations. Therefore, we need

to separate variability definition from architectural models.

Trinidad et al [18] present a modeling approach to build

DSPLs. They also base the variability description on a fea-

ture model which is mapped on UML 2.0 component ar-

chitecture. Each feature is mapped to a component and

variation points are ensured by relationship components

whose main role is to propagate reconfiguration decisions

performed by a general configurator component. However,

they make the supposition that the feature model is built

while thinking about the DSPL architecture (e.g. one-to-

one relationship between feature and component) which is

not a clear separation of concerns between functional and

architectural dimensions. Furthermore, they do not provide

any means to model platform/environment properties which

trigger reconfiguration decisions.

Lee and Kang [11] propose a global approach for the

engineering of dynamically reconfigurable products in a

product-line fashion. In particular they introduce the no-

tion of binding unit, a grouping of features which are used

to identify architectural components. They also give sev-

eral guidelines to build dynamically reconfigurable archi-

tectures, some hints about environment modeling (context)

and considerations about how a configurator should work.

However they remain at the general level with respect to the

models employed and did not provide a formalization of the

models as we did.

Hallsteinsen et al [8, 3, 5] also provide an holistic view

of the engineering of DSPLs. They define variability di-

rectly in the reference architecture via a dedicated UML

profile. This architecture comprises components which re-

alize component types (variation points) via plans (variants)

modeling a particular reconfiguration scenario. Reconfigu-

ration is modeled through the composition of plans. Conse-

quently these approaches are based on a specific topology

called composition plan whereas our approach take into ac-

7

count the possible variability within this composition plan.

It becomes possible to dynamically change the composition

plan at design time.

Montero et al [12] focused on managing variability in

business processes. In specific, they model how a process

evolves (denoting a reconfiguration of the system) with re-

spect to timing/scheduling constraints. We will integrate

timing issues in future research while validating our ap-

proach on concrete case-studies.

6. Conclusion

Accurately modeling the variation space of self-adaptive

applications requires to properly identify the dimensions

(functional, platform and topological) in which this space

can be described. By combining software product line tech-

niques with separation of concerns, we are able to provide

a clear separation between these dimensions, and to pro-

pose models for each of those dimensions; functional di-

mension is modeled via cardinality-based feature diagrams

which defines constraints on the set of components which

are available to form a particular self-adaptive application

architectural configuration and its possible reconfigurations.

The platform space concerned with the definitions of the in-

dividual components in terms of costs as well as the defini-

tion of restrictions related to the platform on which they run.

Finally, the topological dimension aim at defining the pos-

sible bindings configurations for given set of components.

We also formally demonstrated that our variation space is

bounded which opens the way to decision algorithms able

to extract intersting configurations from this variation space.

Future research will concentrate on the definition of such a

decision procedure as well as its validation in concrete situ-

ations. We also plan to refine our approach with respect to

the complex mapping from features to components and to

provide an integrated tool support for the whole approach.

References

[1] K. Czarnecki and M. Antkiewicz. Mapping Features to

Models: A Template Approach based on Superimposed

Variants. In 4th international conference Generative pro-

gramming and component engineering, volume 3676 of

LNCS, pages 422–437. Springer-Verlag, 2005.

[2] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing

Cardinality-based Feature Models and their Specialization.

Software Process Improvement and Practice, 10(1):7–29,

2005.

[3] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and

E. Gjorven. Using architecture models for runtime adapt-

ability. IEEE Software, 23(2):62–70, 2006.

[4] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and

P. Steenkiste. Rainbow: architecture-based self-adaptation

with reusable infrastructure. Computer, 37(10):46–54,

2004.
[5] K. Geihs, M. Khan, R. Reichle, A. Solberg, S. Hallstein-

sen, and S. Merral. Modeling of component-based adaptive

distributed applications. Symposium on Applied Computing,

pages 718–722, 2006.
[6] H. Gomaa. Feature Dependent Coordination and Adapta-

tion of Component-Based Software Architectures. In C. C.

J. M. Murillo and P. Poizat, editors, ECOOP Workshop on

Practical Approaches for Software Adaptation , pages 45–

52, Berlin, Germany, 2007.
[7] H. Gomaa and M. Hussein. Model-based software design

and adaptation. In SEAMS: Workshop on Software Engi-

neering for Adaptive and Self-Managing Systems, Washing-

ton, DC, USA, 2007. IEEE Computer Society.
[8] S. Hallsteinsen, E. Stav, A. Solberg, J. Floch, S. ICT, and

N. Trondheim. Using product line techniques to build adap-

tive systems. In Software Product Line Conference, 2006.
[9] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-

son. Feature-Oriented Domain Analysis (FODA) Feasibil-

ity Study. Technical Report CMU/SEI-90-TR-21, Software

Engineering Institute, Nov. 1990.
[10] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.

FORM: A Feature-Oriented Reuse Method with Domain-

Specific Reference Architectures. Ann. Softw. Eng., 5:143–

168, 1998.
[11] J. Lee and K. Kang. A feature-oriented approach to devel-

oping dynamically reconfigurable products in product line

engineering. In Software Product Line Conference, Aug.

2006.
[12] I. Montero, J. Pena, and A. Ruiz-Cortes. Representing Run-

time Variability in Business-Driven Development Systems.

Conference on Composition-Based Software Systems (IC-

CBSS 2008), pages 228–231, 2008.
[13] OMG. Unified Modeling Language Superstructure (version

2.1.1). Technical Report formal/2007-02-03, Object Man-

agement Group, February 2007.
[14] J. Real and A. Crespo. Mode change protocols for real-time

systems: A survey and a new proposal. Real-Time Syst.,

26(2):161–197, 2004.
[15] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bon-

temps. Generic semantics of feature diagrams. Computer

Networks, 51(2):456–479, 2007.
[16] P. Sochos, I. Philippow, and M. Riebisch. Feature-Oriented

Development of Software Product Lines: Mapping Fea-

ture Models to the Architecture. In Conference on Object-

Oriented and Internet-Based Technologies, Erfurt, Ger-

many, 2004. Springer.
[17] Y. Teo and R. Ayani. Comparison of Load Balancing Strate-

gies on Cluster-based Web Servers. Transactions of the So-

ciety for Modeling and Simulation, 77(5-6):185–195, 2001.
[18] P. Trinidad, A. Ruiz-Cortés, and J. P. na. Mapping feature

models onto component models to build dynamic software

product lines. In International Workshop on Dynamic Soft-

ware Product Line, 2007.
[19] G. Valetto and G. Kaiser. A Case Study in Software Adap-

tation. Technical report, 2002.
[20] J. van Gurp, J. Bosch, and M. Svahnberg. On the Notion of

Variability in Software Product Lines. In WICSA, 2001.

8

